fernando juan pérez porras

129
UNIVERSIDAD DE CÓRDOBA EIDA3 - Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural Sostenible TESIS DOCTORAL MODELIZACIÓN DE LA DERIVA DE SENSORES TERMOGRÁFICOS EMBARCADOS EN UAV PARA UN MANEJO EFICIENTE DEL RIEGO. MODELLING THE DRIFT OF THERMOGRAPHIC SENSORS UAV FOR EFFICIENT IRRIGATION MANAGEMENT Directores: D. Alfonso García-Ferrer Porras D. Francisco Javier Mesas Carrascosa Fernando Juan Pérez Porras Marzo 2021

Upload: others

Post on 13-Jul-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fernando Juan Pérez Porras

UNIVERSIDAD DE CÓRDOBA

EIDA3 - Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural

Sostenible

TESIS DOCTORAL

MODELIZACIÓN DE LA DERIVA DE SENSORES TERMOGRÁFICOS

EMBARCADOS EN UAV PARA UN MANEJO EFICIENTE DEL RIEGO.

MODELLING THE DRIFT OF THERMOGRAPHIC SENSORS UAV FOR

EFFICIENT IRRIGATION MANAGEMENT

Directores:

D. Alfonso García-Ferrer Porras

D. Francisco Javier Mesas Carrascosa

Fernando Juan Pérez Porras

Marzo 2021

Page 2: Fernando Juan Pérez Porras

TITULO: MODELIZACIÓN DE LA DERIVA DE SENSORES TERMOGRÁFICOSEMBARCADOS EN UAV PARA UN MANEJO EFICIENTE DEL RIEGO

AUTOR: Fernando Juan Pérez Porras

© Edita: UCOPress. 2021 Campus de RabanalesCtra. Nacional IV, Km. 396 A14071 Córdoba

https://www.uco.es/ucopress/index.php/es/[email protected]

Page 3: Fernando Juan Pérez Porras
Page 4: Fernando Juan Pérez Porras

pág. 3

TÍTULO DE LA TESIS: MODELIZACIÓN DE LA DERIVA DE SENSORES TERMOGRÁFICOS EMBARCADOS EN UAV PARA UN MANEJO EFICIENTE DEL RIEGO. DOCTORANDO/A: Fernando Juan Pérez Porras

1 INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS

Dr. ALFONSO GARCÍA-FERRER, Catedrático del Departamento de Ingeniería Gráfica y Geomática, y FRANCISCO JAVIER MESAS CARRASCOSA, Profesor Titular del Departamento de Ingeniería Gráfica y Geomática, pertenecientes a la Universidad de Córdoba, directores de la presente tesis doctoral INFORMAN: Que la investigación desarrollada por D. Fernando Pérez Porras, bajo la dirección de los Doctores Alfonso García-Ferrer y Francisco Javier Mesas Carrascosa, ha sido desarrollada con éxito y alcanzando los objetivos inicialmente propuestos.

Page 5: Fernando Juan Pérez Porras

pág. 4

Publicaciones científicas

1. Mesas-Carrascosa, F. J., Pérez-Porras, F., Meroño de Larriva, J. E., Mena Frau, C., Agüera-Vega, F., Carvajal-Ramírez, F., ... & García-Ferrer, A. (2018). Drift correction of lightweight microbolometer thermal sensors on-board unmanned aerial vehicles. Remote Sensing, 10(4), 615; https://doi.org/10.3390/rs10040615.

Datos de 2018 (JCR): índice de impacto 4.118, índice de impacto de los últimos

5 años 4.740 y 1er cuartil en el área temática en el área temática de Remote

Sensing

2. Mesas-Carrascosa, F. J., Pérez Porras, F., Triviño-Tarradas, P., Meroño de Larriva, J. E., & García-Ferrer, A. (2019). Project-based learning applied to unmanned aerial systems and remote sensing. Remote Sensing, 11(20), 2413; https://doi.org/10.3390/rs11202413.

Datos de 2019 (JCR): índice de impacto 4.509, índice de impacto de los últimos

5 años 5.001 y 2º cuartil en el área temática en el área temática de Remote

Sensing

3. Mesas-Carrascosa, F. J., Pérez Porras, F., Triviño-Tarradas, P., García-Ferrer, A., & Meroño-Larriva, J. E. (2020). Effect of lockdown measures on atmospheric nitrogen dioxide during SARS-CoV-2 in Spain. Remote Sensing, 12(14), 2210; https://doi.org/10.3390/rs12142210.

Datos de 2019 (JCR): índice de impacto 4.509, índice de impacto de los últimos

5 años 5.001 y 2º cuartil en el área temática en el área temática de Remote

Sensing

Otras aportaciones destacables que han surgido de la presente tesis

doctoral en revistas indexadas son:

1. Mesas-Carrascosa, F. J., Verdú Santano, D., Pérez Porras, F., Meroño-Larriva, J. E., & García-Ferrer, A. (2017). The development of an open hardware and software system onboard unmanned aerial vehicles to monitor concentrated solar power plants. Sensors, 17(6), 1329.

Page 6: Fernando Juan Pérez Porras

pág. 5

Datos de 2017 (JCR): índice de impacto 2.475, índice de impacto de los últimos

5 años 3.014 y 2º cuartil en el área temática en el área temática de Instruments

& Instrumentarion.

2. Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International journal of applied earth observation and geoinformation, 72, 1-10.

Datos de 2018 (JCR): índice de impacto 4,846, índice de impacto de los últimos

5 años 5.194 y 1er cuartil en el área temática en el área temática de Remote

Sensing.

3. Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P., López, J. S. H., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement, 121, 127-138.

Datos de 2018 (JCR): índice de impacto 2.791, índice de impacto de los últimos

5 años 2.826 y 2º cuartil en el área temática en el área temática de Instruments

& Instrumentarion

Por todo ello, se autoriza la presentación de la tesis doctoral.

Córdoba, a 19 de marzo de 2021

Firma de los directores

Fdo.: Alfonso García-Ferrer Porras Fdo.: F. Javier Mesas Carrascosa

Page 7: Fernando Juan Pérez Porras
Page 8: Fernando Juan Pérez Porras

pág. 7

Agradecimientos

En primer lugar, quiero agradecer a todos los que me han

ayudado de forma desinteresada a la consecución de esta tesis

doctoral que, aunque mía, también es un poquito de todos

vosotros.

En especial quiero agradecérselo a mis directores de tesis,

Alfonso García-Ferrer por su gran apoyo y Javier Mesas, Javi

para los amigos. Amigos porque además de guiarme en la tesis

durante el proceso de doctorando, me llevo un gran amigo

para toda la vida, gracias Javi, sin ti todo esto y lo que nos

queda sería imposible.

A todos los compañeros con los que he compartido el

departamento de Ingeniería Gráfica y Geomática, Nacho, José

Emilio, Isabel, Juanjo y Mara por haberme ayudado de una

forma u otra a la consecución de los objetivos de la tesis.

A José Luis Sáiz, mi responsable en I+D en Babcock Fleet

Management, por permitirme compatibilizar la Universidad

con la empresa, generando una sinergia muy importante para

todas las partes. Sin él no hubiera conseguido evolucionar

hasta donde he llegado hoy.

Page 9: Fernando Juan Pérez Porras

pág. 8

A mi familia, en especial a mis padres Miguel y Fernanda y a

mi hermano Miguel, que desde pequeño me han empujado a

estudiar y superarme en cada momento y a levantarme cuando

me he caído.

A mis sobrinos Miguel y África, por ser parte de la felicidad de

la casa cuando todos estamos juntos y por intentar ser un

referente para ellos en todo lo que puedo.

Por último, a Carmen, mi pareja y mi compañera por su

nobleza, apoyo y ánimo incondicional no se puede medir, es

incomparable. Gracias por darme todos los días esos

empujoncitos necesarios y por tu comprensión, es imposible

quererte más.

Gracias a todos una vez más.

Page 10: Fernando Juan Pérez Porras

pág. 9

RESUMEN

El uso civil de plataformas aéreas no tripuladas ha experimentado un

notable aumento en la última década, siendo la agricultura una de las áreas

que mayor interés ha despertado. La flexibilidad que ofrecen estas

plataformas, permitiendo realizar vuelos sobre el cultivo en el preciso

momento de interés generando estudios multi-temporales con técnicas de

teledetección de muy alta resolución espacial. Estas aplicaciones están

siendo posibles por la miniaturización de sensores que hace posible

embarcarlos como carga de pago en estas plataformas. De este modo los

sensores registran información de los cultivos en distintas regiones del

espectro electromagnético, que es procesada para aplicaciones de

agricultura de precisión. En función del tipo de sensor, su uso presenta un

mayor o menor grado de madurez, beneficiando o limitando su uso. En el

caso del uso de sensores termográficos, su uso aparece más limitado a

consecuencia de la tecnología empleada si bien despierta un elevado interés

tanto para su aplicación en la detección de enfermedades o evaluación de

estrés hídrico en cultivos. Los sensores termográficos de uso civil se basan

en una tecnología de microbolómetros no refrigerados, la cual presenta

cambios continuos en la medida de temperatura. Esta inestabilidad genera

una deriva en la adquisición de los valores de temperatura que debe ser

corregida. Se presenta un método que permite calcular la deriva de

cualquier sensor termográfico en función del tiempo.

ABSTRACT

The civilian use of unmanned aerial platforms has experienced a

remarkable interest in the last decade, with agriculture being one of the

areas that has aroused most interest. The flexibility offered by these

platforms, allowing flights over the crop at the precise moment of interest,

makes it possible to carry out multi-temporal studies applying remote

sensing techniques with very high spatial resolution. These applications are

being made possible by the miniaturisation of sensors, which makes it

possible to ship them as payloads on these platforms. In this way, sensors

record crop information in different regions of the electromagnetic

spectrum, which, once processed, are used in precision agriculture

applications. Depending on the type of sensor, its use has a greater or lesser

degree of maturity, benefiting or limiting its use. In the case of

thermographic sensors, their use is more limited due to the technology

used, although they are of great interest for their application in the

Page 11: Fernando Juan Pérez Porras

pág. 10

detection of diseases or the evaluation of water stress in crops.

Thermographic sensors for civilian use are based on uncooled

microbolometer technology, which shows continuous changes in

temperature measurement. This instability generates a drift in the

acquisition of temperature values that must be corrected. A method is

presented that allows the drift of any thermographic sensor to be calculated

as a function of time.

Page 12: Fernando Juan Pérez Porras

pág. 11

Índice

2 Introducción ................................................................................................... 15

2.1 Breve repaso de la teledetección. .......................................................... 15

2.2 Primeros programas de teledetección de apoyo a la agricultura ..... 17

2.3 Dificultades del uso de Teledetección en el sector agroforestal ....... 22

2.4 Sistemas aéreos no tripulados ............................................................... 23

2.5 Teledetección aplicada a la agricultura ................................................ 26

2.5.1 Teledetección UAV .......................................................................... 26

2.6 Cargas de pago para plataformas no tripuladas. Teledetección

aplicada a agricultura de precisión con UAV ........................................... 27

2.6.1 Sensores RGB .................................................................................... 27

2.6.2 Sensores multiespectrales ............................................................... 28

2.6.3 Sensores hiperespectrales ............................................................... 30

2.6.4 Sensores radar de apertura sintética ............................................. 31

2.6.5 LiDAR ................................................................................................ 32

2.6.6 Sensores para medición de temperaturas ..................................... 33

2.7 Bibliografía ............................................................................................... 37

3 Objetivos de la tesis doctoral ...................................................................... 43

4 Capítulo 1 ........................................................................................................ 45

Drift Correction of Lightweight Microbolometer Thermal Sensors On-

Board Unmanned Aerial Vehicles ................................................................. 47

1. Introduction ................................................................................................... 48

2. Materials and Methods ................................................................................ 51

Page 13: Fernando Juan Pérez Porras

pág. 12

2.1. UAV Campaigns ....................................................................................... 51

2.2. Thermal Image Processing ........................................................................ 53

2.3. Validation .................................................................................................. 55

3. Results ............................................................................................................ 55

Validation ......................................................................................................... 62

4. Conclusions ................................................................................................... 69

References .......................................................................................................... 70

5 Capítulo 2 ........................................................................................................ 75

Project-Based Learning Applied to Unmanned Aerial Systems and

Remote Sensing ................................................................................................ 77

1. Introduction ............................................................................................... 78

2. Project-Based Learning: Characteristics and Goals .............................. 80

3. UAV-RS in Agricultural Engineering at ETSIAM (University of

Cordoba) ......................................................................................................... 82

4. Systems Design and Educational Activities .......................................... 84

5. Results ......................................................................................................... 92

6. Conclusions ................................................................................................ 96

References ...................................................................................................... 97

6 Capítulo 3 ...................................................................................................... 101

1. Introduction ................................................................................................. 104

2. Materials and Methods .............................................................................. 106

2.1. Study Area............................................................................................. 106

2.2. Remote Sensing Image Collections .................................................... 108

Page 14: Fernando Juan Pérez Porras

pág. 13

3. Results .......................................................................................................... 109

4. Discussion .................................................................................................... 117

5. Conclusions ................................................................................................. 118

References ........................................................................................................ 119

Conclusiones ................................................................................................... 127

Índice de Figuras

Ilustración 1: Arquitectura de un UAS ................................................................... 24

Ilustración 2: 3D del Compass Arrow UAS ............................................................. 25

Ilustración 3: Ortomosaico de ensayo de olivar..................................................... 28

Ilustración 4: Imagen multiespectral capturada durante un incendio donde se

aprecian diferentes contenidos de humedad ........................................................ 29

Ilustración 5: Sensorización con radar de apertura sintética en banda X desde UAS

.............................................................................................................................. 32

Ilustración 6: Nube de puntos 3D capturada por un sensor LiDAR ........................ 33

Ilustración 7: Termografía sobre viñedos .............................................................. 35

Page 15: Fernando Juan Pérez Porras

pág. 14

Page 16: Fernando Juan Pérez Porras

2 INTRODUCCIÓN

2.1 Breve repaso de la teledetección.

Fotografía literalmente significa dibujar con luz. La historia de la

teledetección comienza con la fotografía, con el primer sensor que se

desarrolló y perfeccionó, requiriendo de un método permanente de fijación

de la imagen, cuyo descubrimiento inicial fue realizado por Louis Daguerre

en 1839 (Pollack & Grushkin, 1977). Su uso se extendió rápidamente por el

mundo, lo que provocó un rápido avance tecnológico en cuanto a cámaras,

lentes y procesado. Como resultado de estos avances, el tiempo de

exposición fue recortado de los 30 minutos iniciales necesarios por el

método inicial de Daguerre con el daguerrotipo a 1/1000 s en 1875. Ejemplo

de estos avances fueron que pocos años después, en 1888, George Eastman

introdujo ya el primer rollo de película y la primera cámara fotográfica de

Kodac (Pollack & Grushkin, 1977).

El proceso inicial de revelar imágenes era muy complejo, las placas

fotográficas y las películas sólo eran sensibles a algunas regiones visibles

del espectro electromagnético, concretamente del azul y el verde del

espectro visible, por ello una luz roja de seguridad se utilizaba en un cuarto

oscuro para revelar las imágenes. Posteriormente los tintes durante el

revelado se empezaron a usar para extender el rango del revelado al rojo e

infrarrojo. Este hecho fue descubierto por Vogel of Berlin en 1873 (Neblette,

1970). Diez años después se detectó el límite de 1,3 µm de ancho de banda

en el uso de las placas fotográficas, un límite existente hoy día para el

revelado de imagen (Hudson, 1969). Así, la teoría del color fotográfica se

comenzó a desarrollar en 1868 pero fue impracticable hasta 1930, cuando el

proceso Kodachrome fue introducido para las películas(Pollack &

Grushkin, 1977). No obstante, no era un proceso fácil lo cual provocó que

no se extendiera su uso. Por lo tanto, hasta que no se desarrolló el proceso

Ektachrome no se generalizó el uso de imágenes en color, en 1950 (Pollack

& Grushkin, 1977). En este contexto, las películas pancromáticas, las cuales

sí son sensitivas a todo el espectro visible, no fueron comerciales hasta 1905

(Neblette, 1970). Las películas blanco y negro con infrarrojo no se

comercializaron hasta después de la segunda guerra mundial. Dichos

hechos bélicos, han sido probablemente los que han generado unos avances

más importantes en el sector de la teledetección.

Page 17: Fernando Juan Pérez Porras

Introducción

pág. 16

Por otro lado, y no menos importante, el uso de plataformas aéreas

para el registro de imágenes a fotointerpretar comenzaron con la necesidad

de labores de inteligencia con fines militares en momento de guerra. Por

ello, las grandes guerras han contribuido notablemente a importantes

avances tecnológicos. Las primeras fotografías fueron tomadas por globos

fijados a tierra en 1850, más adelante, en 1862, dichos globos serían usados

por el ejército de Estados Unidos para fotografiar las defensas alrededor de

Richmond, Virginia, durante la guerra de secesión (Avery, 1962). De forma

análoga pero cambiando la plataforma, Willbur Wright hizo la primera

fotografía desde una aeronave tripulada en 1909 (Colwell, 1960). La

fotografía aérea y la fotointerpretación fueron una práctica común que se

generalizó durante la primera guerra mundial. Durante la guerra, se

diseñaron cámaras instaladas en aeronaves las cuales operaban de forma

independiente al vuelo, permitiendo a los pilotos centrarse en las

maniobras de vuelo y mientras tanto las cámaras, de forma autónoma,

capturaban datos de forma constante. Estas cámaras solían estar instaladas

en la zona ventral apuntando hacia el terreno de forma cenital. Ejemplo de

esto se puede encontrar en el uso realizado por las fuerzas aéreas francesas,

llegando a procesar 10.000 imágenes diarias (Colwell, 1960). Por otro lado,

en 1918, durante la primera guerra mundial, fotointérpretes

estadounidenses detectaron e identificaron un 90% de las instalaciones

alemanas gracias a esta tecnología (Colwell, 1960). Todos estos avances en

el ámbito militar se trasladaron posteriormente a la sociedad civil, tanto en

aplicaciones comerciales como científicas alrededor de 1930. Prueba de ello

son las numerosas publicaciones científicas sobre fotointerpretación

realizadas en 1940 en los ámbitos de la ecología, arqueología, geología,

forestal, ingeniería o geografía (Colwell, 1960).

El segundo gran estímulo para la fotografía aérea y fotointerpretación

se produjo durante la segunda guerra mundial. Gracias a la información

que capturaban las cámaras aerotransportadas, se extendió su uso masivo

por las fuerzas aéreas estadounidenses llegando a capturar más de 171

millones de negativos durante la segunda guerra mundial (Infield, 1970).

En paralelo, el origen de la teledetección no fotográfica se desarrollaría

también durante este evento bélico, siendo los principales desarrollos los

relacionados con tecnología radar, sistemas termográficos y sónar.

Con todo esto, algunos investigadores a partir de ese momento

reconocieron el potencial de estos sistemas aplicados a problemas del

ámbito civil; celebrándose el primer Simposio Internacional sobre

Teledetección del Medio Ambiente en la Universidad de Michigan en 1962,

incluyendo ponencias sobre materiales relacionadas con la geofísica,

termografía o imágenes radar (Moore, 1979). Dentro de este primer grupo

Page 18: Fernando Juan Pérez Porras

Introducción

pág. 17

de investigadores que fueron pioneros en detectar las utilidades y

aplicaciones civiles por este tipo de sensores destaca Robert Colwell, de la

Universidad de California, Berkley, desarrollando soluciones para el

ámbito agrícola y forestal. Este investigador llegó a realizar 400

publicaciones sobre teledetección ambiental y junto a David Simonett, el

cual lideraría la edición de la revista Remote Sensing of Environment.

2.2 Primeros programas de teledetección de apoyo a la agricultura

En 1957, representantes de la industria química requirieron a

Agricultural Board of the National Research Council soluciones para, de una

forma más exacta, disponer de más información para detectar y evaluar la

incidencia relacionada con plagas en cultivos agrícolas y zonas forestales

que esos momentos asolaban a los Estados Unidos, generando cuantiosas

pérdidas, fijadas por el Departamento de Agricultura y Forestal de los

Estados Unidos (USDA) entorno a unos 7.000 millones de dólares anuales

aproximadamente de la época. Esto desencadenó que la Agricultural Board

of the National Research Council recomendara la formación de un comité de

Teledetección agrícola para estudiar el uso potencial de sensores

embarcados en plataformas aéreas entre los años 1957 y 1965, formado por

científicos referentes en el sector de la botánica, ingeniería, estadística,

física, silvicultura o economía (Sigafoos, 1970). Uno de las conclusiones de

este comité fue poner en órbita plataformas espaciales para de observación

de la Tierra, coincidiendo con el Año Geofísico Internacional (Acker et al.,

2014) y que el presidente de los Estados Unidos Dwight Eisenhower fue

quién lo anunció. Así, este comité consideró emplear todo tipo de sensores

que dispusieran de longitudes de onda capaces de atravesar la atmosfera y

capturar información relevante para la agricultura. Además, se

establecieron las líneas estratégicas para el desarrollo de la teledetección,

como el procesado bruto de datos, el reconocimiento de patrones,

radiometría o el desarrollo del sector aeroespacial (Macdonald, 1984).

Inicialmente, los primeros estudios se enfocaron en la vegetación de

grandes regiones para detectar brotes de estrés, controlar la propagación

de las plagas y evaluar los daños, generando procesados automatizados en

cada hito de la solución. Además, con datos proporcionados por sensores

termográficos se detectarían áreas donde la vegetación aparecía

gravemente estresada (Macdonald, 1984). Así, las aplicaciones

agroforestales fueron creciendo desde 1960 a la par del desarrollo de

nuevos sensores o mejora de los ya existentes en cuanto a resolución

temporal, espacial o espectral.

Page 19: Fernando Juan Pérez Porras

Introducción

pág. 18

Con estas plataformas espaciales se mantenía el mismo objetivo que

con las plataformas aéreas tripuladas durante la guerra: embarcar una

carga de pago que capturara datos georreferenciados sobre la Tierra. A

diferencia de éstas últimas, la monitorización de la Tierra desde el espacio

sería constante, lo que permitiría estudios multitemporales en grandes

extensiones de terreno. La observación sistemática de la Tierra desde el

espacio comenzó con el satélite TIROS-I, satélite meteorológico con una

cámara de televisión embarcada que permitía a meteorólogos distinguir

entre nubes, agua, hielo y nieve (Krueger & Fritz, 1961). Este satélite sería

posteriormente rebautizado como NOAA en 1970, cuyo nombre y familia

de satélite continua actualmente capturando datos desde el espacio.

No sería hasta el inicio del programa de observación de la Tierra

Landsat donde las técnicas de Teledetección tuvieron un gran impacto en

áreas como la agricultura, geología, minería o forestal. La plataforma

LANDSAT I, equipada con un sensor Multispectral Scanner, formalmente

llamado ERST, ofrecería datos a modo de escenas multiespectrales por

primera vez y una vídeo cámara en el espectro visible e infrarrojo. Así, el

programa Landsat sería el primero de una gran constelación de satélites

que se han ido enviando constantemente al espacio para la captura de datos

en diferentes rangos del espectro electromagnético, y de gran utilidad para

el ámbito agroforestal. Fruto del desarrollo tecnológico, Landsat 3 ya

disponía de bandas en el rango de espectro electromagnético

correspondiente al rojo, verde, infrarrojo cercano e Infrarrojo de onda larga

(Haack, 1982). Posteriormente en 1982, la puesta en servicio de Landsat 4

contaría con los sensores Multiespectral Scanner (MSS) y Thematic Mapper

™, de mucha utilidad para el sector agroforestal (Williams, Goward, &

Arvidson, 2006). Entre las bondades de las plataformas espaciales respecto

a las aeronaves tripuladas se encontraba poder contar con una cobertura

global de forma repetitiva; con una visión sinóptica y resumida uniforme

en el tiempo y abarcando grandes superficies, ofreciendo datos

multiespectrales en formato digital con un coste económico más reducido.

De este modo, inicialmente se identificaron por parte Chuck Paul en 1978,

responsable de teledetección de la Agencia Internacional para el desarrollo

(AID), ocho herramientas agroforestales a desarrollar con técnicas de

teledetección (Haack, 1982): 1) cartografía de inventarios nacionales, 2)

seguimiento de los bosques y deforestación, 3) planificación a futuro de los

usos del suelo, 4) identificación de recursos acuícolas, 5) invasión de las

zonas urbanas en tierras agrícolas, 6) planificación del transporte, 7)

utilidad de la tierra y 8) cartografía de las capacidades de los suelos. En la

Tabla 1 se muestra de forma resumida, en función de las plataformas y tipo

Page 20: Fernando Juan Pérez Porras

Introducción

pág. 19

de carga de pago embarcada, la evolución temporal del tipo de aplicaciones

desarrolladas en el sector agrícola.

Page 21: Fernando Juan Pérez Porras

Introducción

pág. 20

Año Aeronave

tripulada

Media

resolución

Alta

resolución

Ultra

resolución

Sensores

activos

Sensor

1956 Cartogr

afía en

cualquie

r rango

Cartografía

con

RADAR,

Cartografía

con SLAR

Imagen

Aérea

1972 Radar Cartografía

extensiva para

producción y

monitoreo

Cartografía

con SAR

1972

LANDSAT

1975 Detección de

cambios, usos

del suelo

LANDSAT

2

1978 Detección

regadíos,

superficie,

evaluación de

plagas

LANDSAT

3

1982-84 Detección de

sequías,

monitoreo

cambio

climático

LANDSAT

4-5

1985 Mapping

LAI

1985 SPOT

1998 Cartografía

temática

verificada

1999 Biomasa 1999

IKONOS

2000 2000

MODIS

Page 22: Fernando Juan Pérez Porras

Introducción

pág. 21

Tabla 1 Evolución temporal de las aplicaciones agrícolas de las técnicas de Teledetección

2001 Invasión

urbana en

tierras

agrícolas

Mapeado

especies

LAI

Agua

subterráne

a

Plagas

2001

QuickBird

2007 Aplicacion

es para

pequeños

agricultore

s en el

ámbito de

la

producción

,

tratamiento

s y

fertilizante

s

Mapping

LiDAR

2007

WorldView

2009 Revisión

diaria para

estudios

multi -

temporales

con 2

m2/píx

WordView2

2012 Gaofen

2014 Biofísica WorldView

3

2015 Detección

de malas

hierbas y

agricultura

de

precisión

Estructura,

biomasa.

Sentinel

Page 23: Fernando Juan Pérez Porras

Introducción

pág. 22

2.3 Dificultades del uso de Teledetección en el sector agroforestal

Desde un principio, el principal objetivo de la Teledetección ha sido

alertar de forma rápida y exacta ante la presencia de afecciones, plagas y/o

enfermedades en el ámbito agroforestal. No obstante, la Teledetección

aplicada como recurso para agricultores generó ciertas dudas en un primer

momento, especialmente por la dificultad de disponer de datos en tiempo

real. Además, la tecnología de computación en los años 60 no estaba

demasiado avanzada para procesar grandes volúmenes de datos. Como

resultado de este retraso en el acceso a los datos y o la información por parte

de los agricultores junto con no poder contar con estos en una venta

temporal de interés provocó que la Teledetección no fuera tan atractiva en

un primer momento en este campo de aplicación. La consecuencia directa

es que la Teledetección empezó a ponerse en duda como ayuda para los

sistemas expertos de toma de decisiones en el ámbito agrícola, ya que los

insumos se retrasaban mucho desde la captura de los datos. De hecho, las

primeras referencias a los sensores de Landsat 5 siempre hacían hincapié

en los mercados agrícolas o intereses por parte de grandes extensiones

agrícolas para los gobiernos, pero no para los propietarios (Jackson, 1984).

A modo de ejemplo, cultivos de ciclo corto no podrían ser gestionados

correctamente apoyados en datos o información de Teledetección decenas

de días o incluso meses después, ya que esos retrasos no permitían margen

para la toma de decisiones. En este contexto, el trabajo colaborativo entre

investigadores y usuario final permitirían definir las características técnicas

deseables que debería ofrecer un programa de observación de la Tierra de

utilidad para este sector de la agricultura, destacando: a) la disponibilidad

de los datos, siendo deseable minutos o incluso horas, b) la resolución

temporal, para que los datos fueran útiles, en el 50% de los casos ésta

debería ser menor a 5 días, sobre todo en aplicaciones de riego, c) la

resolución espacial, siendo aceptable valores de 400 m2/pixel y resolución

óptimos sobre 25 m2/pixel(Jackson, 1984), pensando principalmente en

cultivos extensivos. Atendiendo a estos condicionantes, no sería hasta 1986

con el lanzamiento de SPOT-1, con una resolución espacial en modo

pancromático igual a 10 metros y multiespectrales de 20 metros, cuando se

comenzaría a tener una aproximación real a lo planteado por Jackson,

siendo el principal problema la resolución temporal igual a 26 días,

provocando que en años posteriores se pusieran en servicio las plataformas

SPOT2- y SPOT-3 en los años 1990 y 1993 respectivamente, aumentando la

resolución temporal. Aun así y pese a todos los avances tecnológicos,

seguiría habiendo reticencia en su uso, principalmente debido a la

resolución espacial, demandándose una resolución espacial igual a 10

Page 24: Fernando Juan Pérez Porras

Introducción

pág. 23

metros con una frecuencia de paso mínima igual a 3 días, además de tener

en cuenta que el coste económico fuera asumible para una explotación

(Steven, 1993).

Para cumplir con las características que necesitaban los agricultores,

como el aumento de resolución o el aumento de la periodicidad, muchos

investigadores usaron técnicas para combinar distintos de programas de

observación que permitieran aumentar la resolución espacial o espectral de

dichos programas a partir de datos pancromáticos (Yesou, Besnus, Rolet, &

sensing, 1993) o mezclando la periodicidad de varios sensores, técnica que

todavía se mantiene en la actualidad (Skakun, Vermote, Roger, & Franch,

2017).

La mayoría de los requisitos que Jackson estableció, se cumplen

actualmente con el programa Copérnico diseñado por la Agencia Espacial

Europea (ESA). Para agricultura, el uso de Sentinel-2 se ha extendido en la

actualidad ya que dispone de unas características de periodicidad (5 días),

resolución (desde 10 hasta 60 metros) y espectral (12 bandas desde 0.43

hasta 12.51 µm) similares a las que Jackson ya estableció en 1984.

2.4 Sistemas aéreos no tripulados

Sin duda alguna los UAS han supuesto una auténtica revolución para

la teledetección. Inicialmente, como con otras tecnologías de la Geomática,

las primeras aplicaciones aparecieron inicialmente en el ámbito militar. Los

UAS son sistemas compuestos por una plataforma aérea, autopiloto,

comunicaciones, estación de control remota además de GPS e inerciales

(Ilustración 1).

Page 25: Fernando Juan Pérez Porras

Introducción

pág. 24

Ilustración 1: Arquitectura de un UAS

El primer programa militar que introdujo el desarrollo de un UAV fue

el llamado AQM-91ª Compass arrow en Estados Unidos. El Compass

Arrow (Ilustración 2) era una plataforma de 2400 kilogramos, con una carga

de pago de más de 100 kilogramos y un techo de vuelo de 20 kilómetros

que volaba 2 horas al límite de altura y con la máxima carga de pago

(Papadales, Tibbetts, Schoenung, & Meier, 1993).

Page 26: Fernando Juan Pérez Porras

Introducción

pág. 25

Ilustración 2: 3D del Compass Arrow UAS

Los UAV normalmente suelen ser clasificados por las características

que definen su rendimiento, entre ellos cabe destacar el modo de despegue.

Entre los distintos tipos de despegue se encuentran los de despegue

vertical, horizontal o por el tipo de rotor ala rotatoria, multirotor o ala fija,

entre otros Por otro lado, también podemos encontrar clasificaciones de

UAV en función del tipo de alimentación (batería, combustión, hidrógeno),

en función del tipo de misión (fotogrametría, observación, arma militar,

transporte) , por el peso (>5kg, 5-25kg, 25-200kg, 200-2000kg ó >2000kg), o

por la distancia y autonomía ( <5 horas y <100km, 5-24 horas y 100-400km,

> 24 horas y > 1500km)(Arjomandi, Agostino, Mammone, Nelson, & Zhou,

2006).

La teledetección agrícola no ha permanecido ajena al uso de UAS,

permitiendo aumentar la resolución espacial hasta pocos cm/píxel, lo que

permite abordar estudios a nivel de planta (Jurado, Ortega, Cubillas, &

Feito, 2020) o malas hierbas (Peña, Torres-Sánchez, de Castro, Kelly, &

López-Granados, 2013), permitiendo solventar dos de los principales

problemas relativos a la resolución temporal y espacial. Sin duda, además

de la plataforma UAV, dentro de un UAS el otro subsistema en orden de

importancia es la carga de pago, presentando actualmente ciertos límites

mecánicos y eléctricos comunes a cualquier plataforma no tripulada, siendo

los principales peso, tamaño, alimentación y consumo, unidad de

procesado y protección ambiental.

A nivel operacional, actualmente la legislación actual sobre aeronaves

no tripuladas aprobada por la Agencia Estatal de Seguridad Aérea a través

del Real Decreto 1036/2017 establece dos categorías de plataformas de

Page 27: Fernando Juan Pérez Porras

Introducción

pág. 26

vuelo (AESA, 2017), aeronaves inferiores a 25 Kg y aeronaves mayores de

25 Kg. Para la operación con éstas últimas, se exige certificado de tipo o

experimental, requisitos similares a los establecidos para una aeronave

tripulada. Esto tipo de requisitos tan exigentes se deben al impacto en un

accidente que pueden generar aeronaves superiores a 25 kg. Por ello, y

sorteando estos requisitos operacionales tan exigentes, la mayoría de UAS

usados en cartografía y teledetección se encuentran en el rango menor de

25 Kg, por facilidad documental, desarrollo, costes y justificación

aeronáutica. Esto implica, que el peso del conjunto aeronave,

comunicaciones, alimentación y carga de pago tienen un límite de peso

muy bajo, lo que implica la miniaturización de los subsistemas y entre ellos

la carga de pago.

2.5 Teledetección aplicada a la agricultura

La teledetección ofrece importantes ventajas en el campo de la

investigación agronómica, destacando la clasificación de cultivo (Zheng,

Myint, Thenkabail, Aggarwal, & Geoinformation, 2015) y su seguimiento y

monitorización (Mateos, González-Dugo, Testi, & Villalobos, 2013). Por

otro lado, permite la evaluación de rendimiento o producción de forma

extensiva y cuantificada (Leslie, Servina, & Miller, 2017), ofreciendo ser una

buena herramienta para ayuda a toma de decisiones (Jones & Barnes, 2000).

Además, permite capturar mínimas variaciones de los cultivos debido a

que éstos son muy vulnerables a variaciones del suelo (Sona et al., 2016),

clima u otros cambios físico-químicos (Ballesteros et al., 2018). Por último,

la aplicación de técnicas de teledetección permite aumentar y

homogeneizar rendimientos de los cultivos (Sona et al., 2016) de forma que

se aumenta la producción al tiempo que se reducen costes para grandes

superficies (Khanal, Fulton, Shearer, & Agriculture, 2017; Potić, Bugarski,

& Matić-Varenica, 2017).

2.5.1 Teledetección UAV

En cuanto a las principales funcionalidades que permite teledetección

desde UAV se encuentran i) estimación de la superficie cultivo,

clasificación del mismo, fenotipo o producción a nivel de planta (Yang et

al., 2017), ii) control de la humedad del suelo, detección de estrés en

cultivos, detección de enfermedades o plagas y la evaluación de la

fertilidad del suelo (Bellvert, Zarco-Tejada, Girona, & Fereres, 2014) y por

último, iii) control de malas hierbas, vigilancia de inundaciones, control de

la erosión y monitorización de la cubierta vegetal (Peña et al., 2013).

Page 28: Fernando Juan Pérez Porras

Introducción

pág. 27

Por otro lado, este tipo de teledetección con UAV volando a baja

altura, máximo 120 metros sobre el terreno según la legislación actual, junto

con el avance de los sensores actuales, ha permitido desarrollar una

tecnología muy útil para la agricultura de precisión. La agricultura de

precisión es una técnica de gestión de parcelas agrícolas basada en la

variabilidad existente en las mismas y el manejo localizado de los inputs a

partir de un listado de herramientas tecnológicas que permite monitorizar

una parcela a nivel de píxel o parcela para mejorar la calidad y producción

agrícola (Pierce & Nowak, 1999). La variabilidad espacial y temporal dentro

de una misma parcela obliga a disponer de una resolución tal, que permita

dar respuesta a esta variabilidad. Si no se dispone de esta resolución, se

corre el riesgo de no dar una respuesta heterogénea de gestión de la parcela

para generar una homogeneización en el crecimiento, producción, calidad

o respuesta del cultivo.

2.6 Cargas de pago para plataformas no tripuladas. Teledetección

aplicada a agricultura de precisión con UAV

2.6.1 Sensores RGB

Los sensores con respuesta en el espectro visible embarcadas en las

plataformas aéreas no tripuladas suelen ofrecer la mayor resolución

espacial, pudiendo ser implementados mediante dos tecnologías, Charge –

coupled device (CCD) o Coplementary Metal Oxide Semiconductor

(CMOS), pudiendo disponer unas u otras del método de captura rolling o

global shutter. En los últimos tiempos los sensores CMOS han mejorado

mucho las características respecto a los de tipo CCD en ruido y sensibilidad,

siendo mejores en términos de bajo consumo, bajos niveles de alimentación

y bajo coste.

En general, para cartografía o teledetección desde un UAV lo ideal es

trabajar con sensores global shutter CMOS, que no presenta un coste

demasiado elevado y ofrecen un resultado óptimo con un menor consumo

(Bigas, Cabruja, Forest, & Salvi, 2006). Por otro lado, los sensores CMOS

pueden utilizar focales con monturas fijas tipo C o micro 4/3, lo que permite

ir adaptando la focal de forma remota en función de la resolución objetivo

en cada momento. Esto puede ayudar en gran medida a mantener la

resolución durante el vuelo, es decir, si el autopiloto del UAV no varía su

posición respecto al terreno en tiempo real se puede mantener variando la

focal en tiempo real de la cámara.

Page 29: Fernando Juan Pérez Porras

Introducción

pág. 28

Dentro de la categoría de sensores pasivos, este tipo de sensores son

los que disponen de una mejor calidad geométrica en comparación con los

distintos sensores del rango del espectro electromagnético, por lo que es

aconsejable a partir de ellos calcular cualquier producto que sea

independiente del espectro, como modelos de elevaciones o superficies

(Moravec et al., 2017).

Este tipo de sensores se usan para generar ortomosaico (Ilustración 3:

Ortomosaico de ensayo de olivar), modelos digitales del elevaciones o de

superficies (Remondino et al., 2011), delimitación de cultivos(Moravec et

al., 2017), mapeado de recursos naturales (Carfagna & Gallego, 2005;

Verbyla, 1995), fotointerpretación (Carfagna & Gallego, 2005), detección de

caminos y carreteras (Mokhtarzade & Zoej, 2007), cubicación de

movimiento de tierras o erosión del terreno(ULVİ̇ & Geosciences, 2018),

delimitación a nivel de planta o detección de malas hierbas (Torres-

Sánchez, López-Granados, De Castro, & Peña-Barragán, 2013).

Ilustración 3: Ortomosaico de ensayo de olivar

2.6.2 Sensores multiespectrales

Este tipo suelen disponer de sensores CMOS con distintos filtros

calibrados para registrar la reflectancia espectral en un rango del espectro

electromagnético concreto, realizando su elección en función de la

aplicación a desarrollar. De hecho, no es extraño encontrar sensores CMOS

para las que se ha diseñado una rueda con distintos filtros que van girando

y capturando datos en el rango del espectro en cada momento que le

interese al usuario con un reducido coste económico (Morales et al., 2020).

Page 30: Fernando Juan Pérez Porras

Introducción

pág. 29

La mayoría de estos sensores suelen disponer de filtros para

aplicaciones agrícolas que cubren la región del espectro electromagnético

entre 0,4 y 0,9 µm (Ilustración 4: ). Además, es posible emplear sensores que

recogen datos en otros rangos del espectro infrarrojo un poco más alto,

denominados Short Wave Infrared (SWIR), los cuales registran datos desde

0,9 hasta 3 µm (Saari et al., 2011), de gran utilidad en agricultura para

aplicaciones relacionadas con estrés hídrico (Ghulam et al., 2008) o

contenido de nitrógeno (Herrmann, Karnieli, Bonfil, Cohen, & Alchanatis,

2010).

Ilustración 4: Imagen multiespectral capturada durante un incendio donde se aprecian diferentes contenidos de humedad

Por lo general, los sensores multiespectrales se utilizan para detectar

en la vegetación variables como la vigorosidad de la planta, clorofila, índice

de área foliar, daños por plagas o enfermedades, detección de estrés,

determinación del tipo de suelo y pigmentos fotosintéticos, o cuantificación

de la fertirrigación (Wójtowicz, Wójtowicz, Piekarczyk, & Science, 2016).

Respecto a los sensores SWIR, las principales aplicaciones se centran en la

predicción del estrés del cultivo y el contenido de nitrógeno en plantas,

perjudicial para el ser humano (Camino et al., 2018).

Page 31: Fernando Juan Pérez Porras

Introducción

pág. 30

2.6.3 Sensores hiperespectrales

Se clasifican normalmente en función del tipo de captura, que puede

ser de barrido de línea o de área (Adão et al., 2017). Por un lado, las cámaras

de barrido van realizando escaneos línea a línea o punto a punto, para

luego generar en la fase de post-procesado un cubo hiperpespectral

georreferenciado. Por otro lado, las cámaras de área realizan las capturas

como su propio nombre indica, capturando todos los píxeles en un mismo

momento, pudiendo disponer de un sensor rolling o global shutter.

Este tipo de sensores, particularmente las de barrido, necesitan de una

unidad inercial muy precisa y correctamente calibrada que permita

posteriormente, cuando se genera el cubo hiperespectral, la unión correcta

de todas las líneas de barrido para formar el cubo hiperespectral (Adão et

al., 2017). Así, es de gran importancia, sobre todo para agricultura de

precisión, que estos sensores dispongan de unidades inerciales de gran

precisión que permita la correcta generación de ortomosaicos

hiperespectrales correctamente georreferenciados.

En general, en esta tipología de sensores, las de tipo barrido suelen

disponer de un número de bandas espectrales mayor que las de tipo área.

Para capturar un gran número de bandas espectrales se hace necesario las

captura por barrido por una limitación estrictamente tecnológica, las

comunicaciones del sensor hacia la unidad de procesamiento interna. Este

tipo de comunicaciones comúnmente se realizan por Gigabit Ethernet

(GigE), lo cual limita el ancho de banda a 1 Gbps. Esta limitación en las

comunicaciones provoca que cuando se desean almacenar las tramas de la

sensorización, no se puedan almacenar imágenes muy pesadas junto con

muchas bandas espectrales, ya que los datos capturados pasarían de 1 Gbps

de peso y no podrían llegar a la unidad de procesamiento. Actualmente, a

las comunicaciones internas en las cámaras se les está incorporando fibra,

sobre todo en visión artificial, lo cual permitirá en el futuro aumentar el

ancho de banda del flujo de datos, lo que permitirá aumentar el número de

bandas espectrales capturadas en las cámaras de área (Li, 2016).

En cuanto a las aplicaciones agrarias a partir de la captura de datos

hiperespectrales se encuentran el cálculo de nitrógeno en planta (Näsi et al.,

2018), contenido de carotenos en viñedo (Jeziorska, 2019; Zarco-Tejada et

al., 2013), determinación de las características hidrológica de la superficie

del cultivo (Jeziorska, 2019), predicción de riegos y estrés hídrico (Albornoz

& Giraldo, 2017; Zarco-Tejada, González-Dugo, & Berni, 2012), detección o

estudio de enfermedades como Verticillium en Olivo(Zarco-Tejada et al.,

Page 32: Fernando Juan Pérez Porras

Introducción

pág. 31

2012) o determinación de clorofila y pigmentos fotosintéticos (Adão et al.,

2017; Calderón, Navas-Cortés, & Zarco-Tejada, 2015).

2.6.4 Sensores radar de apertura sintética

Los radares de apertura sintética son sensores activos capaces de

penetrar sobre la vegetación en función de la frecuencia del espectro en la

que se dispongan los filtros, centrados en las frecuencias microondas. Este

tipo de radares disponen de grandes antenas que emiten pulsos, calculando

el retardo de los ecos, lo que les permite determinar la distancia una vez

reflejado el pulso sobre la superficie. Al ser sensores activos, no necesitan

fuentes de iluminación, por lo que pueden capturar datos tanto de día como

de noche.

La principal característica de estos sensores es la alta resolución de la

que se dispone en la dirección del movimiento del sensor mediante la

síntesis de una antena de grandes dimensiones a partir de una pequeña,

esta característica es la que impone su nombre a estos sensores.

En una imagen SAR lo que se aprecia son intensidades que dependen

del tipo de reflectividad del objeto, en función de si la superficie es rugosa

o plana. La reflectividad son los datos que se almacenan en las

polarizaciones, ya que, como cualquier onda microondas, disponen de una

polarización. En general, los mejores sensores son los que disponen de

mayores polarizaciones disponibles. Lo ideal siempre es disponer de cuatro

polarizaciones Horizontal-Horizontal, Horizontal-Vertical, Vertical-

Vertical, Vertical-Horizontal.

La mayoría de sensores SAR, se centran en la banda X que va desde 8

a 12 Ghz, C de 4 a 8 Ghz o L, de 1 a 2 Ghz. En general, las frecuencias de

mayor poder de penetración son las de menor longitud de onda, como la

banda P centrada estas entre 450 y 900 Mhz (Schmullius & Evans, 1997),

muy utilizada para funcionalidades forestales debido a que estas masas

tienen una gran fracción de cabida cubierta (Ilustración 5).

Page 33: Fernando Juan Pérez Porras

Introducción

pág. 32

Ilustración 6: Sensorización con radar de apertura sintética en banda X desde UAS

La mayoría de las aplicaciones agrícolas de estos sensores se centran

en estudios sobre la humedad del suelo o tipo de suelo(Lyalin, Biryuk,

Sheremet, Tsvetkov, & Prikhodko, 2018). Esto es debido a su poder de

penetración a través de la vegetación y debido a la reflectividad medida

que depende del tipo de suelo. Este tipo de características de los radares de

apertura sintética permiten obtener datos hidrológico e hidromorfológicos

de los suelos o determinar distintos tipos de suelos o su nivel de

humedad(Lyalin et al., 2018).

2.6.5 LiDAR

Los sensores LiDAR (Light Detection And Ranging) son sistemas que

están compuestos por una unidad láser, una unidad inercial, un sistema

GNSS y una unidad de procesamiento. El sistema láser suele ser un sistema

con dos espejos que envía pulsos para los que se mide su tiempo de retorno,

lo que permite calcular distancia. Esta distancia unida a los datos GNSS e

inerciales, permite generar una estructura de puntos en 3D (Ilustración 7:),

llamada nube de puntos (Shan & Toth, 2018).

Page 34: Fernando Juan Pérez Porras

Introducción

pág. 33

Ilustración 7: Nube de puntos 3D capturada por un sensor LiDAR

La penetración del sensor LiDAR depende de la frecuencia de emisión

de los pulsos del láser, variando entre 100 y 1000 Khz, es decir, desde cien

mil hasta un millón de medidas por segundo. La penetración también

depende de los ecos del sensor por cada pulso. En el ámbito agrícola con

sensores sencillos que permitan configuraciones hasta 100 Khz y 2 ó 3 (Lin

& Habib, 2021) ecos por pulso es suficiente para la caracterización de

cultivos mientras que, para aplicaciones forestales, es necesario configurar

los sensores desde 500 Khz para fracciones de cabida cubierta altas con

distintos estratos y hasta 5 ó 6 ecos por pulso (Jakubowski, Guo, & Kelly,

2013). La mayoría de los datos LiDAR se utilizan para el generación de

modelos digitales del superficiies y elevaciones, permitiendo además

calcular la estructura vertical de la vegetación (Zimble et al., 2003). Además,

permiten realizar clasificaciones de usos del suelo (Mesas-Carrascosa,

Castillejo-González, de la Orden, & Porras, 2012), detección para la

digitalización de infraestructuras como caminos (Buján, Guerra-

Hernández, González-Ferreiro, & Miranda, 2021), ríos (Bowen &

Waltermire, 2002) o cuencas hidrológicas(Barber, Shortridge, & Science,

2005). Por otro lado, permiten calcular biomasa, estructura de la vegetación

o cálculos precisos de erosión del terreno o seguimiento de cultivos

mecanizados (Lin & Habib, 2021; Zhou et al., 2020). Por lo general, las

mejores aplicaciones agrícolas se obtienen añadiendo a los datos LiDAR

textura capturada con sensores multiespectrales, termográficos o

hiperespectrales (Bradbury et al., 2005).

2.6.6 Sensores para medición de temperaturas

Existen dos categorías, radiométricas y no radiométricas, operando en

distintos rangos del espectro, Medium Wave Infrared (MWIR), de 3,5 a 5

µm y Long Wave Infrarred, de 7,5 a 13,5 µm. Las temperaturas que miden

Page 35: Fernando Juan Pérez Porras

Introducción

pág. 34

estos sensores se obtienen a través de la radiación de onda que emiten los

objetos en el espectro infrarrojo. Esta radiación es emitida por los cuerpos

debido a que se encuentran a una temperatura superior al cero absoluto, 0

grados kelvin (Speakman & Ward, 1998). Estos sensores, bien de MWIR o

bien LWIR, a diferencia de los de tipo multiespectral poseen, para realizar

las mediciones de temperatura, un bolómetro, el cual tiene la posibilidad

de estar refrigerado por criogenización. Las cámaras en el rango MWIR son

las que disponen de este tipo de bolómetro refrigerado, por lo que

presentan un mayor peso que las de tipo LWIR, que suelen disponer de

bolómetro no refrigerado.

El funcionamiento de un bolómetro se basa en tres fenómenos físicos

i) la radiación del entorno, ii) la transferencia de calor dentro de las partes

sólidas de esta y iii) la conservación de las corrientes eléctricas (Thomas,

Crompton, & Koppenhoefer, 2015). El funcionamiento del bolómetro

principalmente se modela mediante el acoplamiento de la transferencia de

calor y la corriente eléctrica. Los bolómetros que funcionan con

temperaturas criogénicas y por tanto constantes, pueden ser más sensibles

y con mediciones más fiables que los que no lo son (J. Thomas & AltaSim

Technologies, 2015).

El uso potencial de la teledetección termográfica en agricultura incluye

la supervisión y programación del riego, detección de enfermedades en

plantas que causen estrés, estimación del rendimiento de la fruta,

evaluación de la madurez de la fruta o detección de magulladuras y golpes

en frutas y verduras (Ishimwe, Abutaleb, & Ahmed, 2014).

Los sensores MWIR y LWIR se diferencian a su vez entre sensores

térmicos y termográficos. Los primeros son sensores que sólo disponen de

bolómetro y que traducen la diferencia de temperaturas irradiada por los

objetos en el infrarrojo a una imagen con una paleta de colores. Esta paleta

de colores se asigna en función de la radiación o temperatura emitida por

cada objeto.

A diferencia de los sensores térmicos, los de tipo termográfico

disponen de un módulo calibrado radiométricamente, similar a una unidad

de computación, que convierte los datos capturados por el bolómetro a

valores radiométricos. Posteriormente, para convertir los datos

radiométricos a reflectancia, es necesario realizar una conversión en

función de la calibración del bolómetro con un cuerpo negro (Grimberg,

2012). Por tanto, a partir de una cámara termográfica se puede obtener, por

un lado, los mismos resultados que una térmica si se integra la salida

analógica y, por otro lado, a partir de la salida digital se pueden conseguir

datos radiométricos que permiten al usuario disponer de la temperatura

Page 36: Fernando Juan Pérez Porras

Introducción

pág. 35

por píxel (Ilustración 8). Estos píxeles una vez georreferenciados tras un

vuelo de fotogrametría, permitirían una comparación multitemporal a

diferencia de una cámara térmica.

Ilustración 8: Termografía sobre viñedos

Los sensores con bolómetro no refrigerado son más económicos y

pequeños (Jensen, McKee, & Chen, 2014) que los refrigerados debido sobre

todo a la implantación de una tecnología más sencilla, lo que ha

desembocado en un uso más extendido de los mismos en aplicaciones de

agricultura de precisión con UAV. En general este tipo de sensores con

bolómetro no refrigerado son bastante precisos, con variaciones entre 30 y

50 mK, pero bastante inexactos, errando las medidas varios grados Celsius

(Minkina & Dudzik, 2009). Este tipo de bolómetros al estar en contacto con

el viento y el aire a diferentes temperaturas, van cambiando el valor de sus

mediciones constantemente, ya que la electrónica está programada por sí

sola a mantener una temperatura constante. Este principio se conoce como

Non-Uniformity Correction (NUC) (Ibarra-Castanedo & Maldague, 2013)

eliminando la necesidad de calibración constante al actualizar los

coeficientes de corrección en función de los niveles de radiación de la

escena (Olbrycht, Więcek, & De Mey, 2012), de este modo, se puede aplicar

una compensación continua a las mediciones. Este principio provoca

oscilaciones en la medición de temperatura que junto con la deriva térmica

Page 37: Fernando Juan Pérez Porras

Introducción

pág. 36

provocada por el viento en contacto con el bolómetro que recibe el sensor

mientras está embarcado en el UAV, genera mediciones inexactas. En

conclusión, estos sensores miden muy bien valores de temperatura en

relativo, pero no valores de temperatura absolutos, necesitando

correcciones para compensar las derivas (Kelly et al., 2019). Así, para poder

extender el uso de estas cámaras en agricultura de precisión mediante

UAV, se hace indispensable realizar correcciones atmosféricas que

permitan que las medidas realizadas por el sensor sean precisas y a la vez

exactas. Este tipo de correcciones permitirán calcular índices de vegetación

a partir de valores de temperatura, generalmente índices de estrés hídrico.

Esta aplicación directa de la termografía sobre el estrés de los cultivos

y por tanto en el manejo eficiente del riego se debe a que, un indicador del

estrés hídrico en los cultivos se basa en el cierre de los conductos

estomáticos de la hoja. El cierre estomático inducido por el estrés hídrico

reduce la tasa de transpiración, reduciendo así el enfriamiento por

evaporación y aumenta la temperatura de las hojas, hecho que puede ser

detectado por cámaras termográficas embarcadas en un UAV, lo que

permite cuantificar el nivel de estrés y sus mitigaciones a través del riego

(Berni, Zarco-Tejada, Sepulcre-Cantó, Fereres, & Villalobos, 2009).

Después de todas las funcionalidades citadas anteriormente, se

aprecia que las tecnologías UAV están revolucionando la agricultura,

apareciendo constantemente nuevos desarrollos y aplicaciones que

permiten la toma de decisiones en días en lugar de semanas o meses,

prometiendo una importante reducción de costes y un aumento de

rendimiento. Estas decisiones permiten aplicar de forma eficaz los insumos

agrícolas, apoyando los pilares de la agricultura de precisión. Estos pilares

se centran en prácticas agrícolas adecuadas, lugar adecuado, momento

oportuno y cantidades adecuadas y controladas.

Sin embargo, la proliferación de los UAV ha sido muy alta pero no así

la explotación real de los vehículos no tripulados en agricultura inteligente,

debido sobre todo a los retos a los que se enfrenta la selección y despliegue

de las tecnologías, como por ejemplo los métodos de adquisición de datos

o procesamiento de imágenes, que no siguen un flujo estandarizado en un

área relativamente nueva. Por ello, en el ámbito de los UAV, sensores,

termografía, etc. se hace necesario el establecimiento de unos flujos de

trabajo que permitan en cualquier desarrollo ofrecer unos resultados

óptimos y una aplicabilidad directa en el ámbito agrícola.

Page 38: Fernando Juan Pérez Porras

pág. 37

2.7 Bibliografía

1. Acker, J., Williams, R., Chiu, L., Ardanuy, P., Miller, S., Schueler, C., . . . Manore,

M. (2014). Remote sensing from satellites.

2. Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. J. R. S.

(2017). Hyperspectral imaging: A review on UAV-based sensors, data processing

and applications for agriculture and forestry. 9(11), 1110.

3. AESA. (2017). Real Decreto 1036/2017, de 15 de Diciembre, por el que se regula la

utilización civil de las aeronaves pilotadas por control remoto.

4. Albornoz, C., & Giraldo, L. F. (2017). Trajectory design for efficient crop irrigation with

a UAV. Paper presented at the 2017 IEEE 3rd Colombian Conference on Automatic

Control (CCAC).

5. Arjomandi, M., Agostino, S., Mammone, M., Nelson, M., & Zhou, T. J. R. f. M. E. c.,

University of Adelaide, Adelaide, Australia. (2006). Classification of unmanned

aerial vehicles.

6. Avery, T. E. (1962). Interpretation of aerial photographs. Retrieved from

7. Ballesteros, R., Ortega, J. F., Hernandez, D., Del Campo, A., Moreno, M. A. J. I. j. o.

a. e. o., & geoinformation. (2018). Combined use of agro-climatic and very high-

resolution remote sensing information for crop monitoring. 72, 66-75.

8. Barber, C. P., Shortridge, A. J. C., & Science, G. I. (2005). Lidar elevation data for

surface hydrologic modeling: Resolution and representation issues. 32(4), 401-410.

9. Bellvert, J., Zarco-Tejada, P. J., Girona, J., & Fereres, E. J. P. a. (2014). Mapping crop

water stress index in a ‘Pinot-noir’vineyard: comparing ground measurements

with thermal remote sensing imagery from an unmanned aerial vehicle. 15(4), 361-

376.

10. Berni, J., Zarco-Tejada, P., Sepulcre-Cantó, G., Fereres, E., & Villalobos, F. J. R. S. o.

E. (2009). Mapping canopy conductance and CWSI in olive orchards using high

resolution thermal remote sensing imagery. 113(11), 2380-2388.

11. Bigas, M., Cabruja, E., Forest, J., & Salvi, J. J. M. j. (2006). Review of CMOS image

sensors. 37(5), 433-451.

12. Bowen, Z. H., & Waltermire, R. G. J. J. J. o. t. A. W. R. A. (2002). Evaluation of light

detection and ranging (lidar) for measuring river corridor topography 1. 38(1), 33-

41.

13. Bradbury, R. B., Hill, R. A., Mason, D. C., Hinsley, S. A., Wilson, J. D., Balzter, H., .

. . Bellamy, P. E. J. I. (2005). Modelling relationships between birds and vegetation

structure using airborne LiDAR data: a review with case studies from agricultural

and woodland environments. 147(3), 443-452.

14. Buján, S., Guerra-Hernández, J., González-Ferreiro, E., & Miranda, D. J. R. S. (2021).

Forest Road Detection Using LiDAR Data and Hybrid Classification. 13(3), 393.

15. Calderón, R., Navas-Cortés, J. A., & Zarco-Tejada, P. J. J. R. S. (2015). Early

detection and quantification of Verticillium wilt in olive using hyperspectral and

thermal imagery over large areas. 7(5), 5584-5610.

Page 39: Fernando Juan Pérez Porras

pág. 38

16. Camino, C., González-Dugo, V., Hernández, P., Sillero, J., Zarco‐Tejada, P. J. J. I. j.

o. a. e. o., & geoinformation. (2018). Improved nitrogen retrievals with airborne-

derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral

imagery in the context of precision agriculture. 70, 105-117.

17. Carfagna, E., & Gallego, F. J. J. I. s. r. (2005). Using remote sensing for agricultural

statistics. 73(3), 389-404.

18. Colwell, R. J. A. S. o. P., Falls Church, Virginia. (1960). 1960, Manual of

Photographic Interpretation.

19. Ghulam, A., Li, Z.-L., Qin, Q., Yimit, H., Wang, J. J. A., & Meteorology, F. (2008).

Estimating crop water stress with ETM+ NIR and SWIR data. 148(11), 1679-1695.

20. Grimberg, E. (2012). Radiometry using an uncooled microbolometer detector. In:

Google Patents.

21. Haack, B. N. J. W. D. (1982). Landsat: A tool for development. 10(10), 899-909.

22. Herrmann, I., Karnieli, A., Bonfil, D., Cohen, Y., & Alchanatis, V. J. I. J. o. R. S.

(2010). SWIR-based spectral indices for assessing nitrogen content in potato fields.

31(19), 5127-5143.

23. Hudson, R. D. (1969). Infrared system engineering (Vol. 1): Wiley-Interscience New

York.

24. Ibarra-Castanedo, C., & Maldague, X. P. (2013). Infrared thermography. In

Handbook of technical diagnostics (pp. 175-220): Springer.

25. Infield, G. B. (1970). Unarmed and Unafraid, p. 6. New York: Macmillan.

26. Ishimwe, R., Abutaleb, K., & Ahmed, F. J. A. i. r. S. (2014). Applications of thermal

imaging in agriculture—A review. 3(03), 128.

27. J. Thomas, J. S. C. a. K. C. K., & AltaSim Technologies, C., OH. (2015). Multiphysics

Analysis of Infra Red Bolometer. Proceedings of the 2015 COMSOL Conference.

28. Jackson, R. D. (1984). Remote sensing of vegetation characteristics for farm management.

Paper presented at the Remote Sensing: Critical Review of Technology.

29. Jakubowski, M. K., Guo, Q., & Kelly, M. J. R. S. o. E. (2013). Tradeoffs between lidar

pulse density and forest measurement accuracy. 130, 245-253.

30. Jensen, A. M., McKee, M., & Chen, Y. (2014). Procedures for processing thermal images

using low-cost microbolometer cameras for small unmanned aerial systems. Paper

presented at the 2014 IEEE Geoscience and Remote Sensing Symposium.

31. Jeziorska, J. J. R. S. (2019). UAS for wetland mapping and hydrological modeling.

11(17), 1997.

32. Jones, D., & Barnes, E. J. A. S. (2000). Fuzzy composite programming to combine

remote sensing and crop models for decision support in precision crop

management. 65(3), 137-158.

33. Jurado, J. M., Ortega, L., Cubillas, J. J., & Feito, F. J. R. S. (2020). Multispectral

mapping on 3D models and multi-temporal monitoring for individual

characterization of olive trees. 12(7), 1106.

34. Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P., . . . Eklundh,

L. J. R. S. (2019). Challenges and best practices for deriving temperature data from

an uncalibrated UAV thermal infrared camera. 11(5), 567.

Page 40: Fernando Juan Pérez Porras

pág. 39

35. Khanal, S., Fulton, J., Shearer, S. J. C., & Agriculture, E. i. (2017). An overview of

current and potential applications of thermal remote sensing in precision

agriculture. 139, 22-32.

36. Krueger, A. F., & Fritz, S. J. T. (1961). Cellular cloud patterns revealed by TIROS I.

13(1), 1-7.

37. Leslie, C. R., Servina, L. O., & Miller, H. M. (2017). Landsat and Agriculture: Case

Studies on the Uses and Benefits of Landsat Imagery in Agricultural Monitoring and

Production: US Department of the Interior, US Geological Survey.

38. Li, J. J. O. (2016). A highly reliable and super-speed optical fiber transmission for

hyper-spectral SCMOS camera. 127(3), 1532-1545.

39. Lin, Y.-C., & Habib, A. J. R. S. o. E. (2021). Quality control and crop characterization

framework for multi-temporal UAV LiDAR data over mechanized agricultural

fields. 256, 112299.

40. Lyalin, K. S., Biryuk, A. A., Sheremet, A. Y., Tsvetkov, V. K., & Prikhodko, D. V.

(2018). UAV synthetic aperture radar system for control of vegetation and soil moisture.

Paper presented at the 2018 IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering (EIConRus).

41. Macdonald, R. B. (1984). A summary of the history of the development of

automated remote sensing for agricultural applications. Transactions on Geoscience

Remote Sensing(6), 473-482.

42. Mateos, L., González-Dugo, M., Testi, L., & Villalobos, F. J. A. W. M. (2013).

Monitoring evapotranspiration of irrigated crops using crop coefficients derived

from time series of satellite images. I. Method validation. 125, 81-91.

43. Mesas-Carrascosa, F. J., Castillejo-González, I. L., de la Orden, M. S., & Porras, A.

G.-F. (2012). Combining LiDAR intensity with aerial camera data to discriminate

agricultural land uses. Computers

44. electronics in agriculture, 84, 36-46.

45. Minkina, W., & Dudzik, S. (2009). Infrared thermography: errors and uncertainties:

John Wiley & Sons.

46. Mokhtarzade, M., & Zoej, M. V. (2007). Road detection from high-resolution

satellite images using artificial neural networks. International journal of applied earth

observation geoinformation, 9(1), 32-40.

47. Moore, G. K. J. H. S. B. (1979). What is a picture worth? A history of remote

sensing/Quelle est la valeur d'une image? Un tour d'horizon de télédétection. 24(4),

477-485.

48. Morales, A., Guerra, R., Horstrand, P., Diaz, M., Jimenez, A., Melian, J., . . . Lopez,

J. F. J. S. (2020). A Multispectral Camera Development: From the Prototype

Assembly until Its Use in a UAV System. 20(21), 6129.

49. Moravec, D., Komárek, J., Kumhálová, J., Kroulík, M., Prošek, J., & Klápště, P. J. A.

R. (2017). Digital elevation models as predictors of yield: comparison of an UAV

and other elevation data sources. 15(1), 249-255.

50. Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T., Markelin, L., &

Honkavaara, E. J. R. S. (2018). Estimating biomass and nitrogen amount of barley

Page 41: Fernando Juan Pérez Porras

pág. 40

and grass using UAV and aircraft based spectral and photogrammetric 3D features.

10(7), 1082.

51. Neblette, C. B. (1970). Fundamentals of Photography: Van Nostrand Reinhold.

52. Olbrycht, R., Więcek, B., & De Mey, G. J. A. O. (2012). Thermal drift compensation

method for microbolometer thermal cameras. 51(11), 1788-1794.

53. Papadales, B. S., Tibbetts, T. A., Schoenung, S. M., & Meier, W. R. (1993). Remote

sensing with high-altitude unmanned aerial vehicles. Paper presented at the Airborne

Reconnaissance XVII.

54. Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. J.

P. o. (2013). Weed mapping in early-season maize fields using object-based analysis

of unmanned aerial vehicle (UAV) images. 8(10), e77151.

55. Pierce, F. J., & Nowak, P. J. A. i. a. (1999). Aspects of precision agriculture. 67, 1-85.

56. Pollack, P., & Grushkin, P. (1977). The picture history of photography: from the earliest

beginnings to the present day: Abrams New York.

57. Potić, I., Bugarski, M., & Matić-Varenica, J. (2017). Soil moisture determination using

remote sensing data for the property protection and increase of agriculture production.

Paper presented at the Worldbank conference on land and poverty”, The World

Bank, Washington DC.

58. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D. J. I. a. o. t. p., remote

sensing, & sciences, s. i. (2011). UAV photogrammetry for mapping and 3d

modeling–current status and future perspectives. 38(1), C22.

59. Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkilä, J., Holmlund, C., . . .

Antila, T. (2011). Unmanned Aerial Vehicle (UAV) operated spectral camera system for

forest and agriculture applications. Paper presented at the Remote Sensing for

Agriculture, Ecosystems, and Hydrology XIII.

60. Schmullius, C., & Evans, D. J. I. J. o. R. S. (1997). Review article Synthetic aperture

radar (SAR) frequency and polarization requirements for applications in ecology,

geology, hydrology, and oceanography: A tabular status quo after SIR-C/X-SAR.

18(13), 2713-2722.

61. Shan, J., & Toth, C. K. (2018). Topographic laser ranging and scanning: principles and

processing: CRC press.

62. Sigafoos, R. S. (1970). Remote Sensing. With Special Reference to Agriculture and

Forestry. National Research Council Committee on Remote Sensing for

Agricultural Purposes. National Academy of Sciences, Washington, DC, 1970. xvi,

424 pp.+ plates. $12.95. NAS Publication No. 1723. In: American Association for the

Advancement of Science.

63. Skakun, S., Vermote, E., Roger, J.-C., & Franch, B. J. A. g. (2017). Combined use of

Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield

assessment at regional scale. 3(2), 163.

64. Sona, G., Passoni, D., Pinto, L., Pagliari, D., Masseroni, D., Ortuani, B., & Facchi, A.

(2016). UAV multispectral survey to map soil and crop for precision farming applications.

Paper presented at the Remote Sensing and Spatial Information Sciences Congress:

Page 42: Fernando Juan Pérez Porras

pág. 41

International Archives of the Photogrammetry Remote Sensing and Spatial

Information Sciences Congress: 19 July.

65. Speakman, J. R., & Ward, S. J. Z.-J.-. (1998). Infrared thermography: principles and

applications. 101, 224-232.

66. Steven, M. (1993). Satellite remote sensing for agricultural management:

Opportunities and logistic constraints. Journal of photogrammetry Remote Sensing,

48(4), 29-34.

67. Thomas, J., Crompton, J., & Koppenhoefer, K. (2015). Multiphysics Analysis of Infra

Red Bolometer. Paper presented at the Proceedings of the 2015 COMSOL Conference

in Boston, Boston, MA, USA.

68. Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. J.

P. o. (2013). Configuration and specifications of an unmanned aerial vehicle (UAV)

for early site specific weed management. 8(3), e58210.

69. ULVİ̇, A. J. I. J. o. E., & Geosciences. (2018). Analysis of the utility of the unmanned

aerial vehicle (Uav) in volume calculation by using photogrammetric techniques.

3(2), 43-49.

70. Verbyla, D. L. (1995). Satellite remote sensing of natural resources (Vol. 4): CRC Press.

71. Williams, D. L., Goward, S., & Arvidson, T. (2006). Landsat. Photogrammetric

Engineering Remote Sensing, 72(10), 1171-1178.

72. Wójtowicz, M., Wójtowicz, A., Piekarczyk, J. J. C. i. B., & Science, C. (2016).

Application of remote sensing methods in agriculture. 11(1), 31-50.

73. Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., . . . Zhang, X. J. F. i. p. s. (2017).

Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current

status and perspectives. 8, 1111.

74. Yesou, H., Besnus, Y., Rolet, J. J. I. j. o. p., & sensing, r. (1993). Extraction of spectral

information from Landsat TM data and merger with SPOT panchromatic

imagery—a contribution to the study of geological structures. 48(5), 23-36.

75. Zarco-Tejada, P. J., González-Dugo, V., & Berni, J. A. J. R. s. o. e. (2012).

Fluorescence, temperature and narrow-band indices acquired from a UAV

platform for water stress detection using a micro-hyperspectral imager and a

thermal camera. 117, 322-337.

76. Zarco-Tejada, P. J., Guillén-Climent, M. L., Hernández-Clemente, R., Catalina, A.,

González, M., Martín, P. J. A., & meteorology, f. (2013). Estimating leaf carotenoid

content in vineyards using high resolution hyperspectral imagery acquired from

an unmanned aerial vehicle (UAV). 171, 281-294.

77. Zheng, B., Myint, S. W., Thenkabail, P. S., Aggarwal, R. M. J. I. J. o. A. E. O., &

Geoinformation. (2015). A support vector machine to identify irrigated crop types

using time-series Landsat NDVI data. 34, 103-112.

78. Zhou, L., Gu, X., Cheng, S., Yang, G., Shu, M., & Sun, Q. J. A. (2020). Analysis of

plant height changes of lodged maize using UAV-LiDAR data. 10(5), 146.

79. Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, R. C., Grado, S. C., &

Gerard, P. D. J. R. s. o. E. (2003). Characterizing vertical forest structure

using small-footprint airborne LiDAR. 87(2-3), 171-182.

Page 43: Fernando Juan Pérez Porras
Page 44: Fernando Juan Pérez Porras

3 OBJETIVOS DE LA TESIS DOCTORAL

El principal objetivo de esta Tesis Doctoral es explorar y analizar el uso

de sensores embarcados en plataformas espaciales y aéreas no tripuladas

aplicando técnicas de Teledetección en distintos campos de actuación,

desde la modelización del comportamiento del sensor durante el registro

de datos hasta la generación de información de utilidad para la toma de

decisiones, pasando por la formación y capacitación de profesionales en el

manejo de estas tecnologías. Concretamente esta Tesis queda estructurada

Capítulo 1. Drift correction of lightweight microbolometer thermal

sensors on-board unmanned aerial vehicles

En este capítulo se ha desarrollado una metodología que permita, a

partir de la extracción de puntos de control en imágenes termográficas

registradas por un sensor embarcado en una plataforma aérea no tripulada

en la zonas de solape longitudinal y transversal durante la fase de

aerotriangulación en el flujo de trabajo fotogramétrico, evaluar la deriva

térmica del bolómetro producida en el sensor en función del tiempo. Una

vez calculada esta deriva, se han desarrollado unos modelos que dan

respuesta a esta deriva de la temperatura en función del tiempo, generando

una nuevas imágenes termográficas corregidas de este efecto.

Capítulo 2. Project-based learning applied to unmanned aerial systems

and remote sensing

El desarrollo de la tecnología de los vehículos aéreos no tripulados y

la miniaturización de los sensores han cambiado la forma de utilizar la

teledetección, popularizando esta disciplina en la agricultura de precisión.

Además de la transferencia de estas tecnologías al sector productivo, no

menos importante es su incorporación en la capacitación de ingenieros. En

este capítulo se presenta como se ha introducido el uso de estas tecnologías

en la formación de los alumnos de Master en Ingeniería Agronómica a

través de la formación basada en proyectos.

Capítulo 3. Effect of lockdown measures on atmospheric nitrogen

dioxide during SARS-CoV-2 in Spain

Debido a la pandemia producida por el virus SARS-CoV-2, la

concentración de gases de efecto invernadero en la atmósfera ha

disminuido notablemente, sobre todo durante el periodo de confinamiento

de la población. En este capítulo, a través del uso de sensores embarcados

Page 45: Fernando Juan Pérez Porras

Objetivos

pág. 44

en la plataforma Sentinel-5P del programa de observación de la Tierra

Copernicus de la Unión Europea se ha analizado esta reducción y su

relación con la densidad de población en España.

Page 46: Fernando Juan Pérez Porras

4 CAPÍTULO 1

Publicado en Remote Sensing. 2018, 10(4), 615;

https://doi.org/10.3390/rs11202413

Page 47: Fernando Juan Pérez Porras
Page 48: Fernando Juan Pérez Porras

Capítulo 1

pág. 47

Article

Drift Correction of Lightweight

Microbolometer Thermal Sensors

On-Board Unmanned Aerial

Vehicles

Francisco-Javier Mesas-Carrascosa 1,*, Fernando Pérez Porras 1, Jose

Emilio Meroño de Larriva 1, Carlos Mena Frau 2, Francisco Agüera-Vega 3, Fernando Carvajal-Ramírez 3, Patricio Martínez-Carricondo 3 and

Alfonso García-Ferrer 1

1 Department of Graphic Engineering and Geomatics, University of Cordoba,

Campus de Rabanales, 14071 Córdoba, Spain; [email protected] (F.P.P.);

[email protected] (J.E.M.d.L.); [email protected] (A.G.-F.) 2 Departamento de Gestión Forestal Ambiental, University of Talca, 3460000,

Talca, Chile; [email protected] 3 Department of Engineering, University of Almeria, La Cañada, 04120 Almería,

Spain; [email protected] (F.A.-V.); [email protected] (F.C.-R.); [email protected]

(P.M.-C.)

* Correspondence: [email protected]; Tel.: +34-957-218-537

Received: 23 March 2018; Accepted: 12 April 2018; Published: date

1. Abstract: The development of lightweight sensors compatible with

mini unmanned aerial vehicles (UAVs) has expanded the agronomical

applications of remote sensing. Of particular interest in this paper are

thermal sensors based on lightweight microbolometer technology. These

are mainly used to assess crop water stress with thermal images where an

accuracy greater than 1 °C is necessary. However, these sensors lack

precise temperature control, resulting in thermal drift during image

acquisition that requires correction. Currently, there are several strategies

to manage thermal drift effect. However, these strategies reduce useful

flight time over crops due to the additional in-flight calibration

operations. This study presents a drift correction methodology for

microbolometer sensors based on redundant information from multiple

overlapping images. An empirical study was performed in an orchard of

high-density hedgerow olive trees with flights at different times of the

day. Six mathematical drift correction models were developed and

assessed to explain and correct drift effect on thermal images. Using the

proposed methodology, the resulting thermally corrected orthomosaics

Page 49: Fernando Juan Pérez Porras

Capítulo 1

pág. 48

yielded a rate of error lower than 1° C compared to those where no drift

correction was applied.

Keywords: UAV; uncooled thermal sensor; precision agriculture; thermal

orthomosaic

1. Introduction

World agriculture faces three major challenges that represent an

apparent contradiction: to feed a growing population, to contribute to the

reduction of rural poverty, and to manage the natural resource base [1,2].

Precision agriculture is believed to be an efficient method of crop

production because it is accurate, inputs are optimized leading to reduced

costs and environmental impact, and because it provides an audit trail that

consumers and legislation require [3]. Precision agriculture emphasizes

spatial-temporal data analysis and management jointly rather than

singularly [4], as well as requiring a detailed description of canopy status

and its variation in the field during the growth cycle [1].

Remote sensing methods have been demonstrated to be very useful in

monitoring large areas while remaining cost effective [5]. Traditional

remote sensing techniques have used manned aerial or satellite platforms

to measure canopy reflectance in the electromagnetic spectrum range from

400 to 2500 nm [6]. These platforms have a temporal and spatial resolution

that limits their utility in agriculture assessments due to the dynamic

changes in crops in relation to the environment [7,8]. In recent years,

unmanned aerial systems (UASs) have been used in a broad range of

applications, including precision agriculture projects, principally because

unmanned aerial vehicles (UAVs) have become more reliable, their

performance (flight time, range) has improved, and the sensors have

miniaturized [9]. Therefore, UAS technology allows for the possibility of

acquiring information with high spatial and temporal resolution. In

precision agriculture where analyses are performed of yield variation over

a field and across years, half of the variation comes from year to year

variation [10]. A well-timed sequence of UAV flights can contribute to the

analyses of spatial and temporal variations.

A variety of sensors can be used as payload on board UAVs, ranging

from Light Detection and Ranging system (LiDAR) [11,12], Red-Green-Blue

(RGB) [13,14], multispectral [15,16], and hyperspectral [17,18] to thermal

[19,20]. Infrared thermography allows users to monitor plant water status

Page 50: Fernando Juan Pérez Porras

Capítulo 1

pág. 49

for detecting stress or for applying deficit irrigation techniques [21], to

monitor for infections [22], water stress detection [20,23] or for phenotyping

plants [24,25].

To date, two different thermal systems are available: cooled and

uncooled. The first, being very sensitive and highly accurate, are used on

board satellite and aerial platforms. However, they are large, heavy, and

power consuming. Uncooled thermal sensors are used as UAV payloads

because they are smaller, lighter, and consume less power than cooled

thermal sensors [26]. However, they are not as sensitive nor as accurate.

Microbolometers are uncooled infrared radiation thermal sensors

distributed in an array. Low values of noise-equivalent temperature

difference (NETD) in uncooled thermal sensors, reaching 20 mK, have

allowed their use in applications where only cooled thermal sensors were

once suitable. However, temperature drift continues to be a disadvantage

causing unwanted detector gain and offset non-uniformity in registered

temperature data.

To combat this, a non-uniformity correction (NUC) is applied to

remove noise using digital signal processing techniques on the detector

output signal. It requires knowledge of coefficient corrections for every

detector in the array [27]. For each detector in the array, a determined gain

and offset is stored in the sensor. However, the change of the offset

coefficient has to be updated due to the thermal drift effect. This

temperature drift is principally caused by the detector’s casing, which

overheats and dissipates power and heat onto the detectors and electronic

circuits. Hence, it is necessary to perform thermal drift correction and

periodically update the correction values for each detector [28]. Without

this correction, the temperature error would increase by approximately 0.7

°C per minute [29].

The most commonly used approach to compensate for thermal drift is

shutter based [28,30]. Others have used a contact sensor between the

detector matrix and the lens [31] or other locations inside the sensor [32], as

well as “blind” pixels whose signal does not depend on the radiation of the

observed scene [33]. Other types of NUCs are scene-based methods, which

are divided into two categories: statistical [34] and registration-based

methods [35].

Prior to flight, uncooled thermal sensors need to be stabilized after

being switched on [36]. During this period, the absolute temperature

progressively shifts until it is stabilized. As such, it is necessary to consider

how environmental variables affect the registered temperature values,

especially during a long acquisition period [37], and take into account wind

Page 51: Fernando Juan Pérez Porras

Capítulo 1

pág. 50

effect, varying cloud cover, position, and orientation of the sensor during

the UAV flight. To remove thermal drift effects and simultaneously apply

radiometric correction, some authors program UAV flights to cover ground

targets with known temperatures. At the cost of useful UAV flight time,

radiometric calibration coefficients are calculated so that the UAV can

repeatedly fly over the nearest ground target and thus eliminate thermal

drift [38,39].

The goal of this study was to determine a methodology using high

spatial resolution thermal imagery acquired from a UAV while removing

temperature drift independently of NUC applied by the sensor without any

extra UAV flight operations. The specific objectives of this work were

aimed at (i) modeling temperature drift effect; and the assessment of (ii)

different drift models at (iii) different hours of the day.

Page 52: Fernando Juan Pérez Porras

Capítulo 1

pág. 51

2. Materials and Methods

The presented study was carried out in Córdoba, Spain (north latitude

37°56′05′′, west longitude 4°42′59′′, WGS 84) in June 2016, using a 10 ha

orchard of high-density hedgerow olive trees (Olea europaea L. cv

Arbequina). Figure 1 shows the development of olive trees during the

growing season. Being a typical Mediterranean region, the climate is

characterized by warm, dry summers and cool, wet winters with an

average annual rainfall equal to 180 mm.

Figure 1. Development of olive trees during the growing season.

2.1. UAV Campaigns

The unmanned aerial vehicle (UAV) used was an MD4-1000 multi-

rotor drone (Microdrones GmbH, Siegen, Germany). This UAV is a

quadcopter with an entire carbon design. The system has a maximum

payload equal to 1.2 kg. It uses 4 × 250 W gearless brushless motors and

reaches a cruising speed of 15.0 m/s. The UAV was equipped with a Gobi

640-GiGe thermal sensor (Xenics nv, Leueven, Belgium), which is an

uncooled long-wave infrared (LWIR) thermal sensor delivering raw digital

images at 16 bits of sensor calibrated radiance with a dynamic range from

−20 °C to 120 °C and a spectral resolution of 0.05 °C. It has a focal length

equal to 18 mm and operates in a spectral band range from 8 μm to 14 μm.

Registered images have a dimension equal to 640 × 480 pixels and a pixel

pitch of 17 μm. Moreover, it has an onboard image processing system to

perform a non-uniformity correction, an auto offset, and an auto gain.

However, the continuous changing conditions in which the sensor operates

cause temperature values to degrade throughout the UAV flight although

the image processing system is operating. In this manuscript, the NUC has

been deactivated, obtaining a set of images without any compensation. A

stabilization procedure on the thermal sensor was conducted before each

UAV flight as described in Berni et al. [36]. The thermal sensor was pre-

heated for twenty minutes on field before each UAV flight to stabilize its

Page 53: Fernando Juan Pérez Porras

Capítulo 1

pág. 52

internal temperature. The sensor was connected to a stick PC Asus QM1

(Asustek Computer Inc., Taiwan, China) to store the images via an Ethernet

port. Sensor weight totaled 710 g with flight duration equal to 20 min.

UAV flights were performed on 1 June 2016 at 120 m above ground

level with a ground sample distance (GSD) equal to 11.3 cm (Figure 2). Side

and forward lap settings were 80% and 70%, respectively, with 632 images

registered. Five aluminum disks were placed on the plot as ground control

points (GCPs), one in each corner and the other in the center of the study

area. Because of the low emissivity of aluminum GCPs, they were visible

in thermal images. Each GCP was measured with the stop-and-go

technique through relative positioning by means of the NTRIP protocol

(The Radio Technical Commission for Maritime Services, RTCM, for

Networked Transfer via Internet Protocol) using two GNSS (global

navigation satellite system) receivers. One of the receivers was a reference

station for the GNSS Red Andaluza de Posicionamiento (RAP) network

from the Institute for Statistics and Cartography of Andalusia, Spain, and

the other, a Leica GS15 GNSS (Leica Geosystems AG, Heerbrugg,

Switzerland), functioned as the rover receiver.

The UAV flew over the crop at 8:30, 12:30, 16:00, and 18:30 local time

in clear skies. A Davis Vantage Pro2 weather station (Davis Instrument

Corp., Hayward, CA, USA) was used to monitor climate conditions during

the UAV flights. This weather station was equipped with a three-cup

anemometer, an air temperature and humidity sensor, and a barometer.

Table 1 shows air temperature, percentage of relative humidity, mean wind

speed, and atmospheric pressure during each UAV flight on this date.

These UAV flights were used to acquire thermal images of soil and crop

under different atmospheric and temperature conditions.

Table 1. Atmospheric conditions for individual unmanned

aerial vehicle (UAV) flights on 1 June 2016.

UAV Flight (Local Time)

8:30 12:30 16:00 18:30

Air temperature (°C) 21 30 36 37

Relative humidity (%) 48 26 18 17

Mean wind speed (m/s) 2 3 6 6

Atmospheric pressure (hPa) 1022.6 1021.2 1018.4 1017.4

Page 54: Fernando Juan Pérez Porras

Capítulo 1

pág. 53

Figure 2. Flight planning and distribution of ground control points.

2.2. Thermal Image Processing

Thermal images were processed in three stages: thermal drift

correction, geometric correction, and radiometric correction. Figure 3

describes the drift correction applied to the thermal images. As previously

discussed, thermal drift is when the same location in the terrain presents

different temperature values in different images. Thermal drift correction

is based on points having a constant temperature during the UAV flight. In

the first stage, a set of distinctive features are extracted from the UAV

images using algorithms based on “structure from motion” (SfM)

techniques described by Lowe [40]. SfM techniques extract individual

features in each thermal image that are matched to their corresponding

feature in the other images from the same UAV flight. As Figure 3 shows,

a point appears in several images that belongs to different laps, each having

a different temperature value due to drift effect. Every thermal image has

a temporal reference, allowing the drift effect to be evaluated as it occurred

in flight. In the proposed methodology, sensor drift is modeled as a

function of time where each point of each image has a timestamp obtained

by a GNSS sensor from the UAV autopilot. This methodology is applied to

the set of characteristics extracted by the SfM algorithms. As a result, a

mathematical model that describes thermal drift as it occurs for the

duration of the UAV flight is achieved. Subsequently, this model is applied

to all thermal images to obtain a new thermal image where temperature

values are uniform on all corresponding points along the UAV flight. Six

Page 55: Fernando Juan Pérez Porras

Capítulo 1

pág. 54

different drift correction models (DCMs) were developed to describe

thermal drift for the duration of the UAV flight: exponential, exponential,

lineal and polynomial order two, three, and four. Each DCM was applied

to the UAV thermal images to generate a new collection of images, which

were orthorectified and then processed into thermal orthomosaics.

Figure 3. Graphical description of thermal drift correction model (DN:

digital number, t: time).

To obtain a single thermal orthomosaic of the area of interest, images

have to be aerotriangulated, rectified, and finally mosaicked. Based on

previous research results, Pix4dmapper by Pix4D SA was selected

(Lausanne, Switzerland) and described by Mesas-Carrascosa [15] to do this

processing. Afterward, digital numbers (DNs) of the thermal orthomosaics

were converted to temperature values using the information obtained by

the radiometric calibration of the sensor provided by the manufacturer.

Finally, remotely sensed temperatures are influenced by the environmental

conditions present at the time of UAV flight. Atmospheric correction of

surface temperature is essential to extract absolute temperature

measurements from thermal images, requiring the application of a

radiative transfer model [41], a vicarious calibration [42], or an empirical

method [43]. In this research, using an empirical method, two extreme

temperature panels of 0.5 × 0.5m were placed in the plot to record the

hottest (black polymer panel) and the coldest (white polymer panel)

temperatures on scene. Reference panels were close to five times larger than

the GSD and, therefore, several homogeneous pixels appear in the thermal

images. A temperature measurement of each reference panel was collected

Page 56: Fernando Juan Pérez Porras

Capítulo 1

pág. 55

for each UAV flight with a Flir E60 heat gun (Flir Systems, Oregon, USA).

These measurements were later used to correct the atmospheric effect on

the thermal mosaics, applying an empirical line method, which defines a

linear relationship between absolute temperature and sensor temperature

[44].

2.3. Validation

The analysis of the proposed methodology was applied to all UAV

flights both with and without thermal drift correction. A total of 37

georeferenced checkpoints (CPs) were placed along a transect

perpendicular to the laps and crossing the middle zone of the plot and were

read for temperature using a Flir E60 heat gun. These values were

compared to the extracted values from the thermal orthomosaics obtained

from the flights. The mean error and root mean square error (RMSE) were

calculated for each model and flight. Moreover, Akaike’s information

criterion (AIC) [45] was used to identify the relative importance among all

possible sets of DCMs per UAV flight where the best performing in each

flight was identified by the lowest AIC score.

In addition, the correlation between flight time and thermal drift was

defined. To do this, the thermal images in which a CP appeared were

analyzed. Of all the possible thermal images where a CP appeared, the

images with the most centrally situated CP were used in the mosaic process

to obtain a thermal orthomosaic, as this is the standard method. As each

image has an associated timestamp, each CP was temporally registered as

it appeared in flight, which was then evaluated for the influence of flight

time on thermal drift for each thermal orthomosaic obtained by a DCM.

3. Results

Figure 4 shows the variation of digital number per second (∆𝐷𝑁/𝑡)

along the duration of the UAV flights on features extracted from images

and the different DCMs per flight developed for the proposal methodology.

Comparing the four UAV flights, digital number per second in raw images

varied both in absolute and relative terms. Therefore, the thermal sensor

did not show a defined pattern in registering temperatures. Each DCM

calculated per flight and its correlation coefficient (𝑅2) are summarized in

Table 2. At 8:30 a.m. (Figure 4a), ∆𝐷𝑁/𝑡 had no defined behavior, showing

a disperse distribution. Regardless of the mathematical model used, the

correlation coefficient showed a value between 0.370 with the linear model

and 0.382 for the exponential model of order 2. Therefore, there were no

clear differences a priori between DCMs applied to thermal orthomosaics.

Page 57: Fernando Juan Pérez Porras

Capítulo 1

pág. 56

At 12.30 p.m. (Figure 4b), ∆𝐷𝑁/𝑡 started to show a trend in its relation to

flight duration as 𝑅2 of some DCMs revealed. In this case, at the beginning

of the UAV flight the ∆𝐷𝑁/𝑡 showed lower values over time (between 0

and 100 s) but then the variation increased, reaching the highest variation

between 200 and 400 s. Thereafter, the variation decreased to values equal

to the beginning of the UAV flight until 700 s where it again increased,

although it did not reach the initial maximum values. In this flight, the

bicubic model showed the highest 𝑅2, equal to 0.482, while the exponential

model had the lowest, 0.190. At 16.00 p.m. (Figure 4c), ∆𝐷𝑁/𝑡 showed a

defined evolution as the UAV flight progressed, which was reflected in

higher 𝑅2 values for all the DCMs. In this mission, ∆𝐷𝑁/𝑠𝑒𝑐 showed

maximum values at the beginning of the UAV flight and then decreased

over time. The exponential order 2 and lineal models had the lowest 𝑅2

value (0.688) while the bicubic model had, again, the highest 𝑅2 value

(0.836). The other DCMs had an 𝑅2 value higher than 0.7. Finally, the

mission at 18:30 p.m. (Figure 4d) showed more oscillations during flight

time; however, the range of ∆𝐷𝑁/𝑠𝑒𝑐 values was narrow. With this mission,

maximum variations occurred at the beginning of the UAV flight,

decreasing as the flight progressed. 𝑅2 values were between 0.67 and 0.69

with no clear differences between the DCMs. Therefore, in analyzing the

behavior of ∆𝐷𝑁/𝑡 along the UAV flight duration for these missions, it is

possible to assert that the thermal sensor was not stable and that its

operation varied in each UAV flight.

Regarding 𝑅2, the DCMs obtained from the UAV flights at 16:00 p.m.

and 18:30 p.m. had higher values than those from 8:30 a.m. and 12:30 p.m.

because ∆𝐷𝑁/𝑠𝑒𝑐 showed a shorter range of values by time. This is due to

the fact that ∆𝐷𝑁/𝑡 per second was different for each UAV flight, occurring

with a lower frequency at later UAV flights.

Page 58: Fernando Juan Pérez Porras

Capítulo 1

pág. 57

Figure 4. Relationship obtained between the variation of digital number

per second (∆DN/sec) and flight duration for exponential, exponential

order 2, lineal, quadratic, bicubic, and quartic drift correction models at

(a) 8:30 a.m., (b) 12:30 p.m., (c) 16:00 p.m., and (d) 18:00 p.m.

Page 59: Fernando Juan Pérez Porras

Capítulo 1

pág. 58

Table 2. Drift correction models for each mission and coefficient

of correlation (𝐑𝟐).

DCM

Type

Tim

e of

Flig

ht

Equation 𝐑𝟐

Exponen

tial order

1

8:30 c = 7.160 ∙ e−5.677∙10−4∙t 0.375 *

12:0

0 c = 9.317 ∙ e−4.1911∙10−4∙t

0.190

n.s.

16:0

0 c = 19.923 ∙ e−0.001∙t

0.733

**

18:3

0 c = 18.368 ∙ e−0.001∙t

0.688

**

Exponen

tial order

2

8:30 c = 3.833 ∙ 10−7 ∙ e0.017∙t + 7.227 ∙ e−6.131∙10−4∙t 0.382 *

12:0

0 c = 13.121 ∙ e−9.923∗10−4∙t − 6.958 ∙ e−0.007∙t 0.398 *

16:0

0 c = 20.316 ∙ e−0.001∙t + 8.155 ∙ 10−14 ∙ e−0.36∙t

0.688

**

18:3

0 c = 6.985 ∙ 104 ∙ e−2.791∙t − 6.9833 ∙ 10−4 ∙ e−2.7889∙10−4∙t

0.675

**

Lineal

8:30 c = −0.003 ∙ t + 7.048 0.370 *

12:0

0 c = −0.003 ∙ t + 9.321

0.210

n.s.

16:0

0 c = −0.015 ∙ t + 18.062

0.688

**

18:3

0 c = −0.015 ∙ t + 16.991

0.673

**

Quadrati

c

8:30 c = 2.339 ∙ 10−6 ∙ t2 − 0.005 ∙ t + 7.28 0.379 *

12:0

0 c = −9.601 ∙ 10−6 ∙ t2 + 0.004 ∙ t + 8.120

0.286

n.s.

16:0

0 c = −2.117 ∙ 10−5 ∙ t2 + 0.034 ∙ t + 20.780

0.755

**

18:3

0 c = −4.587 ∙ 10−6 ∙ t2 + 0.019 ∙ t + 17.576

0.676

**

Bicubic

8:30 c = 4.786 ∙ 10−9 ∙ t3 − 3.401 ∙ t2 − 0.003 ∙ t + 7.117 0.380 *

12:0

0 c = 6.913 ∙ 10−8 ∙ t3 − 9.654 ∙ 10−5 ∙ t2 + 0.033 ∙ t + 6.098 0.482 *

16:0

0 c = 7.632 ∙ 10−8 ∙ t3 − 7.838 ∙ 10−5 ∙ t2 + 4.128 ∙ 10−4 ∙ t + 18.299

0.836

**

18:3

0 c = 4.006 ∙ 10−8 ∙ t3 − 4.858 ∙ 10−5 ∙ t2 − 0.001 ∙ t + 16.233

0.694

**

Quartic

8:30 c = 1.630 ∙ 10−11 ∙ t4 − 2.185 ∙ t3 + 1.056 ∙ 10−6 ∙ t2 − 0.005 ∙ t

+ 7.270 0.381 *

12:0

0 c = 7.068 ∙ 10−11 ∙ t4 − 4.838 ∙ 10−8 ∙ t3 − 3.426 ∙ 10−5 ∙ t2 + 0.002

∙ t + 6.51 0.474 *

16:0

0 c = −3.173 ∙ 10−6 ∙ t4 + 6.261 ∙ 10−7 ∙ t3 − 3.828 ∙ 10−4 ∙ t2

+ 0.058 ∙ t + 15.927 0.799

**

18:3

0 c = −1.351 ∙ 10−10 ∙ t4 + 2.791 ∙ 10−7 ∙ t3 − 1.837 ∙ 10−4 ∙ t2

+ 0.025 ∙ t + 15.138 0.688

**

Page 60: Fernando Juan Pérez Porras

Capítulo 1

pág. 59

The asterisks indicate the level of significance (* p < 0.05, ** p < 0.001,

n.s. not significant).

Figure 5 shows the thermal orthomosaic histograms for each flight

mission with the applied DCMs, as well as without a DCM; Table 3

summarizes the statistics for each. First, the histograms manifest a clear

difference between the thermal orthomosaics where a DCM was applied

compared to those where no DCM was applied. Moreover, the temperature

distribution was quite similar in all the thermal orthomosaics where a DCM

was applied. Because the study area had two differentiated classes,

vegetation and bare soil, a bimodal distribution was expected to describe

temperature distribution of the scene. However, at the 8:30 a.m. UAV

mission (Figure 5a), all thermal orthomosaics had a normal distribution as

Sarle’s bimodality coefficient (SBC) showed. The temperature range on

those thermal orthomosaics where a DCM was applied ranged from 15 to

35 °C, 20 °C occurring with the most frequency. Conversely, the thermal

orthomosaic without any drift correction showed a broader temperature

range from 15 to 43 °C and a right-skewed distribution. Instead of a

bimodal distribution, a normal distribution of temperatures occurred in the

early morning on the thermal orthomosaics with drift correction because

the bare soil and vegetation had not yet absorbed heat from the sunlight

and consequently the temperatures of both were similar. Therefore, at this

hour, both classes showed no clear difference in thermal behavior.

Conversely, at 12:30 p.m. (Figure 5b), the UAV flight histograms showed

two different shapes irrespective of whether a DCM was applied or not.

However, when no drift correction was applied, the temperature

distribution was, again, similar to a normal distribution with SBC being less

than 5/9. As a result, the non-corrected histogram did not properly mark

bare soil and vegetation with different temperatures. On the other hand, all

drift-corrected thermal orthomosaics showed an SBC higher than 5/9,

having a bimodal distribution with two differentiated peaks. In this

mission, bare soil and vegetation had different behaviors as they correlated

to sunlight. Although both classes increased their temperature, vegetation

(left peak) showed a mean temperature equal to 30 °C, which was lower

than bare soil (right peak), which reached a mean value equal to 50 °C. At

16:30 p.m. (Figure 5c), both vegetation and bare soil increased in

temperature, which was properly shown when a DCM was applied. If

corrections were not applied, the temperatures were also higher but the

classes were not accurately represented in the histogram. A comparison of

the histograms shows that vegetation temperature increased as the day

progressed, reaching the highest temperature at 18:30 p.m. while soil

temperature increased until 16:30 p.m. and then began to decrease. At 18:30

Page 61: Fernando Juan Pérez Porras

Capítulo 1

pág. 60

p.m. (Figure 5d), the left peak of the histogram has a higher frequency than

the right peak as the vegetation maintained a stable temperature while the

bare soil temperature decreased, which also caused the distance between

the peaks to be reduced. These results are because the soil was cooling due

to the declining sun and greater shadow cover.

All of the DCMs used successfully described this occurrence from

12:30 p.m. to 18:30 p.m. Moreover, the histograms of each DCM for every

flight had a similar distribution with the quartic model presenting the

greatest differences in portions of the flights. The histograms show that

from 12:30 p.m., the temperature difference between the vegetation and

bare soil was quite distinctive and remained so until 16:30 p.m. when the

difference began to decrease. Therefore, as in Bellvert et al. (2014) [43], it is

recommended that thermal UAV flights with agronomic objectives are

performed between 12:00 and 16:30 p.m. However, without the method

proposed in this paper, non-corrected thermal orthomosaics will not

sufficiently differentiate soil and vegetation.

Page 62: Fernando Juan Pérez Porras

Capítulo 1

pág. 61

Figure 5. Thermal orthomosaic histograms at (a) 8:30 a.m., (b) 12:30 p.m.,

(c) 16:30 p.m., and (d) 18:30 p.m. for each drift correction model and

without correction.

Page 63: Fernando Juan Pérez Porras

Capítulo 1

pág. 62

Table 3. Statistics of thermal orthomosaics.

Time of

Flight Expone

ntial

Exponential

Order 2

Lin

eal

Quad

ratic

Cu

bic

Qua

rtic

No

DCM

8:30 a.m. Ran

ge 35.33 35.66

35.6

6 35.68

34.

64

34.3

3 43.16

Me

an 20.92 20.96

20.8

8 20.95

20.

96

21.1

0 28.35

SD 3.29 3.28 3.30 3.29 3.2

8 3.26 7.14

SB

C 0.38 0.38 0.38 0.38

0.3

8 0.38 0.47

12:30

p.m.

Ran

ge 50.08 50.03

50.1

5 50.31

49.

80

50.7

2 62.38

Me

an 40.74 40.50

40.5

3 40.48

40.

61

40.9

8 47.68

SD 8.87 8.89 8.92 8.91 8.8

7 8.80 10.43

SB

C 0.66 0.66 0.66 0.66

0.6

6 0.67 0.45

16:00

p.m.

Ran

ge 50.89 49.82

50.5

2 50.08

50.

18

48.7

1 74.52

Me

an 49.19 49.20

48.6

6 49.22

49.

37

47.8

4 58.66

SD 9.41 9.24 9.35 9.25 9.1

9 9.73 13.06

SB

C 0.68 0.68 0.68 0.68

0.6

8 0.65 0.48

18:30

p.m.

Ran

ge 43.78 39.65

42.8

3 41.17

42.

46

43.7

4 49.57

Me

an 39.57 39.47

39.3

7 39.46

39.

55

38.6

1 46.69

SD 5.24 5.26 5.28 5.24 5.2

3 5.55 8.32

SB

C 0.67 0.67 0.66 0.67

0.6

7 0.66 0.48

SBC: Sarle’s bimodality coefficient. SD: standard deviation.

Validation

Once the histograms of the drift corrected thermal orthomosaics

accurately described the presence of vegetation and bare soil in the study

Page 64: Fernando Juan Pérez Porras

Capítulo 1

pág. 63

area, the next step was to analyze which DCM had the greatest thermal

accuracy. Figure 6 illustrates the 16:30 p.m. thermal orthomosaics with the

applied DCMs, which are detailed in Table 2, as well as without drift

correction. When drift correction was not applied (Figure 6g), the resulting

thermal orthomosaics ordered the temperature values. From a visual

analysis, neither bare soil nor vegetation showed stable temperature.

Moreover, temperature changed along the north and south laps, registering

higher temperature values as the UAV flight progressed. This effect is

pronounced in this paper because NUC was switched off to obtain an

extreme example; in other cases, the drift effect would be less pronounced.

This also explains the pronounced skewness in the non-corrected

histograms presented in Figure 5. Based on the authors’ results, the

temperature variation for this sensor under normal conditions was less

than 0.5 °C per minute, similar to the variations reported by Olbrycht and

Więcek (2015) [29].

Regarding the thermal orthomosaics where a DCM was applied

(Figure 6a–f), no visual temperature differences from north to south were

detected. Instead, the temperature variations were linked to the state of

vegetation and bare soil as explained by the histogram analysis above. In

addition, comparing all of the thermal orthomosaics generated with a DCM

resulted in similar orthomosaics with the exception of the quartic model

(Figure 6f). This model generated colder temperatures in the south of the

plot compared to the north of the plot, which was not present in the other

DCMs. These differences were not detected in the field campaign,

suggesting that the quartic model did not adequately describe thermal drift

in the UAV flights. This result occurred for all of the UAV flights assessed.

Table 4 summarizes the results of thermal quality control on the

thermal orthomosaics from each UAV flight with and without the applied

DCMs by mean error and standard deviation (SD) and Akaike’s

information criterion (AIC). In addition, a correlation coefficient (r2)

between error and flight progress was calculated. In all the orthomosaics,

as expected, where a DCM was not applied, the temperature errors were

higher than where a DCM was applied. Therefore, it is necessary to pre-

process thermal images taking into account the behavior of the

microbolometer registering temperature values. The 8:30 a.m. mission

showed a higher rate of error than the other UAV missions independent of

which DCM was applied. At this time, the error ranged from 0.88 ± 0.8 °C

using the bicubic model correction to 1.01 ± 0.81 °C using the exponential

correction model. These higher errors are explained by the different

environmental conditions while performing the UAV flight and measuring

ground truth. In the early morning, the sun is ascending and an object’s or

Page 65: Fernando Juan Pérez Porras

Capítulo 1

pág. 64

coverage’s superficial temperature changes in a short time interval.

Although ground truth measurements were performed immediately after

the UAV flight finished (twenty minutes), the duration of the UAV flight

was long enough for temperature values of the olive trees and bare soil to

change both for images and for on-ground measurements, influencing this

mission’s results. At 12:30 p.m., the mean error decreased to values around

0.2 °C ± 0.5 °C for all DCMs applied with the cubic model generating the

smallest error (0.10 °C ± 0.45 °C) while the exponential model order 2 had

the highest error (0.29 °C ± 0.56 °C). Conversely, at 16:30 p.m., the errors

differed depending on the DCM used. For this mission, the quartic model

showed the highest error (1.57° ± 1.22 °C) while the cubic model had the

lowest (0.06 ± 0.45 °C). Finally, at 18:30 p.m., the cubic model again showed

the greatest accuracy with an error equal to 0.26 ± 0.58 °C and the quartic

model being the worst with an error equal to 1.55 ± 0.85 °C. Even so, the

highest mean error and SD were found in those thermal orthomosaics

where no DCM was applied, independent of the mission. Moreover, the

calculated AIC scores identified the cubic model as the most consistent

DCM, showing the minimum score in each UAV flight.

Page 66: Fernando Juan Pérez Porras

Capítulo 1

pág. 65

Figure 6. Comparison of thermal orthomosaics at 16:30 p.m. with drift

model corrections: (a) exponential, (b) exponential order 2, (c) lineal, (d)

quadratic, (e) bicubic, (f) quartic, and (g) no correction.

Table 4. Mean error, standard deviation (SD), Akaike’s

information criterion (AIC), and coefficients of correlation (r2) for

each model correction and mission.

Exponen

tial

Exponenti

al 2

Line

al

Quadra

tic

Cub

ic

Quar

tic

No

DCM

8:3

0

Mea

n 1.013 0.898 0.913 0.901 0.88 0.895 −2.929

SD 0.818 0.804 0.815 0.800 0.80 0.758 2.792

AIC 3.777 0.832 3.593 2.574 0.77 18.47

2 ‐‐

r2 0.027 0.004 0.001 0.005 0.04 0.645

**

0.918

**

12:

30

Mea

n 0.288 0.291 0.225 0.222 0.10 0.212 −3.555

SD 0.590 0.560 0.556 0.569 0.45 0.584 3.012

AIC 39.833 27.437 36.36

4 31.673 26.6

56.95

5 ‐‐

r2 0.007 0.025 0.052 0.08 0.06 0.322

**

0.959

**

16:

30

Mea

n 0.112 ‐0.152 0.518 −0.123 −0.06 1.573

−12.15

8 SD 0.588 0.493 0.795 0.508 0.45 1.224 7.363

AIC 18.219 7.452 11.32

9 7.765 2.31

31.89

3 ‐‐

r2 0.391 ** 0.156 * 0.667

** 0.168 * 0.00

0.359

**

0.915

**

18:

30

Mea

n 0.379 0.409 0.524 0.404 0.26 1.557 −9.544

SD 0.648 0.622 0.627 0.626 0.58 0.857 5.433

AIC 12.992 6.888 13.87

1 9.006 2.56

29.43

2 ‐‐

r2 0.001 0.009 0.032 0.005 0.02 0.568

**

0.880

**

Pearson’s analysis. ** Correlation is significant at the 0.01 level (2-tailed);

* Correlation is significant at the 0.05 level (2-tailed).

Page 67: Fernando Juan Pérez Porras

Capítulo 1

pág. 66

To demonstrate, Figure 7 shows the relationship between temperature

obtained from the UAV flight and the on-ground measurements at 16:30

p.m. The continuous line represents a perfect correlation of temperatures

between both sets of temperatures and a discontinuous line represents the

adjusted lineal model from both sets. When no DCM was applied (Figure

7g), the temperature values in the thermal orthomosaic did not show any

relationship with those on the ground having a broad range of variation.

On the other hand, in general, when a DCM was applied, temperature

values on the thermal orthomosaics and their corresponding on-ground

measurement were similar. However, there were differences between the

DCMs. The quartic model (Figure 7f) yielded the highest deviation from a

perfect correlation although not as broad as in the case of not using a DCM.

The same occurred when the exponential model (Figure 7a) or lineal model

(Figure 7c) was applied, although not as evident as in the previous case.

The remaining DCMs considered did not show significant differences in

their temperature values.

Page 68: Fernando Juan Pérez Porras

Capítulo 1

pág. 67

Figure 7. Correlation for each drift correction model (DCM) between

temperature values from the thermal orthomosaic and on-ground

measurement at 16:30 p.m. unmanned aerial vehicle (UAV) flight. DCM:

(a) exponential, (b) exponential order 2, (c) lineal, (d) quadratic, (e) cubic,

(f) quartic and (g) no correction.

Moreover, to have an acceptable range of temperature error, it is

necessary that this error occurs independently of the flight duration,

meaning that the drift effect of the microbolometer has been adjusted

accordingly. Table 4 shows this relationship through a correlation

coefficient and its Pearson analysis and Figure 8 shows the relation between

error and flight duration for each thermal orthomosaic obtained from the

16:30 p.m. mission where a DCM was applied. As expected, the thermal

orthomosaics where a DCM was not applied showed high R2 between error

and flight duration in all UAV flights, meaning that the error is dependent

Page 69: Fernando Juan Pérez Porras

Capítulo 1

pág. 68

on flight duration. As to the thermal orthomosaics where a DCM was

applied, the quartic model was the one whose errors showed a significant

correlation with flight duration in all UAV flights. The other DCMs had no

significant correlation at 8:30 a.m., 12:30 p.m., and 18:30 p.m. At 16:30 p.m.,

the cubic model was the only DCM whose results were independent of

flight duration. Therefore, when considering the relationship between

temperature error and flight duration, the cubic model adequately

described drift effect on temperature measurements on all performed UAV

flights. In this study and our experience, using the Gobi 640 thermal sensor

on subsequent UAV flights has shown that the cubic drift model is the most

adequate. However, for other thermal sensors, it is recommendable to

analyze which model would better describe drift effect using the proposed

methodology.

Figure 8. Relationship for each DCM between temperature error and

flight duration for the 16:30 p.m. mission. DCM: (a) exponential, (b)

exponential order 2, (c) lineal, (d) quadratic, (e) cubic, (f) quartic.

The temperature error obtained in this research when a DCM was

applied is equal to those described in the literature [8,38] and therefore

presents itself as another option for agronomical projects. Moreover, the

proposed methodology presents an advantage as it optimizes flight time.

In other studies, it is necessary to stabilize the sensor in flight [36] or it is

necessary to recurrently fly over temperature targets for reference to

calibrate thermal images [38]. These two strategies spend the limited

Page 70: Fernando Juan Pérez Porras

Capítulo 1

pág. 69

battery charge and, therefore, reduce the area covered by the UAV flight

due to the decrease in useful flight time. With the proposed methodology,

flight time is maximized without loss of accuracy in temperature values.

Moreover, it allows the use of a thermal sensor on board the UAV

regardless of the drift effect.

The UAV flights were performed under stable weather conditions and

were of short duration (20 min) and as such, there were no changes in the

surface temperature. However, UAV flights with longer duration (longer

than 30 min) and/or under unstable weather conditions must be evaluated

in future work due to changes in atmospheric or sunlight conditions. In

these cases, in addition to the drift correction, it would be necessary to have

an instantaneous atmospheric correction adapted to the UAV flight

conditions. One possible methodology is to equip the UAV platform with

additional sensors that record values of temperature, relative humidity,

atmospheric pressure, incident radiation, and wind speed. These

parameters would allow the possibility of determining the atmospheric

conditions linked to each individual thermal image and, therefore, at each

moment of flight time. These parameters along with the drift effect model

would allow more precise and accurate temperature values.

4. Conclusions

Remote sensing using lightweight uncooled thermal sensors on board

UAVs is a useful tool for measuring crop temperatures. However, drift

effect on registered temperatures can invalidate its agronomical

applications where an accuracy greater than 1 °C is necessary. The present

research has developed methodology to remove drift effect on temperature

using a lightweight microbolometer thermal sensor on board a UAV. In this

study, removing drift effect on thermal images is based on redundant

information around objects that appear in different overlapping images

from a UAV flight that covers the area of interest. Different mathematical

models were explored to describe drift effect with the cubic drift model

yielding the best results on separate missions performed for this research.

These models were tested in four UAV missions at different hours at

the same location. If no drift correction was applied, the thermal

orthomosaics did not adequately describe crop temperatures, invalidating

their use within an agronomical context. Contrarily, if a drift correction

model was applied using the proposed methodology, the results improved

with a range of error that would be adequate for agronomical projects.

Moreover, the accuracy is in the same range as other authors’ results but

with the added benefit of not requiring any special in air UAV flight

Page 71: Fernando Juan Pérez Porras

Capítulo 1

pág. 70

operation and thusly increasing useful flight time. This is an important

point to those UASs with short flight durations due to limited battery

power. In addition, this methodology was applied to a single UAV flight

and, therefore, the proposed drift correction model is adaptable to specific

flight conditions.

In this study, the cubic drift model offered the best results. However,

the authors recommend exploring the behavior of a particular uncooled

thermal sensor to determine which model would best describe the drift

effect using the proposed methodology.

Acknowledgments: This research was funded by Khepri project supported by

CDTI: Centro para el Desarrollo Tecnológico Industrial, FEDER Funds: Fondo

Europeo de Desarrollo Regional and CTA: Corporación Tecnológica de Andalucía.

Author Contributions: Francisco Javier Mesas-Carrascosa and Fernando Pérez

Porras. conceived and designed the experiments; Francisco Javier Mesas-

Carrascosa, Fernando Pérez Porras, Jose Emilio Meroño de Larriva. and Alfonso

García-Ferrer performed the experiments; Francisco Javier Mesas-Carrascosa,

Fernando Pérez Porras, Carlos Mena Frau, Francisco Agüera-Vega, Fernando

Carvajal-Ramírez. and Patricio Martinez-Carricondo analyzed the data; Francisco

Javier Mesas-Carrascosa wrote the paper.

Conflicts of Interest: The authors declare no conflict interest.

References

1. Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The

2012 Revision; Agriculture Development Economics Division Food and

Agriculture Organization of the United Nations: 2012. Publisher: Publication

(Rome, Italy). Avaliable online:

http://www.fao.org/docrep/016/ap106e/ap106e.pdf (accessed on 16th April

2018.)

2. McCalla, A.F. Challenges to world agriculture in the 21st century. UPDATE

Agric. Resour. Econ. 2001, 4. Available online:

https://giannini.ucop.edu/publications/are-

update/issues/2001/4/3/challenges-to-world-agric/ (accessed on 16th April

2018)

3. Stafford, J.V. Implementing precision agriculture in the 21st century. J. Agric.

Eng. Res. 2000, 76, 267–275.

4. Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Combining

chlorophyll meter readings and high spatial resolution remote sensing images

for in-season site-specific nitrogen management of corn. Precis. Agric. 2009,

10, 45–62.

5. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key

advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371.

Page 72: Fernando Juan Pérez Porras

Capítulo 1

pág. 71

6. Goetz, A.F.H. Three decades of hyperspectral remote sensing of the earth: A

personal view. Remote Sens. Environ. 2009, 113, S5–S16.

7. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will

revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146.

8. Berni, J.A.J.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F.

Mapping canopy conductance and cwsi in olive orchards using high

resolution thermal remote sensing imagery. Remote Sens. Environ. 2009, 113,

2380–2388.

9. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and

remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–

97.

10. McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision

agriculture. Precis. Agric. 2005, 6, 7–23.

11. Lin, Y.; Hyyppa, J.; Jaakkola, A. Mini-uav-borne lidar for fine-scale mapping.

IEEE Geosci. Remote Sens. Lett. 2011, 8, 426–430.

12. Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a uav-lidar

system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543.

13. Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-

temporal mapping of the vegetation fraction in early-season wheat fields

using images from uav. Comput. Electron. Agric. 2014, 103, 104–113.

14. López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.;

Mesas-Carrascosa, F.-J.; Peña, J.-M. Early season weed mapping in sunflower

using uav technology: Variability of herbicide treatment maps against weed

thresholds. Precis. Agric. 2016, 17, 183–199.

15. Mesas-Carrascosa, F.-J.; Torres-Sánchez, J.; Clavero-Rumbao, I.; García-Ferrer,

A.; Peña, J.-M.; Borra-Serrano, I.; López-Granados, F. Assessing optimal flight

parameters for generating accurate multispectral orthomosaicks by uav to

support site-specific crop management. Remote Sens. 2015, 7, 12793–12814.

16. Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M.

Evaluating multispectral images and vegetation indices for precision farming

applications from uav images. Remote Sens. 2015, 7, 4026–4047.

17. Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina,

A.; González, M.R.; Martín, P. Estimating leaf carotenoid content in vineyards

using high resolution hyperspectral imagery acquired from an unmanned

aerial vehicle (uav). Agric. Forest Meteorol. 2013, 171–172, 281–294.

18. Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and geometric

analysis of hyperspectral imagery acquired from an unmanned aerial vehicle.

Remote Sens. 2012, 4, 2736–2752.

19. Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila,

J. Assessment of vineyard water status variability by thermal and

multispectral imagery using an unmanned aerial vehicle (uav). Irrig. Sci. 2012,

30, 511–522.

Page 73: Fernando Juan Pérez Porras

Capítulo 1

pág. 72

20. Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.;

Intrigliolo, D.S.; Fereres, E. Using high resolution uav thermal imagery to

assess the variability in the water status of five fruit tree species within a

commercial orchard. Precis. Agric. 2013, 14, 660–678.

21. Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use.

J. Exp. Bot. 2007, 58, 147–159.

22. Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-

resolution airborne hyperspectral and thermal imagery for early detection of

verticillium wilt of olive using fluorescence, temperature and narrow-band

spectral indices. Remote Sens. Environ. 2013, 139, 231–245.

23. Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature

and narrow-band indices acquired from a uav platform for water stress

detection using a micro-hyperspectral imager and a thermal camera. Remote

Sens. Environ. 2012, 117, 322–337.

24. Gonzalez-Dugo, V.; Hernandez, P.; Solis, I.; Zarco-Tejada, P.J. Using high-

resolution hyperspectral and thermal airborne imagery to assess physiological

condition in the context of wheat phenotyping. Remote Sens. 2015, 7, 13586–

13605.

25. Chapman, S.C.; Merz, T.; Chan, A.; Jackway, P.; Hrabar, S.; Dreccer, M.F.;

Holland, E.; Zheng, B.; Ling, T.J.; Jimenez-Berni, J. Pheno-copter: A low-

altitude, autonomous remote-sensing robotic helicopter for high-throughput

field-based phenotyping. Agronomy 2014, 4, 279–301.

26. Gallo, M.A.; Willits, D.S.; Lubke, R.A.; Thiede, E.C. Low-cost uncooled ir

sensor for battlefield surveillance. Proceed. SPIE 1993, 2020, pp 351–362.

27. Krupiński, M.; Bareła, J.; Firmanty, K.; Kastek, M. Test stand for non-

uniformity correction of microbolometer focal plane arrays used in thermal

cameras. Proceed. SPIE Int. Soc. Opt. Eng. 2013, 8896, doi:10.1117/12.2028633.

28. Huawei, W.; Caiwen, M.; Jianzhong, C.; Haifeng, Z. An adaptive two-point

non-uniformity correction algorithm based on shutter and its implementation.

In Proceedings of the 2013 Fifth International Conference on Measuring

Technology and Mechatronics Automation, Hong Kong, China, 16–17 January

2013; pp 174–177.

29. Olbrycht, R.; Więcek, B. New approach to thermal drift correction in

microbolometer thermal cameras. Quant. InfraRed Thermogr. J. 2015, 12, 184–

195.

30. Mudau, A.E.; Willers, C.J.; Griffith, D.; Roux, F.P.J.L. Non-uniformity

correction and bad pixel replacement on lwir and mwir images. In

Proceedings of the 2011 Saudi International Electronics, Communications and

Photonics Conference (SIECPC), Riyadh, Saudi Arabia, 24–26 April 2011; pp

1–5.

31. King, S.R.; Rekow, M.N.; Carlson, P.S.; Heinke, T.; Warnke, S.H.; Brest, B.

Shutterless Infrared Imager Algorithm with Drift Correction. Google Patents

US8067735B2, 2011.

Page 74: Fernando Juan Pérez Porras

Capítulo 1

pág. 73

32. Tempelhahn, A.; Budzier, H.; Krause, V.; Gerlach, G. Shutter-less calibration

of uncooled infrared cameras. J. Sens. Sensor Syst. 2016, 5, doi:10.5194/jsss-5-

9-2016.

33. Mizrahi, U.; Fraenkel, A.; Kopolovich, Z.; Adin, A.; Bikov, L. Method and

System for Measuring and Compensating for the Case Temperature Variations

in a Bolometer Based System. US Patent No. US 7807968 B2, 2010.

34. Harris, J.G.; Yu-Ming, C. Nonuniformity correction of infrared image

sequences using the constant-statistics constraint. IEEE Trans. Image Process.

1999, 8, 1148–1151.

35. Zuo, C.; Chen, Q.; Gu, G.; Sui, X.; Ren, J. Improved interframe registration

based nonuniformity correction for focal plane arrays. Infrared Phys. Technol.

2012, 55, 263–269.

36. Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and

narrowband multispectral remote sensing for vegetation monitoring from an

unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738.

37. Zalameda, J.N.; Winfree, W.P. Investigation of uncooled microbolometer focal

plane array infrared camera for quantitative thermography. J. Nondestruct.

Eval. 2005, 24, 1–9.

38. Gómez-Candón, D.; Virlet, N.; Labbé, S.; Jolivot, A.; Regnard, J.-L. Field

phenotyping of water stress at tree scale by uav-sensed imagery: New insights

for thermal acquisition and calibration. Precis. Agric. 2016, 17, 786–800.

39. Jensen, A.M.; McKee, M.; Chen, Y. Procedures for processing thermal images

using low-cost microbolometer cameras for small unmanned aerial systems.

In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium,

Quebec City, QC, Canada, 13–18 July 2014; pp 2629–2632.

40. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vis. 2004, 60, 91–110.

41. Zarco-Tejada, P.J.; Berni, J.A.J.; Suárez, L.; Sepulcre-Cantó, G.; Morales, F.;

Miller, J.R. Imaging chlorophyll fluorescence with an airborne narrow-band

multispectral camera for vegetation stress detection. Remote Sens. Environ.

2009, 113, 1262–1275.

42. Torres-Rua, A. Vicarious calibration of suas microbolometer temperature

imagery for estimation of radiometric land surface temperature. Sensors 2017,

17, 1499.

43. Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.;

Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric,

stereoscopic imagery collected using a lightweight uav spectral camera for

precision agriculture. Remote Sens. 2013, 5, 5006–5039.

44. Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress

index in a ‘pinot-noir’ vineyard: Comparing ground measurements with

thermal remote sensing imagery from an unmanned aerial vehicle. Precis.

Agric. 2014, 15, 361–376.

Page 75: Fernando Juan Pérez Porras

Capítulo 1

pág. 74

45. Akaike, H. A new look at the statistical model identification. IEEE Trans.

Autom. Control 1974, 19, 716–723.

© 2018 by the authors. Submitted for possible open access

publication under the

terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Page 76: Fernando Juan Pérez Porras

Capítulo 2

pág. 75

5 CAPÍTULO 2

Publicado en: Remote Sensing, 2019, 11(20), 2413

https://doi.org/10.3390/rs11202413

Page 77: Fernando Juan Pérez Porras
Page 78: Fernando Juan Pérez Porras

Project-Based Learning Applied to

Unmanned Aerial Systems and

Remote Sensing

Francisco-Javier Mesas-Carrascosa 1,*, Fernando Pérez Porras 1, Paula

Triviño-Tarradas1, Jose Emilio Meroño de Larriva 1 and Alfonso García-

Ferrer 1

1 Department of Graphic Engineering and Geomatics, University of

Cordoba, Campus de Rabanales, 14071 Córdoba, Spain;

[email protected](F.P.P.); [email protected](P.T-T.); [email protected](J.E.M.);

[email protected](A.G-F.)

* Correspondence: [email protected]

Received: 19 September 2019; Accepted: 16 October 2019; Published: date

Abstract: The development of unmanned aerial vehicle (UAV) technology

and the miniaturization of sensors have changed the way remote sensing

(RS) is used, popularizing this geoscientific discipline in other fields, such

as precision agriculture. This makes it necessary to implement the use of

these technologies in teaching RS alongside the classical platforms

(satellite and manned aircraft). This manuscript describes how The

Higher Technical School of Agricultural Engineering at the University of

Córdoba (Spain) has introduced UAV RS into the academic program by

way of project-based learning (PBL). It also presents the basic

characteristics of PBL, the design of the subject, the description of the

teacher-guided and self-directed activities, as well as the degree of student

satisfaction. The teaching and learning objectives of the subject are to learn

how to determine the vigor, temperature, and water stress of a crop

through the use of RGB, multispectral, and thermographic sensors

onboard a UAV platform. From the onset, students are motivated, actively

participate in the tasks related to the realization of UAV flights, and

subsequent processing and analysis of the registered images. Students

report that PBL is more engaging and allows them to develop a better

understanding of RS.

Keywords: educational assessment; motivation; unmanned aerial vehicle;

agriculture

Page 79: Fernando Juan Pérez Porras

Capítulo 2

pág. 78

1. Introduction

Universities are tasked with improving student learning and

demonstrating program effectiveness. Even though numerous teaching

tools are available, teaching and learning are not singularly dependent on

technology. However, as technology enhances student access to resources,

we may witness a portentous shift in their learning patterns [1]. One of the

primary components of effective teaching, and likewise critical to learning,

is student engagement [2,3]. In Europe, as defined by the new paradigm of

European Higher Education within the Bologna process, lecturers are

agents that create working environments to stimulate students. In this

scenario, lecturers should create and generate resources to facilitate an

adequate context for learning [4]. The main factor in the learning process is

the willingness to learn [5], which is dependent on the student. However,

the lecturer can help students by guiding and supporting their autonomous

learning. One major objective is to realize the vision of “learning to learn”,

in which students are trained in methods to acquire information, critical

thinking, and life-long learning skills.

Remote sensing (RS) is a rapidly growing technology integrated with

other disciplines, such as photogrammetry, geographic information

systems (GIS), and computer science. New Earth observation programs like

Copernicus [6], acquisition platforms like unmanned aerial systems (UAS)

or cloud-based platforms for geospatial analysis like Google Earth Engine

[7], have placed the geoscientific community, and in particular RS, in an

essential position. Its importance has been recognized by different

organizations [8,9] and has been identified as one of the three most

important emerging disciplines [10]. Geosciences are linked to technologies

related to the Earth’s surface, with GIS, RS, and Global Navigation Systems

(GNSS) being of key import. These technologies are joined under the term

geomatics, defined as the branch of science that deals with the collection,

analysis, and interpretation of data, especially instrumental data, relating

to the Earth’s surface.

The contents and methodologies used in educational programs for

remote sensing have changed radically. At the beginning of the 1980s, most

of the courses offered in the United States were provided as service courses

at an introductory level [11]. However, in 2013, a review of technical

education in Europe on aerospace and RS was carried out and [12]

Page 80: Fernando Juan Pérez Porras

Capítulo 2

pág. 79

education programs were organized into three main categories: a)

“Aerospace hardware”, b) “Remote sensing and image/data processing”,

and c) “Aerospace environmental application”. The first category is

focused on aircraft or satellite structure as the main objective to study

construction, propulsion, motion, aerodynamics, and flight mechanics of

the platforms. Included in “remote sensing and image/data processing”,

authors highlight programs related to data capture and processing as the

main topics for RS. These are classical courses focused on the optical and

radar sensors and satellite principles and the main image processing

techniques. Additionally, in some cases, the educational scope is

multimedia data processing, with RS being a possible application. Finally,

“Aerospace environmental applications” are focused on RS for

environmental purposes. The use of satellite images to create maps to

monitor forests, oceans, glaciers or urban areas are some of the typical

topics of courses like this. Independent of the geographic area, new

technological developments in RS and photogrammetry areas demand

changes in the educational programs, requiring adaptation and application

of improved teaching methods [13]. Active learning methods have been

proved to better motivate students, increasing their knowledge compared

to traditional ways of teaching [14,15]. Active learning involves students in

doing things and thinking about what they are doing [16]. In this

framework, different approaches were adopted in the remote sensing field

like podcasts created by students [17], inquiry-based educational

experiments [18], internet-based seminars [19], and interactive online tools

[20]. A successful inquiry-based educational experiment is “ESF goes to

space” (College of Environmental Science and Forestry, New York, USA),

where students design, build, and launch a helium balloon for acquiring

images [18].

Commercial opportunities through UAS are on the rise as platform

and sensor technologies are becoming more affordable. This fact is reflected

in the increase of bibliographic references in recent years. Different terms

fall under UAS: Unmanned aerial vehicle (UAV), remotely piloted aircraft

systems (RPAS) or drone [21]. Bibliometric census using the scientific

database Scopus (Figure 1) shows an increase in the number of appearances

year by year (up to 15 April 2019), with UAV being the term most used.

This trend also appears when adding the keyword “agriculture” to this

analysis, showing the interest of its use in agronomy. Equally of note,

precision agriculture (PA) is one of the most economically important

sectors in the UAS market [22,23]. As such, the development of UAS in the

last decade has marked a new era in RS and has become a serious “game-

Page 81: Fernando Juan Pérez Porras

Capítulo 2

pág. 80

changer” in PA [24], providing data of unprecedented spatial, spectral, and

temporal resolution [21].

Figure 1. Cumulative of UAS technology items added to Scopus from

2014 to 2019: (a) General search and (b) Agriculture search.

Given this scenario, universities should expand their education

programs, including UAV-based geomatics operations and application

developments [25]. New curriculums are mainly focused, to date, on

photogrammetry applications [26,27]. As a result of the interest generated

by UAV applications, it is likely beneficial to introduce UAV-RS learning

in those university studies related to agriculture. The goal of this

manuscript is to show the teaching methodology used to do so in the

Faculty of Agriculture and Forestry Engineering (Escuela Técnica Superior

de Ingeniería Agronómica y de Montes, ETSIAM) at the University of

Córdoba (Spain).

2. Project-Based Learning: Characteristics and Goals

One of the main objectives of engineering programs is “to produce

broad-based, flexible graduates who can think integratively, solve

problems, and be life-long learners” [28]. As such, it is accepted that if a

combination of theory and practice are implemented into the educational

programs, the educational outputs are positive for the student’s learning

process. Learning methods, like project-based learning (PBL), are adequate

supplements to traditional teaching methods. PBL is considered an

approach to teaching where students respond to real-world questions [29],

providing a context of learning through problems or questions linked to

Page 82: Fernando Juan Pérez Porras

Capítulo 2

pág. 81

real-world practices [30], and dealing with problems that approximate real

situations [31]. Therefore, the main goal of PBL is to provide students the

opportunities to apply knowledge instead of simply acquiring it, with a

focus on problem formulation as well as problem-solving [32]. In this

context, the practice of PBL is supported by three major principles in

learning:

The constructive process: Aiding the processing of new information

and developing connections to previous learning is a basic requirement

for teaching and learning [33]. PBL supports learning as an act of

discovery as students assess the problem, research its background,

analyze a possible solution, develop a proposal, and finally generate a

final result [31].

Metacognition: The monitoring and control of thought [34]. With PBL,

students are able to detect when they understand new information or

not. Therefore, PBL provides the opportunity to monitor and evaluate

the learning progress.

Social and cultural factors: Learning focused on real-world context.

PBL is focused on articulating problems and solving them by

simulating real-world RS research and development.

As per Barrows [35], PBL characteristics are: “a) learning is student-

centered, b) learning occurs in small student groups, c) lecturers are

facilitators or guides, d) problems form the organizing focus and stimulus

for learning, e) problems are a vehicle for the development of clinical

problem-solving skills and f) new information is acquired through self-

directed learning”. PBL is a learning model where students actively work,

plan, implement, and evaluate projects that have real-world applications

[36], which is not to be confused with problem-based learning where

students are focused on resolving specific problems. Therefore, PBL is a

broader category of learning, where in addition to solving a specific

problem, students also address other areas that are not explicit in the

problem. From the lecturer’s point of view, PBL has authentic objectives

and uses real assessment, while the teacher acts as a coach with explicit

educational objectives [37]. On the other hand, from the student’s point of

view, PBL stimulates collaborative and cooperative learning, allows

continuous improvement in their presentations or products among others,

and is designed for the student to participate actively in the resolution of

the task [37]. Accordingly, the success of PBL is based on the design of

adequate problems to motivate self-study. In this context, RS and GIS are

areas of knowledge that allow the incorporation of new pedagogical

methodologies, such as, in this case, PBL [38–40].

Page 83: Fernando Juan Pérez Porras

Capítulo 2

pág. 82

3. UAV-RS in Agricultural Engineering at ETSIAM (University of

Cordoba)

The Higher Technical School of Agricultural Engineering (Escuela

Técnica Superior de Ingenieros Agrónomos, ETSIA) at the University of

Córdoba (Spain) began its academic activity in 1968, providing a degree in

agricultural engineering with various specialties. In 1989, it was authorized

to provide studies in forestry engineering. As a result, the school was called

the Higher Technical School of Agricultural and Forestry Engineering

(Escuela Técnica Superior Ingeniería Agronómica y de Montes, ETSIAM).

ETSIAM offers: three bachelor programs—Agrifood Engineering and Rural

Environment, Forestry Engineering, and Enology; two professional

master’s degrees—Agricultural Engineering, and Forestry Engineering;

and eight specialized master’s courses can be studied at ETSIAM. Since its

inception, ETSIAM has opted to incorporate the latest technological

advances in its academic programs. As an example, in 2018, a master’s

degree in digital transformation in the agri-food sector was implemented,

where the students learn aspects related to big data, cloud computing, IoT,

and others as applied to agriculture.

Since 2012, the Department of Graphic Engineering and Geomatics of

ETSIAM has established UAV-RS as one of its key areas of focus with

emphasis on research and teaching. Our own UAV-RS research allows our

department to consolidate areas of interest in agriculture which, thereby,

in terms of education, permits personal experience to form part of the

educational content. In addition, our research activity through projects

financed both publicly and privately, allows us to have the knowledge,

experience, and materials related to UAV technology, such as flight

platforms, sensors, and software. These three components are then made

available to students studying UAV-RS.

Three categories of students participate in UAV-RS programs:

bachelor students, master students, and PhD students. Bachelor students

do not study UAV-RS, however, in recent years, some have requested an

overview of these technologies, likely due to expectations and novelty. In

these cases, students do their final year project on RS-UAV in agriculture.

Master students have the opportunity to take a course on UAV-RS. PhD

students use UAV technology in their research activities.

Page 84: Fernando Juan Pérez Porras

Capítulo 2

pág. 83

RS is a discipline studied throughout the programs offered by

ETSIAM, while UAV studies are offered as an elective subject titled, “UAVs

in the Agroforest Sector” in the second course of the master’s degree in

agricultural engineering. This course has four ECTS (European Credit

Transfer and Accumulation System) with 40 hours of teacher-guided

activities and 60 hours of self-directed activities. The activity distribution is

summarized in Table 1. The purpose of this course is to provide students

an opportunity to work with UAS applied to precision agriculture using RS

techniques. Applying PBL, students process and analyze data that they

have registered themselves using RGB, multispectral, and thermal sensors

onboard UAV platforms. The main goal of this is for students to apply RS

methods in orthomosaics generated from images that have been registered

by sensors onboard UAV and to generate crop information to support

decision making.

Table 1. Type and duration of teacher-guided and self-directed

activities for "UAVs in the Agroforest Sector".

Teacher-guided

activities

Time duration

[hours]

Self-directed

activities

Time duration

[hours]

Master class 5 Analysis 20

Fieldwork 10 Study 10

Seminar 5 Group work 30

Group work 10

Team work 10

Figure 2 summarizes all the knowledge areas that students use

together with RS in this subject. In the Bachelor of Agrifood Engineering

and Rural Environment in ETSIAM, students have previously studied

geodesy, photogrammetry, GIS, and RS. Specifically, the courses in

photogrammetry and RS emphasize manned aerial and satellite platforms,

respectively and therefore, students have previously studied the

fundamentals of both geomatic disciplines. Through their academic

training, students have additionally studied mathematics, physics, and

statistics. Moreover, they have worked with R-commander developing

scripts as a statistical tool. Due to this preparation, students are ready to

work on the specific characteristics of the UAV-RS by using and applying

the knowledge previously acquired in earlier courses.

Page 85: Fernando Juan Pérez Porras

Capítulo 2

pág. 84

Figure 2. Knowledge areas involved in UAV-RS to transform a collection

of UAV-images into useful information.

4. Systems Design and Educational Activities

The application of UAV-RS in agriculture is relatively novel. UAV-RS

shares many technical and methodological aspects with satellite and

manned platforms. However, it is necessary to adapt to the specific

particularities that UAV-RS presents to the users. This explains the large

number of scientific publications in recent years, as shown in Figure 1. In

the “UAVs in the Agroforest Sector” course, students are required to

generate information about the state of a crop in terms of its vigor and

water needs, linking that information to the characteristics of the plot, such

as soil characteristics, topography or irrigation dose. It is, therefore, not

only a question of generating maps through RS but also of assessing the

“why” of the results obtained. For PBL to be successful, it is essential that

students collect their own data, which necessitates having the adequate

materials available. Figure 3 and Table 2 summarizes all the materials with

which the students work with: three flight platforms, four sensors to

register images, auxiliary materials for geometric and atmospheric

corrections, as well as different software solutions for the treatment of

images. In addition, ETSIAM manages a “nature classroom” with different

crops. Among them, there is an orchard with an area equal to 10 hectares

of high-density hedgerow olive trees (north latitude 37°56′05′′, west

longitude 4°42′59′′, WGS 84) (Figure 4) with four different variables to be

analyzed: phenotype, density, orientation, and irrigation dose together

with soil characteristics. This provides students a real-world case study

where they can collect data via RS techniques and then convert them into

information useful for assisting decision-making. This “nature classroom”

Page 86: Fernando Juan Pérez Porras

Capítulo 2

pág. 85

or plot, then, is the central element on which the PBL methodology is

designed.

Figure 3. Materials provided to students: (a) UAV platforms, (b) sensors,

(c) auxiliary materials and (d) software.

Page 87: Fernando Juan Pérez Porras

Capítulo 2

pág. 86

Table 2. Technical characteristics of the UAV platforms, sensors,

auxiliary materials, and software used by students.

Material Description

UAV Platforms

Multirotor

MD4-1000

Quadcopter with a maximum payload equal to 1.2

kg. Maximum flight time 30 minutes.

DJI Mavic

Pro2

Quadcopter with a Hasselblad RGB sensor.

Maximum flight time 30 minutes.

Elimco E-300 Fixed wind UAV with a maximum payload equal

to 4 kg. Maximum flight time 90 minutes.

Sensors

Sony Nex7 RGB sensor.

Tetracam

Mini MCA-6

Multispectral sensor with six individual sensors,

one for each band, arranged in a 2 × 3 array. Spectral

bands equal to 450 nm, 530 nm, 670 nm, 700 nm, 740

nm, and 780 nm.

Xeneth Gobi

640

Uncooled thermal sensor. It delivers raw digital

images at 16 bits. Dynamic range from –20 ºC to 120

ºC, spectral resolution equal to 0.05 ºC.

Parrot

Sequoia

Multispectral sensor with an RGB sensor and four

individual spectral bands at 550 nm, 660 nm, 735

nm, and 790 nm, and a sunshine sensor.

Auxiliary

material

ASD

HandHeld-2

Portable spectroradiometer. Spectral range from

325 nm to 1075 nm.

Calibration

panels 0.5 × 0.5 m reflectance targets.

Flir E60 Heat gun. Dynamic range from –20 ºC to 120 ºC.

Resolution equal to 0.05 ºC

Leica GS15 GNSS multi-frequency receiver. Horizontal

accuracy 8 mm +0.5 ppm at real-time kinematic

measurement.

Vantage Pro2 Wireless weather station to measure temperature

and relative humidity of the air, direction, and

speed of the wind and atmospheric pressure.

Software

Pix4D Photogrammetry software suite for UAV mapping.

R Software for statistical computing and computing.

QGIS Desktop Geographic Information System

Page 88: Fernando Juan Pérez Porras

Capítulo 2

pág. 87

Figure 4. Location of the “nature classroom”.

While students learn UAV RS, PBL allows them to acquire other

competencies grouped into three classes: basic, general, and specific. Basic

competencies are those referring to transversal competencies, transferable

to many functions and tasks (communication, teamwork, etc.). While

general competencies are those referring to successful integration into

social and working life (language, new technologies, etc.). Finally, specific

competencies are those directly related to a particular area of knowledge.

Regarding the first group, each student learns in a highly personalized and

independent way within their development and often close to the context

of the research. In addition, they solve problems in new or unfamiliar

environments related to their area of study, such as programming.

Likewise, they acquire skills that will allow them to continue studying

autonomously. For general competencies, students develop the ability to

apply the acquired knowledge to solve problems, analyze the information,

and synthesize it to facilitate the decision-making process. In addition, the

ability to transmit information and conclusions using new communication

channels is developed. Finally, and with specific character, students

acquire knowledge and skills to be applied in the agricultural sector.

Table 3 summarizes teacher-guided activities and Figure 5 shows the

temporal distribution. Lectures have a total duration of five hours. Firstly,

students are given the rationale for learning these technologies and their

applications to precision agriculture, advantages and disadvantages in

terms of spatial and temporal resolution compared to other platforms, as

well as when their use is justified (Table 3, L1). In addition, the student

learns the legislative aspects that regulate the use of this type of platform,

highlighting that today, the current legislation only allows the use of RPAS.

Once the RPAS concept is introduced, the student learns what a UAS is and

Page 89: Fernando Juan Pérez Porras

Capítulo 2

pág. 88

the different sub-systems that it is composed of: the flight platform, sensors,

and the control station (Table 3, L2). Flight platforms are analyzed from

different points of view, such as architecture, autonomy, weight, and

maximum flight height, providing an overview of their individual

capabilities, features, and versatilities. In another session, the student

learns the different sensors of interest in agriculture to be onboard a UAV

(Table 3, L3): RGB, multi/hyper-spectral, thermographic, and LiDAR. An

overview of the current state of sensors is made, assessing development

level, possibilities, and opportunities for improvement. Finally, concepts in

photogrammetry are reviewed as this was studied in the bachelor’s degree

(Table 3, L4) and only needs to be extended conceptually to unmanned

platforms. Overall, depending on the type of sensor onboard the UAV and

our experience with it, particularities and suggestions are detailed for the

students.

Three seminars based on UAV-RS applications in agriculture using

RGB, multispectral and thermal sensors, and one on diffusing information

form part of the course. Based on scientific articles, web pages, and our own

results from UAV flights, students learn different indexes and their

usefulness in agriculture, such as color indices, isolating vegetation based

on RGB sensors, determining the water needs through vegetation,

temperature indices and so forth. These seminars are combined over time

with fieldwork as the different applications of the sensor type are studied,

thereby allowing students to put into practice what they have learned in

the classroom. Each fieldwork assignment starts with a UAV flight. Thus,

students plan the flight, use GNSS receivers to measure ground control

points for geometric correction, use a thermographic gun and

spectroradiometer to measure calibration panels, and then perform an

atmospheric correction using the empirical line method.

The transformation of the UAV collected data to useful information

for the farmer implies the generation of a series of products, such as maps

or graphs, that have to be clear and easy to interpret. Today, aside from the

classic analogical maps, it is necessary to provide this information digitally.

For this reason, the last seminar (Table 3, S4) has been designed to present

different tools for publishing geographic information through web services

and applications.

Finally, three workshops are organized throughout the course. The

first (Table 3, W1) is focused on the generation of digital surface models

(DSM), digital elevation models (DEM) and orthomosaics from an image

collection obtained from a UAV flight. The second (Table 3, W2) focuses on

statistical treatments of images, atmospheric correction, and generation of

Page 90: Fernando Juan Pérez Porras

Capítulo 2

pág. 89

indices using R-commander. In the last workshop (Table 3, W3), students

learn to automate spatial analysis processing using QGIS and the Python

programming language.

Table 3. Type and duration of teacher-guided activities for

"UAVs in the Agroforest Sector".

Time duration

[hours]

Lectures

L1: Introduction and legal regulation. 1

L2: UAS and UAVs 1

L3: Sensors 1

L4: Flight planning and processing a UAV

flight 2

Seminars

S1: RGB sensor applications 1

S2: Multispectral sensor applications 1,5

S3: Thermal sensor applications 1,5

S4: Diffusion 1

Fieldwork

F1: UAV flight RGB sensor 3

F2: UAV flight multispectral sensor 3,5

F3: UAV flight thermal sensor 3,5

Workshop

W1: UAV flight processing 2

W2: Manage raster images using R-

commander 4

W3: Process automation using QGIS 4

Figure 5. Temporal distribution of teacher-guided activities, lectures,

seminars, fieldwork, and workshops for "UAVs in the Agroforest sector".

Page 91: Fernando Juan Pérez Porras

Capítulo 2

pág. 90

Teacher-guided activities support self-directed activities with the

main objective being that the students are able to independently provide

information about crops. Table 4 summarizes self-directed activities

according to the sensor used. All in-course UAV flights have a common

goal, to generate a DSM, a DEM, and an orthomosaic. Upon completion of

the UAV flight, the students measure auxiliary data to perform geometric

corrections from the measurements of the ground control points (GCPs)

obtained from the GNSS receivers and atmospheric corrections obtained

from the spectroradiometer or thermographic gun. In addition,

environmental parameters such as air temperature, relative humidity, and

atmospheric pressure are measured for each UAV flight. A true- color

ortho-mosaic is produced using RGB images from the RGB UAV flight (F1),

which is used to isolate hedgerow olive trees by a color filter. Scientific

references, such as [41], are provided to the students so that they may

reproduce the processing by developing an R-Commander script. Different

color filters, like ExG or ExR, are implemented to later assess which one

provides the best results in terms of isolating vegetation from the soil. In

addition, these results are applied again in the multispectral and

thermographic orthomosaics to extract the information only from the crop.

For the multispectral UAV flight (F2), once the spectral orthomosaic

for each spectral band is generated, the students apply an atmospheric

correction using the empirical line method. An R-Commander script is

developed by the students to calculate a lineal model to relate image values

and spectroradiometer measurements for each spectral band, which is later

applied to generate a new set of atmospheric-corrected orthomosaics.

Using these atmospheric-corrected orthomosaics, students have to

calculate five vegetation indexes (VIs). NDVI and SAVI are obligatory

while the students are free to calculate the rest. The calculation of these VIs

is done through a script developed in Python and QGIS. Subsequently, the

value of the VI relative to the crop is isolated using the mask generated

from the RGB UAV flight in the previous activity and each hedgerow is

statistically characterized. In addition, every tree is analyzed individually

since the plantation pattern is known. This is carried out for each VI

calculated so that the students once again have to automate the whole

process through Python and QGIS.

Finally, a thermal orthomosaic is generated using images from a

thermographic UAV flight (F3). After, atmospheric correction is applied

through the empirical line method using in-field temperature

measurements of panel calibrations. For that, students use the R-

Commander script developed previously. Then, every hedgerow and the

individual trees are thermally characterized using basic statistics.

Page 92: Fernando Juan Pérez Porras

Capítulo 2

pág. 91

Moreover, a crop water stress index (CWSI) model from scientific literature

is applied [42].

As a result of the application of RS techniques, the student

characterizes the crop, both at the level of hedgerow and individual trees.

It is then necessary for the student to learn tools that agilely show the

results obtained. As the final step, currently, the student learns Carto

(www.carto.com) as a cloud-based GIS tool to present their results on

different devices (tablets, smartphones or laptops). With all the information

collected from the crop, the student analyzes the causes that explain the

differential behavior in terms of vigor, temperature, and water stress, and

generate a final report with all the results obtained.

Table 4. Input data and results of each of the self-directed

activities carried out by students linked to fieldwork and

seminars.

Teacher-guided

activity

Input data Results

F1: RGB UAV

flight

RGB images

GCPs

Orthomosaic,

DSM and DEM

Vegetation masks

Analysis and

interpretation

F2: Multispectral

UAV flight

MSI images

GCPs

Spectroradiometer

measurements

Spectral-

orthomosaic

Atmospheric

correction

Vegetation

indexes

processing

Crop line

characterization

Single tree

characterization

Analysis and

interpretation

F3:

Thermographic

UAV flight

Thermal images

GCPs

Heat gun

measurements

Weather station

measurement

Thermal-

orthomosaic

Atmospheric

correction

Crop Water Stress

Index

Page 93: Fernando Juan Pérez Porras

Capítulo 2

pág. 92

Crop line

characterization

Single tree

characterization

Analysis and

interpretation

S4: Diffusion Orthomosaics from

F1, F2 and F3.

Geographic data

viewer web

5. Results

Students participate actively in the learning process by collecting field

data, developing scripts, and analyzing results (Figure 6). As such, from the

beginning the students are motivated and involved in the learning process,

awakening the desire to learn new tools, methodologies, and RS methods

with direct application in agriculture. This mainly stems from two aspects.

Firstly, students have access to and use of sensors, flight platforms, and

scientific-professional instruments acquired by the research group over the

years. Secondly, being able to do real fieldwork on an experimental farm

allows the results from RS to be subsequently validated.

Page 94: Fernando Juan Pérez Porras

Capítulo 2

pág. 93

Figure 6. Some teacher-guided activities: (a) learning about UAV

platforms and (b) fieldwork to measure temperature and spectral

signature for atmospheric corrections.

As a result of the learning process, some of the products produced by

students are presented as examples in Figure 7. Using multispectral

sensors, students calculate different vegetation indices (Figure 7a). Once

these differences associated with the vigor of the tree have been detected,

the student must analyze the cause. In the same manner, the students

analyze the results obtained in the thermographic orthomosaic (Figure 7b).

As in the previous case, they validate the results obtained in the field. Being

able to work in the "nature classroom" allows students to personally check

the characteristics of the soil or the development of the crop. In the case of

Figure 7b, a relationship is shown between the temperature map and the

photographs of the crop that explain and justify these differences. Finally,

Figure 7c shows part of a water stress map. In this case, the students found

out which area of the plot was under deficit irrigation.

Page 95: Fernando Juan Pérez Porras

Capítulo 2

pág. 94

Figure 7. Examples of student results: (a) comparison of results of

different vegetation indices, (b) analysis of the relationship between

thermographic UAV and field inspection, and (c) a water stress map.

To date (2018/19 academic year), the course “UAVs in the Agroforest

Sector” has been taught over four academic years. In these four editions,

the University of Córdoba has surveyed students through the teaching

quality system, currently with full data from the first three courses. Table 5

summarizes a total of 21 questions evaluated between 0 (lowest

qualification) and 5 (highest qualification) represented in three sections

including course planning, course development, and learning evaluation.

Since the course’s inception, students have evaluated the subject positively,

marking high qualifications, close to 5 in all sections. Regarding the

Page 96: Fernando Juan Pérez Porras

Capítulo 2

pág. 95

“Course Planning“ section, students know from the first day of the course

how the subject is planned, what they are intended to do, and what

capacities are to be developed and achieved throughout the course.

As related to the “Course Development” section, students evaluate

whether adequate resources have been used, if the bibliography and other

sources of information are useful, if the lecturer explains the contents with

clarity, and if the students are interested in the subject. This section, having

scored 4.56 out of 5 in the first year, is the one that has improved the most.

This improvement is the sum of several factors. Firstly, the research of the

teaching staff in UAV-RS is directly projected in the quality of the subject.

In addition, having access to adequate instruments is an added benefit that

students value positively.

In the “Learning Evaluation” section, students answer two questions:

a) Do I know what will be required of me to pass the subject? and b) Are

the criteria and evaluation systems adequate? The feedback received from

the students encourages the department to continue with this teaching

system. Year by year, students score this section higher demonstrating that

students favor PBL to traditional methods, which in turn, leads to greater

student engagement.

Table 5. Results of the student satisfaction survey (Values in the

range between 0 and 5).

Section 2015/16 2016/17 2017/18

Course Planning 4,25 5,00 4,83

Course Development 4,56 4,69 4,77

Learning Evaluation 4,67 4,71 4,81

In addition to the results of the quality survey, our personal

impression is that students value this teaching method. Being able to use

these technologies in a real world-simulation field they can visit whenever

they want makes them feel involved in the learning process, which results

in stronger educational drivers. Of all the content of the subjects, the

development of scripts is the most difficult task for them. Even so, each

year students are more receptive to this kind of challenge, likely because

they are progressively more aware of the undergoing technological

changes in agriculture.

Although the results are positive, in order to improve the quality of

the subject it is important to keep the subject dynamic, adapted, and

updated in content. For this reason, the research group will start working

with hyperspectral sensors in 2019. Once the knowledge and experience

Page 97: Fernando Juan Pérez Porras

Capítulo 2

pág. 96

acquired are adequate, these sensors will be introduced into the learning

process. Furthermore, additional crops will be introduced and students

will be distributed into workgroups. Each group will center on an assigned

crop and the results obtained will be shared among the groups.

6. Conclusions

The university student has to acquire knowledge and skills adapted to

what the labor market demands and, therefore, academic content must

meet these standards. In this way, UAVs have to be introduced in higher

education to teach future professional skills related to agricultural

practices. This manuscript has shown how ETSIAM at the University of

Cordoba has introduced UAV-RS in its educational activities using PBL.

The results from the quality surveys conducted on our students have

shown a very high degree of satisfaction. In our opinion this stems from the

research activities of the professors and the selected teaching method. The

research activity allowed our educators to gain experience and knowledge

on UAV-RS and the possibility to acquire materials through privately and

publicly financed projects. Moreover, PBL has shown to be conducive to

the learning process. In this context, students are motivated to learn and

engage in the subject from the beginning, as they see the link between the

subject, their own professional interest, and what companies demand.

Active teaching methods, such as flipped classroom or team-based

learning, are increasingly exposing students to new educational models,

which are designed to aid students in fully understanding course material

and their applications. These methods put greater emphasis on student

learning and it gives them greater impetus in the process of learning.

Therefore, the roles of students are changing from passive to active

participants. What this means is that educators are constantly

experimenting with teaching strategies and as such need to have platforms

to share successes and failures in order to cultivate a more productive

learning culture.

Author Contributions: Conceptualization, F-J.M-C. and A.G-F.;

methodology, F-J.M-C., F.P.P., P.T-T., J.E.M.L., and A.G-F.; resources,

F-J.M-C. and A.G-F.; writing—original draft preparation, F-J.M-C.;

writing—review and editing, F.P.P. and P.T-T.

Funding:

Acknowledgments: The authors thank the support of the Higher

Technical School of Agricultural and Forestry Engineering (Escuela

Page 98: Fernando Juan Pérez Porras

Capítulo 2

pág. 97

Técnica Superior Ingeniería Agronómica y de Montes) of the

University of Córdoba, Spain.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Foresman, T.W.; Cary, T.; Shupin, T.; Eastman, R.; Estes, J.E.; Faust, N.; Jensen,

J.R.; Kemp, K.K. Internet teaching foundation for the Remote Sensing Core

Curriculum program. ISPRS J. Photogramm. Remote Sens. 1997, 52, 294–300,

doi:10.1016/S0924-2716(97)00025-7.

2. Barkley, E.F. Student Engagement Techniques: A Handbook for College

Faculty; John Wiley & Sons: 2009.

3. Coates, H. Student Engagement in Campus-Based and Online Education:

University Connections; Routledge: 2006.

4. Romero, R.; Ferrer, A.; Capilla, C.; Zunica, L.; Balasch, S.; Serra, V.; Alcover, R.

Teaching Statistics to Engineers: An Innovative Pedagogical Experience. J.

Stat. Educ. 1995, 3, doi:10.1080/10691898.1995.11910481.

5. Behar Gutiérrez, R.; Grima Cintas, P. La Estadística en la Educación Superior

¿Formamos Pensamiento Estadístico? Ing. Compet. 2011, 5, 84–90,

doi:10.25100/iyc.v5i2.2299.

6. Union, E. Copernicus. Europe’s eyes on Earth. Available online:

https://www.copernicus.eu/ (accessed on 15 April 2019).

7. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R.

Google Earth Engine: Planetary-scale geospatial analysis for everyone.

Remote Sens. Environ. 2017, 202, 18–27, doi:10.1016/j.rse.2017.06.031.

8. Council, N.R. Future US Workforce for Geospatial Intelligence; National

Academies Press: 2013.

9. United States Department of Labor. High Growth Industry Profile—

Geospatial Technology; 2010.

10. Gewin, V. Mapping opportunities. Nature 2004, 427, 376–377,

doi:10.1038/nj6972-376a.

11. Jensen, J.R.; Dahlberg, R.E. Status and content of remote sensing education in

the United States. Int. J. Remote Sens. 1983, 4, 235–245,

doi:10.1080/01431168308948543.

12. Dell'Acqua, F.; Pasca, L. Technical Education in the European University

System on Aerospace and Remote Sensing: A Year 2013 Review [Education].

IEEE Geosci. Remote Sens. Mag. 2014, 2, 29–33,

doi:10.1109/MGRS.2014.2304131.

13. Fras, M.K.; Grigillo, D. Implementation of active teaching methods and

emerging topics in photogrammetry and remote sensing subjects. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, doi:10.5194/isprsarchives-

XLI-B6-87-2016

Page 99: Fernando Juan Pérez Porras

Capítulo 2

pág. 98

14. Azzalis, L.; Sato, S.; de Mattos, M.; Fonseca, F.; Giavarotti, L. Active learning

versus traditional teaching. Rev. Ensino Bioquím. 2009, 7, 2.

15. Weltman, D. A Comparison of Traditional and Active Learning Methods: An

Empirical Investigation Utilizing a Linear Mixed Model; University of Texas:

Austin, TX, USA, 2008.

16. Bonwell, C.C.; Eison, J.A. Active Learning: Creating Excitement in the

Classroom; ERIC Digest: 1991.

17. Guida, R. Introduction of podcasts in remote sensing education. In

Proceedings of the 2010 IEEE International Geoscience and Remote Sensing

Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1104–1106.

18. Mountrakis, G.; Triantakonstantis, D. Inquiry-Based Learning in Remote

Sensing: A Space Balloon Educational Experiment. J. Geogr. High. Educ. 2012,

36, 385–401, doi:10.1080/03098265.2011.638707.

19. Baldina, E.A.; Chalova, E.R.; Knizhnikov, Y.F.; Tutubalina, O.V. Remote

sensing education using Internet—Prospects of the Inter-University

Aerospace Centre. In Proceedings of the IEEE International Geoscience and

Remote Sensing Symposium, Toronto, Canada, 24–28 June 2002.

20. Joyce, K.E.; Boitshwarelo, B.; Phinn, S.R.; Hill, G.J.E.; Kelly, G.D. Interactive

online tools for enhancing student learning experiences in remote sensing. J.

Geogr. High. Educ. 2014, 38, 431–439, doi:10.1080/03098265.2014.933404.

21. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and

remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–

97, doi:10.1016/j.isprsjprs.2014.02.013.

22. Singh, K.K.; Frazier, A.E. A meta-analysis and review of unmanned aircraft

system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 2018, 39,

5078–5098, doi:10.1080/01431161.2017.1420941.

23. Mazur, M.; Wisniewski, A.; McMillan, J. Clarity from Above. PwC Global

Report on the Commercial Application of Drone Technology; 2016.

24. Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned

Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164,

doi:10.1016/j.tplants.2018.11.007.

25. Al-Tahir, R. Integrating UAV into geomatics curriculum. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 387.

26. Elaksher, A. Modernizing the Photogrammetry Curricula with Small

Unmanned Aerial Systems. Surv. Land Inf. Sci. 2018, 77, 75–84.

27. Pereira, E.R.; Zhou, S.; Gheisari, M. Integrating the use of UAVs and

photogrammetry into a construction management course: Lessons learned. In

the International Symposium on Automation and Robotics in Construction;

IAARC Publications: 2018; pp. 1–8.

28. Matthew, R.G.S.; Hughes, D.C. Getting at deep learning: A problem-based

approach. Eng. Sci. Educ. J. 1994, 3, 234–240.

Page 100: Fernando Juan Pérez Porras

Capítulo 2

pág. 99

29. Lattimer, H.; Riordan, R. Project-Based Learning Engages Students in

Meaningful Work. Middle Sch. J. 2011, 43, 18–23,

doi:10.1080/00940771.2011.11461797.

30. Wurdinger, S.; Haar, J.; Hugg, R.; Bezon, J. A qualitative study using project-

based learning in a mainstream middle school. Improving Sch. 2007, 10, 150–

161, doi:10.1177/1365480207078048.

31. Delisle, R. How to Use Problem-Based Learning in the Classroom; 1997.

32. Brodeur, D.R.; Young, P.W.; Blair, K.B. Problem-based learning in aerospace

engineering education. In Proceedings of the 2002 American Society for

Engineering Education Annual Conference and Exposition, Montreal,

Canada.

33. Gijselaers, W.H. Connecting problem-based practices with educational theory.

New Dir. Teach. Learn. 1996, 1996, 13–21, doi:10.1002/tl.37219966805.

34. Martinez, M.E.J.P.d.k. What is metacognition? 2006, 87, 696–699.

35. Barrows, H.S. Problem-based learning in medicine and beyond: A brief

overview. 1996, 68, 3–12, doi:10.1002/tl.37219966804.

36. Harwell, S. Project-Based Learning. Promising Practices for Connecting High

School to the Real World; 1997; Volume 2328.

37. Martí, J.A.; Heydrich, M.; Rojas, M.; Hernández, A. Aprendizaje basado en

proyectos. Rev. Univ. EAFIT 2010, 46.

38. Drennon, C. Teaching Geographic Information Systems in a Problem-Based

Learning Environment. J. Geogr. High. Educ. 2005, 29, 385–402,

doi:10.1080/03098260500290934.

39. Botti, J.A.; Myers, R. Exploring the environment: A problem-based approach

to learning about global change. In Proceedings of the 1995 International

Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative

Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995.

40. Croft, S.K.; Myers, R.J. Helping students and teachers make sense of remote

sensing via the Internet. In Proceedings of the IGARSS’96. 1996 International

Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 31 May 1996.

41. Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.;

Ribeiro, A. Automatic segmentation of relevant textures in agricultural

images. Comput. Electron. Agric. 2011, 75, 75–83,

doi:10.1016/j.compag.2010.09.013.

42. Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Pérez-Ruiz,

M. Assessing a crop water stress index derived from aerial thermal imaging

and infrared thermometry in super-high density olive orchards. Agric. Water

Manag. 2017, 187, 210–221, doi:10.1016/j.agwat.2017.03.030.

© 2019 by the authors. Licensee MDPI, Basel,

Switzerland. This article is an open access article

distributed under the terms and conditions of the

Page 101: Fernando Juan Pérez Porras

Capítulo 2

pág. 100

Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

Page 102: Fernando Juan Pérez Porras

Capítulo 3

pág. 101

6 CAPÍTULO 3

Publicado en: Remote Sensing, 2020, 12(14), 2210

https://doi.org/10.3390/rs12142210

Page 103: Fernando Juan Pérez Porras
Page 104: Fernando Juan Pérez Porras

Article

Effect of Lockdown Measures on

Atmospheric Nitrogen Dioxide During

SARS-CoV-2 in Spain

Francisco-Javier Mesas-Carrascosa *, Fernando Pérez Porras, Paula

Triviño-Tarradas, Alfonso García-Ferrer and Jose Emilio Meroño-

Larriva

Department of Graphic Engineering and Geomatics, Campus de Rabanales,

University of Cordoba, 14071 Córdoba, Spain; [email protected] (F.P.P.);

[email protected] (P.T.-T.); [email protected] (A.G.-F.); [email protected] (J.E.M.-L.)

* Correspondence: [email protected]

Received: 01 June 2020; Accepted: 08 July 2020; Published: date

Abstract: The disease caused by SARS-CoV-2 has affected many countries

and regions. In order to contain the spread of infection, many countries

have adopted lockdown measures. As a result, SARS-CoV-2 has

negatively influenced economies on a global scale and has caused a

significant impact on the environment. In this study, changes in the

concentration of the pollutant Nitrogen Dioxide (NO2) within the

lockdown period were examined as well as how these changes relate to

the Spanish population. NO2 is one of the reactive nitrogen oxides gases

resulting from both anthropogenic and natural processes. One major

source in urban areas is the combustion of fossil fuels from vehicles and

industrial plants, both of which significantly contribute to air pollution.

The long-term exposure to NO2 can also cause severe health problems.

Remote sensing is a useful tool to analyze spatial variability of air quality.

For this purpose, Sentinel-5P images registered from January to April of

2019 and 2020 were used to analyze spatial distribution of NO2 and its

evolution under the lockdown measures in Spain. The results indicate a

significant correlation between the population’s activity level and the

reduction of NO2 values.

Keywords: nitrogen dioxide; SARS-Cov-2; Sentinel-5P; air pollution

Page 105: Fernando Juan Pérez Porras

Capítulo 3

pág. 104

1. Introduction

Clean air is an essential requirement for human health, and as such air

pollution is a major threat to human well-being. Air pollution is the largest

environmental health risk in many regions around the world. The World

Health Organization estimates that air pollution kills 7 million people

worldwide every year, making it necessary to monitor air pollution and

improve air quality [1]. The environmental impact is more evident in areas

where population density is high, being particularly severe in megacities

where high population density, extensive motor vehicle use and strong

industrial expansion are combined [2]. Poor air quality is not exclusive to

megacities; even small cities with populations around 150,000 can have this

problem [3]. Therefore, the economic development of cities with expanding

industrial areas is associated with increasing population size and

environmental degradation of the surrounding areas [4]. In addition, the

high levels of motor vehicle activity [5] and their inappropriate use [6]

cause an increase of air pollutants in city centers [7]. As a result, quality of

life and human health is worsening specifically in cardiovascular,

neurological, and respiratory diseases [8–10] and even results in higher

mortality rates [11,12]. As a consequence of this, developed and developing

countries are more and more attentive to urban air quality, developing

guidelines, directives and standards to inform and support policymakers

[13,14] to reduce the health impacts of air pollution.

Common pollutants in the troposphere, the innermost layer of Earth’s

atmosphere, include ozone (O3), carbon monoxide (CO), sulfur dioxide

(SO2), nitrogen dioxide (NO2) and aerosols. NO2, specifically, has been

correlated with mortality in studies in different parts of the world [15,16].

It is true, however, that there is no clear evidence to establish that NO2 acts

as an independent agent causing increases in the mortality rate [17]. Rather,

it is widely believed that NO2 could act as a substitute component for others

that are not currently being monitored or, more broadly, as a mixture of

pollutants [18]. The result is that NO2 is included in the multi-pollutant

health indexes [19]. Epidemiological research and studies have shown how

NO2 is related to adverse health effects like lung cancer [20,21], asthma

exacerbations [22,23] and cardiopulmonary mortality [24,25]. Mainly, NO2

forms from ground-level emissions caused by the burning of fossil fuels

from industrial sources, vehicles and power plants. It contributes to

ground-level ozone formation and it is linked to negative effects on

respiration. For example, NOx reacts with moisture, ammonia and other

compounds to form small particles that can penetrate into sensitive parts

of the lungs.

Page 106: Fernando Juan Pérez Porras

Capítulo 3

pág. 105

Traditionally, air pollution is monitored using a networks of sensors,

such as gas chromatograph-mass spectrometers [26] or ultraviolet sensors

[27], among others, which are distributed over a territory and provide

quality information on a wide range of pollutants. The traditional

instrumentation used for air quality monitoring is expensive, large,

location dependent and yields extremely low spatial and temporal

resolution [28]. For this reason, portable environmental sensor systems

have been developed using Wireless Sensor Network technology at a lower

cost, offering data with a higher frequency over time. They are also easier

to relocate and provide better coverage of the area of interest due to

allowing the use of a larger number of nodes [29,30], permitting the

development of more efficient and accurate air quality models [31]. Despite

these advantages, however, it is not possible to map a broad region.

Advances in atmosphere remote sensing have opened new avenues for

measuring and monitoring atmospheric pollution at local, regional,

continental or global scales [32], providing new challenges and

opportunities for environmental health research [33]. The ability to observe

and monitor air pollutants from sensors onboard satellite platforms has

improved in the last two decades. From the first ultraviolet-visible

spectrometer, the Global Ozone Monitor Experiment (GOME), with a

spatial resolution equal to 40 × 320 km2 [34], followed by the SCanning

Imaging Absorption SpectroMeter for Atmospheric CHartography

(SCIAMACHY), with a pixel size of 30 × 60 km2 [35], and GOME-2, 40 × 80

km2 [36] to the Ozone Monitoring Instrument, 13 × 24 km2 [37] it has been

possible to study the distribution of pollutants at urban scales. Recently,

the European Space Agency launched the Sentinel-5 Precursor (S5P) to

provide data on air quality, the climate and the ozone layer using the

TROPOspheric Monitoring Instrument (TROPOMI) as its payload [38]

providing a significant improvement in data quality and spatial resolution

now at 7 × 7 km2 [39]. The spectral bands of the spectrometer TROPOMI

ranges from ultraviolet, visible, near infrared and shortwave infrared,

allowing the observation of the prevalence of aerosols in the atmosphere,

cloud characteristics, concentrations of carbon monoxide (CO),

formaldehyde (CH2O), nitrogen dioxide (NO2), ozone (O3), sulphur dioxide

(SO2) and methane (CH4). The Tropospheric Vertical Column Density

(VCD) data of these components are measured from space by sensors like

TROPOMI which serves as an accurate proxy at ground level in many air

quality applications [40]. The VCD is defined as the number of molecules

of a certain atmospheric gas between the on-board sensor of the satellite

platform and the Earth’s surface per unit area. Tropospheric and

stratospheric column densities are separated using a data assimilation

system based on the three-dimensional global Tracer chemical Transport

Page 107: Fernando Juan Pérez Porras

Capítulo 3

pág. 106

Model (TM5-MP), after which they are converted to VCD by a look-up table

of altitude dependent air-mass factors and information on the vertical

distribution of NO2 [41]. For NOx, VCD measurements have been

successfully used to estimate trends and variations in atmospheric

concentration [42,43], infer surface emissions [44,45] and monitor emission

changes at a given location [46,47].

Since mid-February 2020, all efforts of many countries were directed

towards combating SARS-CoV-2. However, at the beginning of 2020, the

risk of a pandemic from a virus was not among the perceived risks

worldwide. This year was the first time that the World Economic Forum’s

Global Risk Report showed how climate change and environmental risks

were among the top positions [48]. However, both problems are associated,

the origin of new pathogens, such as SARS-CoV-2, may be explained by

environmental degradation. The coronaviruses have been known about

since 1930 [49]. They are transmitted from animals [50] and have been

increasing in number over the last decades [51]. The degradation of natural

spaces from human activity is increasing the rate of contact between wild

spaces and humans, resulting in new diseases and facilitating their

expansion [52–54]. Nevertheless, while many believe that the climate, and

therefore the environment is changing, some think this is not attributable

to human activity [55], which may be due to their perception of cultural

values [56] or ideologically and politically motivated actors [57].

Unfortunately, the spread of the coronavirus SARS-Cov-2 has been

unstoppable and has become a pandemic [58], with dramatic results in

countries like Spain, Italy and the United Kingdom [59] in Europe’s case.

Interventions like quarantine or isolation have shown to be effective in

reducing the number of SARS-CoV-2 infections [60]. In addition, some

countries and regions have deemed it necessary to impose lockdown

measures on economic activities and with unprecedented travel restrictions

[61,62]. Under this lockdown period, changes in air pollution can provide

valuable information on air quality improvement when there are

restrictions on emissions. In this manuscript, using Sentinel S5P images, we

analyze the spatial and temporal variation of NO2 concentrations during

Spain’s SARS-Cov-2 lockdown phase which took place in March and April

2020, and how these variations are related to city-scale demographics.

2. Materials and Methods

2.1. Study Area

Page 108: Fernando Juan Pérez Porras

Capítulo 3

pág. 107

Spain has just over 47 million inhabitants as of 1 January 2020.

Although unevenly distributed throughout the territory, the average

population density is equal to 82 habitants per km2. Figure 1 shows

population density using the European Environment Agency 10 × 10 km

grid as a reference. There are areas with highly concentrated populations

next to areas of demographic voids. The factors that explain this

unbalanced population distribution in Spain are both natural and

historical. Regarding natural factors areas with flat and low-lying relief,

with a temperate and humid climate and access to the sea and rivers are the

most populated. As far as historical factors are concerned, the distribution

of the population is related to the economic structure of the country and

the development of transport and communication infrastructure. As a

result, the average population density in Spain is 416 inhabitants per square

kilometer, with very high density areas, over 750 habitants per square

kilometer, compared to others with very low densities.

Figure 1. Distribution of population density in Spain on a 10 × 10 km

grid.

Figure 2 shows the location of cities with more than 275,000

inhabitants, with the highest concentrations in Madrid, having more than

3 million inhabitants, and Barcelona, with just over 1.6 million. The

relationship between the number of inhabitants in these eleven cities and

the variation of NO2 VCD under the lockdown measures is the focus of this

analysis.

Page 109: Fernando Juan Pérez Porras

Capítulo 3

pág. 108

Figure 2. Location of the eleven most populated cities in Spain.

2.2. Remote Sensing Image Collections

The TROPOMI on-board the Sentinel-5 Precursor (Sentinel-5P) was

used to collect data on NO2 concentration. The Sentinel-5P mission,

launched by the European Space Agency in 2017, is a low-orbit polar

satellite used to monitor Earth’s atmosphere with a high spatio-temporal

resolution using the TROPOMI. Concretely, it is a multispectral sensor that

registers reflectance values at ultraviolet-visible (250–500 nm), near-

infrared (675–775 nm) and short-wave infrared (2305–2385 nm)

wavelengths which measures concentrations of ozone, methane,

formaldehyde, aerosols, carbon monoxide, nitrogen oxide and sulphur

dioxide as well as cloud characteristics like cloud fraction, cloud base and

pressure.

Image processing was performed with the Google Earth Engine, a

cloud-based platform for geospatial analysis with high computational

capabilities [63]. A total of 1637 Sentinel 5P Nitrogen Dioxide level-3 scenes

of Spain from January to April of 2019 were used and 1636 scenes from the

same period were used from 2020 (Table 1). Thus, Sentinel 5P Level-2 data

[64] are processed to obtain a single grid per orbit, which allows the Google

Earth Engine to process the data. In addition, the data are previously

filtered, resulting in pixels with quality assurance values less than 75%

being removed, such as cloud or partially snow-covered pixels, errors and

or problematic retrievals. First, for each month and year a median image

was generated to represent the time series of the images, obtaining an

individual image for each time period. Thus, each pixel in the output image

Page 110: Fernando Juan Pérez Porras

Capítulo 3

pág. 109

was equal to the median value of all the images at that location. On the NO2

median images, once masked for the geographical space of Spain, the

statistics corresponding to maximum, minimum, median, and 2nd and 3rd

quartile were determined. This allowed a space-time comparison of the

NO2 VCD throughout the year and between years.

In addition, the variation of NO2 VCD before and after the lockdown

measures was determined. Thus, taking 15 March 2020 as a time reference,

the day on which the lockdown measures became effective in Spain, a

median image was calculated to represent the NO2 VCD one month before

and after the adoption of these measures, and the variation of this

component was then determined. For the most populated cities in Spain,

the average value of variation of NO2 VCD was determined in order to

analyze its relationship with the number of inhabitants per city.

Table 1. Number of Sentinel-5P scenes used per month and year.

Month 2019 2020

January 426 424

February 382 379

March 426 426

April 403 407

Total 1637 1636

3. Results

European countries have established differing lockdown measures in

order to control the spread of the SARS-CoV-2 outbreak. These measures,

imposed at varying degrees, were implemented at different moments

during the second half of March 2020 and have restricted freedom of

movement and outlawed public meetings. Italy and Spain were the first

countries in Europe to implement these measures on 11 and 14 March 2020,

respectively. Taking 15 March 2020 as a time reference, Figure 3 shows the

evolution of NO2 VCD in the troposphere at a European scale one month

before and after the adoption of the lockdown measures and compares it to

the concentration in the same period during the year 2019. At this scale of

detail, it can be seen that the highest NO2 VCD distribution values appears

in central Europe, large European cities and some urban areas of the

Mediterranean basin. One month before March 15, both in 2019 (Figure

3a.I) and 2020 (Figure 3b.I), the regional distribution of the average NO2

VCD around Milan, Paris, Madrid, London showed values higher than

0.0002 mol m−2. Likewise, between 15 March and 15 April 2019 (Figure

3a.II), NO2 VCD distribution was maintained around the previously

Page 111: Fernando Juan Pérez Porras

Capítulo 3

pág. 110

described urban areas. However, for the same period in 2020 (Figure 3b.II)

these extreme values greatly declined, coinciding with the lockdown

period.

Figure 3. Comparison in Europe of the evolution of the average NO2

content in the troposphere one-month (I) before and (II) after March 15,

(a) 2019 and the same period in (b) 2020.

Figure 4 shows the box and whisker plot and Table 2 the statistic

description of NO2 VCD in Spain for 2019 and 2020 from January to April.

A wide range of NO2 VCD values were observed (Figure 4a), especially in

January and February of both years. The maximum values were reduced in

March and April, especially in 2020, and declined sharply in April 2020,

coinciding with mobility restrictions. On the other hand, the minimum

values did not fluctuate, maintaining similarity throughout the months of

both years. Median, quartile 25% and 75% values were closer to the

minimum values, showing the presence of geographical areas with higher

values of NO2 VCD than the rest. Figure 4.a shows how the range of NO2

was reduced in March and April in the two years. However, while in 2019

the distribution was very similar, this was not the case in 2020. In March

2020, the reduction in the range of NO2 VCD was more pronounced than in

the same month of the previous year. In April 2020, the reduction was much

Page 112: Fernando Juan Pérez Porras

Capítulo 3

pág. 111

more pronounced, coinciding with mobility restrictions. Figure 4b shows

in detail the evolution of the distribution of NO2 VCD around the median

values. During 2019, the median values were similar, ranging from 2.08 ×

10−5 to 2.19 × 10−5 mol m−2 in January and February, respectively.

Contrariwise, in 2020, the median values of NO2 did not show the same

stable behavior of the previous year. January 2020 showed the highest

value, 2.75 × 10−5 mol m−2, reducing slightly in February, although it was

still higher than the previous year’s values. However, in the month of

March 2020 there was a very pronounced reduction of NO2 in April 2020,

with a median value equal to 1.65 × 10−5 mol m−2, the lowest value of all the

months analyzed. In addition, the interquartile range in the months of

March and April 2020 was smaller and therefore the distribution of NO2

was more homogeneous throughout the territory.

Page 113: Fernando Juan Pérez Porras

Capítulo 3

pág. 112

Figure 4. Whisker box plot with the monthly evolution of NO2 in 2019

and 2020 taking into account (a) the whole range of values and (b) zoom

on the median values.

Table 2. Descriptive statistics of NO2 concentration by month and year.

Month

Yea

r

Minimu

m

Maximu

m Q25 Median Q75

January 2019 1.46 × 10−9 0.00027

1.64 ×

10−5

2.08 ×

10−5

2.82 ×

10−5

2020 7.63 × 10−7 0.000265

2.32 ×

10−5

2.75 ×

10−5

3.37 ×

10−5

Februar

y 2019 7.41 × 10−9 0.000269

1.66 ×

10−5

2.19 ×

10−5

2.93 ×

10−5

2020 2.4 × 10−7 0.000232

1.97 ×

10−5

2.39 ×

10−5

2.98 ×

10−5

March 2019 9.56 × 10−7 0.000169

1.76 ×

10−5

2.16 ×

10−5

2.71 ×

10−5

2020 4.12 × 10−7 0.000134

1.65 ×

10−5

1.94 ×

10−5

2.29 ×

10−5

April 2019 3.32 × 10−7 0.000148 1.8 × 10−5

2.15 ×

10−5 2.6 × 10−5

2020 1.25 × 10−8 6.49E-05

1.35 ×

10−5

1.65 ×

10−5

1.99 ×

10−5

Figure 5 shows the temporal evolution of the spatial distribution of

NO2 VCD in the January–April period for the years 2019 and 2020 in Spain.

During the year 2019 (Figure 5I.x), Madrid and the surrounding

metropolitan area was the one with the highest values of NO2 VCD. In

addition, the metropolitan areas of Barcelona and Valencia, in the

Mediterranean basin, and Seville in southern Spain, stand out in NO2 VCD

values, although much lower than Madrid. These areas correspond to the

areas with the highest NO2 VCD values represented in the box and whisker

plot of Figure 4a. As shown in this figure, these urban areas appear more

highlighted in the months of January (Figure 5I.a) and February (Figure

5I.b) than in the months of March (Figure 5I.c) and April (Figure 5I.d) in

2019, although these areas presented higher values than the rest of Spain.

In 2020 (Figure 5II.x), the distribution of NO2 VCD was similar to that of

2019 in the months of January (Figure 5II.a) and February (Figure 5II.b),

with the same urban areas standing out as in 2019 due to their increase in

NO2. In March 2020, coinciding with the middle of the month in which

mobility restriction measures were adopted, a reduction in NO2 VCD was

Page 114: Fernando Juan Pérez Porras

Capítulo 3

pág. 113

observed throughout the country, with only the geographical area around

Madrid showing higher values than the rest of Spain, although lower than

in previous months. Finally, in April 2020 (Figure 5II.d), where the mobility

restrictions measures were applied throughout the month, there was a very

marked reduction in NO2 VCD throughout the totally of Spain, with

strongly homogeneous behavior and hardly any variation.

Figure 5. Monthly maps of average values of Tropospheric vertical

column of NO2 in Spain for the years (I) 2019 and (II) 2020 during the

months of (a) January, (b) February, (c) March and (d) April.

Figure 6 presents the evolution in detail of NO2 VCD over the three

most populated cities in Spain, Madrid (Figure 6a.x), Barcelona (Figure

6b.x) and Valencia (Figure 6c.x), between January and April 2020. Of the

three cities, Madrid presented the highest NO2 VCD values at the beginning

of 2020. In the month of January, both Madrid (Figure 6a.I) and Barcelona

(Figure 6b.I), due to the size of their metropolitan areas and number of

inhabitants, showed higher values in the center of these areas, reducing

radially as the distance increases from the central area. In February, there

was a reduction in NO2 in the city of Madrid (Figure 6a.II), but not in the

cities of Barcelona (Figure 6b.II) and Valencia (Figure 6c.II). These

geographical areas presented higher values than the surrounding areas. In

March, coinciding with the limitation of mobility and activity in the middle

of the month, a reduction in NO2 was observed in the three urban areas. In

the case of Madrid (Figure 6a.III), the highest NO2 values appeared around

the city and not in the metropolitan area. A similar NO2 spatial distribution

occurred in Barcelona (Figure 6b.III). On the other hand, the city of Valencia

and its metropolitan area (Figure 6c.III) present very similar NO2 values.

The effect of mobility restrictions is very evident in the month of April 2020.

Page 115: Fernando Juan Pérez Porras

Capítulo 3

pág. 114

All analyzed urban areas showed a drastic decrease in NO2 VCD, only

Madrid (Figure 6a.IV) and, to a lesser extent, Barcelona (Figure 6b.IV)

showed a very slight increase in values with respect to the surrounding

areas for the same period, making it practically impossible to identify a

pattern associated with the urban area. In the case of Valencia (Figure 6c.IV)

this difference vanished completely. Thus, after 30 days of limitations and

restrictions in mobility and activity, the values of NO2 CDV in these urban

areas were similar to those of non-urban areas.

Figure 6. Monthly maps of average values of Tropospheric vertical

column of NO2 in (a) Madrid, (b) Barcelona and (c) Valencia for 2020

during the months of (I) January, (II) February, (III) March and (IV)

April.

Figure 7 shows the variation of NO2 VCD from one month before to

one month after 15 March 2020 in Spain. The highest NO2 VCD reductions

are represented in red, while a severe reduction is represented in yellow.

On the other hand, those areas with a low reduction are represented in

green and those areas with no discernible variation are in cyan. Throughout

the territory, a decrease can be observed after the lockdown measures, with

Page 116: Fernando Juan Pérez Porras

Capítulo 3

pág. 115

some areas showing a more pronounced decrease than others. The

variation of NO2 followed the same spatial distribution as the population

density distribution presented in Figure 1. The city of Madrid, the most

densely populated city in Spain, showed a marked reduction in NO2

concentration, reaching values of −1.56 × 10−4 mol m−2. Slightly lower values

were found in areas such as Barcelona, Valencia and some coastal urban

areas with a lower population density than Madrid. On the other hand, all

these areas were surrounded by metropolitan areas where the reduction in

NO2 was much less pronounced but also important, with values around

−0.08 × 10−4 mol m−2. Similar values were found in cities such as Seville and

its metropolitan area, Valladolid and the Ebro River corridor. The rest of

the territory, with lower population densities presented a reduction

between 0.04 × 10−4 and 0.01 × 10−4 mol m−2, lower than metropolitan areas.

Therefore, the most densely populated areas with high NO2 concentrations

showed the greatest reductions compared to those areas with low density

populations. As a result, the distribution of NO2 VCD in Spain was more

homogeneous than in previous months (Figure 5II.d).

Figure 7. Mean variation of NO2 VCD between one month before and

after 15 March 2020 in Spain.

Page 117: Fernando Juan Pérez Porras

Capítulo 3

pág. 116

Figure 8 shows the average value of tropospheric VCD of NO2

reduction in relation to the number of inhabitants, resulting in nine

categories. In general, as the number of inhabitants increases, NO2

decreases. Cities with less than 50,000 inhabitants had least significant

reduction, with an average value of −2.99 × 10−5 mol m−2. On the other hand,

those cities with more than 600,000 inhabitants were those that presented

the greatest reduction, with average values of less than −1.05 × 10−4 mol m−2.

Considering the first three categories with the lowest number of

inhabitants, the factor of increase in the reduction of tropospheric VCD of

NO2 was equal to 1.28 per 50,000 inhabitants. On the other hand, it

decreased slightly among the categories of 150,000 to 600,000 inhabitants,

being equal to 1.03 per 50,000 inhabitants.

Figure 8. Number of inhabitants versus variation of tropospheric

vertical column of NO2.

The 11 cities with more than 275,000 inhabitants in Spain, are plotted

in Figure 9 which shows a negative lineal relationship between population

size and NO2 reduction with a correlation coefficient equal to 0.73 (p-value

0.00004). A negative relationship was expected between population activity

and NO2 levels, where greater activity leads to a higher level. This

component is one of the most important in urban air pollution, with the

burning of fossil fuels such as coal, oil and gas being one of the main

sources of NO2. It is estimated that about 86% of nitrogen dioxide in

European cities are caused by fossil fuels emitted from motor vehicles [65].

That means that as populations increase, NO2 also increases. With the

lockdown measures in effect there has been almost no vehicle traffic and in

turn the concentration of NO2 has been reduced.

Page 118: Fernando Juan Pérez Porras

Capítulo 3

pág. 117

Figure 9. Number of inhabitants versus variation of tropospheric vertical

column of NO2. The red line is the fitted linear function.

4. Discussion

NO2 concentrations in megacities exceed recommendations from the

World Health Organization [13]. To control the spread of coronavirus the

large majority of people have been staying at home, maintaining social

distancing practices and working remotely [66]. As expected, the direct

consequence of industries and transportation systems shutting down was

a sudden drop in air pollutant emissions. The lockdowns have provided

researchers the opportunity to set up singular experiments based on real

data and not simulations to answer the question of what would happen if

individual transport based on fuel combustion were removed and only

those linked to public service and supply were active. Under this scenario,

around the world, many cities have looked into how air quality has

improved since the lockdown measures took place. Particularly in Europe,

NO2 emissions were highly reduced over northern Italy, Spain and the

United Kingdom [67]. It is well known there is a positive association

between NO2 concentration and population size [68]. As in other studies in

other countries [69], in Spain, NO2 concentrations are located around urban

areas, being higher as population size increases, indicating anthropogenic

sources, mainly produced by vehicles. The situation caused by the SARS-

CoV-2 pandemic has led, in the case of Spain, to an 80% reduction in traffic

and a reduction of fuel sales by 83% [70].

Urban planners, engineers and policymakers should take the studies

that have capitalized on the unique conditions presented by the pandemic

Page 119: Fernando Juan Pérez Porras

Capítulo 3

pág. 118

into account to promote new strategies to reduce air pollution and

consolidate existing ones. To this end, it is necessary to consider how the

expansion of urban areas and the complex use of land, transport patterns

and socio-economic development directly factor into our living conditions.

The expansion of urban areas has led to an increase in residential areas on

the outskirts of cities, resulting in disproportionate distances between

residential housing and places of work, generating an imbalance in

transport with a high dependence on private vehicles [71]. To date, there is

not a sufficient number of studies taking into account the integration of

transport systems and urban planning to reduce air pollution [72,73].

Regardless of the positive impact on the reduction of air pollutants,

climate effects are still present today and should not be understood as a

substitute for climate change. In this way, we would like to express that in

this manuscript we characterized the changes produced on air quality

during the lockdown. We have not tried to attribute specifically nor

quantify the effects of the lockdown since other factors may have

influenced the changes, such as meteorology and regional and long-range

transport of pollutants. An in-depth analysis is required to obtain this

information accurately.

In addition to the impact of lockdown measures on air quality, future

work should aim to study the impact of the absence of tourists on the

appearance of beaches and water quality, or the reduction of noise

pollution. Moreover, the massive use of personal protective equipment

such as masks or gloves has increased worldwide, and probably recycling

and waste management policies should be analyzed and redesigned.

5. Conclusions

Lockdown measures due to SARS-CoV-2 have provoked a singular

and unique opportunity to evaluate the contribution and impact of human

activity on the environment. In this manuscript, the effect on air pollution

due to the pandemic response in Spain has been shown by evaluating and

analyzing the concentration of tropospheric NO2 from 1 January to 30 April

in 2019 and 2020. In this study, data from the TROPOMI on-board the

Sentinel-5P satellite platform were used to analyze the spatial-temporal

variation in Spain and its relationship with population size and lockdown

measures.

The satellite scenes showed a high concentration of NO2 in the city of

Madrid, which has the largest number of inhabitants in Spain. Other

hotspots with high concentrations of NO2 also appeared over cities with a

large number of inhabitants. Previous lockdown measures, the relationship

Page 120: Fernando Juan Pérez Porras

Capítulo 3

pág. 119

between the population density map of Spain and the NO2 distribution

followed the same pattern. Furthermore, as a result of the concentration of

the population in very specific points within the Spanish territory and the

source of NO2, mainly related to vehicle traffic, the distribution of this

pollutant presented a wide range of values in the air, clearly differentiating

between areas with a high population density and those without.

Just two weeks of lockdown measures and the mobility restrictions

were reflected in a reduction of NO2, mainly in those areas with larger

populations. One month later, the NO2 reduction was more evident, and

not only in the populated areas, adopting a homogeneous distribution

throughout the territory. The comparison between the NO2 concentration

values before and after the lockdown measures shows a strong relationship

with the number of inhabitants.

These results should be taken into account by governments and

policymakers to develop effective NO2 emissions reduction and air

pollution prevention policies. These policies should be based on adopting

local measures within a global project.

Author Contributions: F.-J.M.-C., A.G.-F. and J.E.M.-L. conceived and designed the

experiment, F.-J.M.-C., F.P.P. and P.T.-T. performed the experiment; F.-J.M.-C.,

F.P.P. and P.T.-T. analyzed the data and F.-J.M.-C. wrote the paper and A.G.-F. and

J.E.M.-L. collaborated in the discussion of the results and revised the manuscript.

All the authors have read and approved the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization Air pollution. Available online: (accessed on).

2. Gurjar, B.R.; Lelieveld, J. New Directions: Megacities and global change.

AtmEn 2005, 39, 391–393.

3. CAI-Asia Center. Indonesia: Air Quality Profile; Clean Air Initiative for Asian

Cities (CAI-Asia) Center: Pasig, Philippines, 2010.

4. Khandelwal, S.; Goyal, R.; Kaul, N.; Mathew, A. Assessment of land surface

temperature variation due to change in elevation of area surrounding Jaipur,

India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 87–94.

5. Dadhich, P.N.; Hanaoka, S. Spatial investigation of the temporal urban form

to assess impact on transit services and public transportation access. Geo Spat.

Inf. Sci. 2012, 15, 187–197.

6. Ravindra, K.; Mor, S.; Ameena; Kamyotra, J.S.; Kaushik, C.P. Variation in

Spatial Pattern of Criteria Air Pollutants Before and During Initial Rain of

Monsoon. Environ. Monit. Assess. 2003, 87, 145–153.

Page 121: Fernando Juan Pérez Porras

Capítulo 3

pág. 120

7. Marsh, W.M.; Grossa, J., Jr. Environmental Geography: Science, Land Use, and

Earth Systems, 2nd ed.; John Wiley and Sons, Ed.; John Wiley and Sons: New

York, NY, USA, 2002; ISBN 0471503967.

8. Pasqua, L.A.; Damasceno, M.V.; Cruz, R.; Matsuda, M.; Martins, M.A.G.;

Marquezini, M.V.; Lima-Silva, A.E.; Saldiva, P.H.N.; Bertuzzi, R. Exercising in

the urban center: Inflammatory and cardiovascular effects of prolonged

exercise under air pollution. Chemosphere 2020, 254, 126817.

9. Shmuel, S.; White, A.J.; Sandler, D.P. Residential exposure to vehicular traffic-

related air pollution during childhood and breast cancer risk. Environ. Res.

2017, 159, 257–263.

10. Kopnina, H. Vehicular air pollution and asthma: Implications for education

for health and environmental sustainability. Local Environ. 2017, 22, 38–48.

11. Tang, G.; Zhao, P.; Wang, Y.; Gao, W.; Cheng, M.; Xin, J.; Li, X.; Wang, Y.

Mortality and air pollution in Beijing: The long-term relationship. Atmos.

Environ. 2017, 150, 238–243.

12. He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China:

Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016,

79, 18–39.

13. World Health Organization. WHO Air Quality Guidelines for Particulate Matter,

Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk

Assessment; World Health Organization: Geneva, Switzerland, 2006.

14. UNION, P. Directive 2008/50/EC of the European Parliament and of the

Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off.

J. Eur. Union 2008, 152, 1–44.

15. Yebin, T.; Wei, H.; Xiaoliang, H.; Liuju, Z.; Shou-En, L.; Yi, L.; Lingzhen, D.;

Yuanhang, Z.; Tong, Z. Estimated Acute Effects of Ambient Ozone and

Nitrogen Dioxide on Mortality in the Pearl River Delta of Southern China.

Environ. Health Perspect. 2012, 120, 393–398.

16. MacIntyre, E.A.; Gehring, U.; Mölter, A.; Fuertes, E.; Klümper, C.; Krämer, U.;

Quass, U.; Hoffmann, B.; Gascon, M.; Brunekreef, B.; et al. Air Pollution and

Respiratory Infections during Early Childhood: An Analysis of 10 European

Birth Cohorts within the ESCAPE Project. Environ. Health Perspect. 2014, 122,

107–113.

17. Hesterberg, T.W.; Bunn, W.B.; McClellan, R.O.; Hamade, A.K.; Long, C.M.;

Valberg, P.A. Critical review of the human data on short-term nitrogen

dioxide (NO2) exposures: Evidence for NO2 no-effect levels. Crit. Rev. Toxicol

2009, 39, 743–781.

18. Ilan, L.; Cristian, M.; Gang, L.; Julie, N.; Brook J.R. Evaluating Multipollutant

Exposure and Urban Air Quality: Pollutant Interrelationships, Neighborhood

Variability, and Nitrogen Dioxide as a Proxy Pollutant. Environ. Health

Perspect. 2014, 122, 65–72.

19. Stieb, D.M.; Burnett, R.T.; Smith-Doiron, M.; Brion, O.; Shin, H.H.; Economou,

V. A New Multipollutant, No-Threshold Air Quality Health Index Based on

Page 122: Fernando Juan Pérez Porras

Capítulo 3

pág. 121

Short-Term Associations Observed in Daily Time-Series Analyses. J. Air Waste

Manag. Assoc. 2008, 58, 435–450.

20. Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-

Maesano, I.; Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; et al. Twenty

five year mortality and air pollution: Results from the French PAARC survey.

Occup. Environ. Med. 2005, 62, 453–460.

21. Chen, X.; Zhang, L.; Huang, J.; Song, F.; Zhang, L.; Qian, Z.; Trevathan, E.;

Mao, H.; Han, B.; Vaughn, M.; et al. Long-term exposure to urban air pollution

and lung cancer mortality: A 12-year cohort study in Northern China. Sci. Total

Environ. 2016, 571, 855–861.

22. Gauderman, W.J.; Avol, E.; Lurmann, F.; Kuenzli, N.; Gilliland, F.; Peters, J.;

McConnell, R. Childhood Asthma and Exposure to Traffic and Nitrogen

Dioxide. Epidemiology 2005, 16, 737–743.

23. Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J. Effect of NOx and NO2

Concentration Increase in Ambient Air to Daily Bronchitis and Asthma

Exacerbation, Silesian Voivodeship in Poland. Int. J. Environ. Res. Public Health

2020, 17, 754.

24. Beelen, R.; Hoek, G.; Van Den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.;

Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-

Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort

(NLCS-AIR Study). Environ. Health Perspect. 2008, 116, 196–202.

25. Eum, K.-D.; Kazemiparkouhi, F.; Wang, B.; Manjourides, J.; Pun, V.; Pavlu, V.;

Suh, H. Long-term NO2 exposures and cause-specific mortality in American

older adults. Environ. Int. 2019, 124, 10–15.

26. Amorim, L.C.A.; Carneiro, J.P.; Cardeal, Z.L. An optimized method for

determination of benzene in exhaled air by gas chromatography–mass

spectrometry using solid phase microextraction as a sampling technique. J.

Chromatogr. B 2008, 865, 141–146.

27. Ma, Y.; Richards, M.; Ghanem, M.; Guo, Y.; Hassard, J. Air pollution

monitoring and mining based on sensor grid in London. Sensors 2008, 8, 3601–

3623.

28. Richards, M.; Ghanem, M.; Osmond, M.; Guo, Y.; Hassard, J. Grid-based

analysis of air pollution data. Ecol. Model. 2006, 194, 274–286.

29. Boubrima, A.; Bechkit, W.; Rivano, H. Optimal WSN Deployment Models for

Air Pollution Monitoring. IEEE Trans. Wirel. Commun. 2017, 16, 2723–2735.

30. Patil, D.; Thanuja, T.C.; Melinamath, B.C. Air Pollution Monitoring System Using

Wireless Sensor Network (WSN) BT-Data Management, Analytics and Innovation;

Balas, V.E., Sharma, N., Chakrabarti, A., Eds.; Springer: Singapore, Singapore,

2019; pp. 391–400.

31. Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.S.; Leung, Y.; Meng, M.L. A survey of

wireless sensor network based air pollution monitoring systems. Sensors 2015,

15, 31392–31427.

Page 123: Fernando Juan Pérez Porras

Capítulo 3

pág. 122

32. Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial Variation of NO2 and Its

Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens.

2019, 11, 1939.

33. Nate, S. Remote-Sensing Applications for Environmental Health Research.

Environ. Health Perspect. 2014, 122, A268–A275.

34. Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladstätter-

Weißenmayer, A.; Richter, A.; DeBeek, R.; Hoogen, R.; Bramstedt, K.;

Eichmann, K.-U.; et al. The Global Ozone Monitoring Experiment (GOME):

Mission Concept and First Scientific Results. J. Atmos. Sci. 1999, 56, 151–175.

35. Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov,

V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission Objectives and

Measurement Modes. J. Atmos. Sci. 1999, 56, 127–150.

36. Callies, J.; Corpaccioli, E.; Eisinger, M.; Hahne, A.; Lefebvre, A. GOME-2-

Metop’s second-generation sensor for operational ozone monitoring. ESA

Bull. 2000, 102, 28–36.

37. Levelt, P.F.; Van Den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; De

Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring

instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101.

38. Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas,

J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-

5 Precursor: A GMES mission for global observations of the atmospheric

composition for climate, air quality and ozone layer applications. Remote Sens.

Environ. 2012, 120, 70–83.

39. Griffin, D.; Zhao, X.; McLinden, C.A.; Boersma, F.; Bourassa, A.; Dammers, E.;

Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; et al. High-Resolution

Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation

Over the Canadian Oil Sands. Geophys. Res. Lett. 2019, 46, 1049–1060.

40. Lamsal, L.N.; Duncan, B.N.; Yoshida, Y.; Krotkov, N.A.; Pickering, K.E.;

Streets, D.G.; Lu, Z.U.S. NO2 trends (2005–2013): EPA Air Quality System

(AQS) data versus improved observations from the Ozone Monitoring

Instrument (OMI). Atmos. Environ. 2015, 110, 130–143.

41. Van Geffen, J.H.G.M.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind,

J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products.

Minist. Infrastruct. Water Manag. 2019. Available online: https://sentinel. esa.

int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-

products (accessed on 10 January 2020).

42. Curier, R.L.; Kranenburg, R.; Segers, A.J.S.; Timmermans, R.M.A.; Schaap, M.

Synergistic use of OMI NO2 tropospheric columns and LOTOS–EUROS to

evaluate the NOx emission trends across Europe. Remote Sens. Environ. 2014,

149, 58–69.

43. Castellanos, P.; Boersma, K.F. Reductions in nitrogen oxides over Europe

driven by environmental policy and economic recession. Sci. Rep. 2012, 2, 265.

Page 124: Fernando Juan Pérez Porras

Capítulo 3

pág. 123

44. Ghude, S.D.; Pfister, G.G.; Jena, C.; Van Der A., R.J.; Emmons, L.K.; Kumar, R.

Satellite constraints of nitrogen oxide (NOx) emissions from India based on

OMI observations and WRF-Chem simulations. Geophys. Res. Lett. 2013, 40,

423–428.

45. Streets, D.G.; Canty, T.; Carmichael, G.R.; De Foy, B.; Dickerson, R.R.; Duncan,

B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K.; Houyoux, M.R.; et al.

Emissions estimation from satellite retrievals: A review of current capability.

Atmos. Environ. 2013, 77, 1011–1042.

46. Wang, S.W.; Zhang, Q.; Streets, D.G.; He, K.B.; Martin, R.V.; Lamsal, L.N.;

Chen, D.; Lei, Y.; Lu, Z. Growth in NOx emissions from power plants in China:

Bottom-up estimates and satellite observations. Atmos. Chem. Phys. 2012, 12,

4429.

47. Kim, S.-W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.-Y.; Trainer, M.K.;

Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A. Satellite-observed U.S.

power plant NOx emission reductions and their impact on air quality. Geophys.

Res. Lett. 2006, 33.

48. World Economic Forum The Global Risks Report 2020. 2020. Available online:

(accessed on).

49. Ye, Z.-W.; Yuan, S.; Yuen, K.-S.; Fung, S.-Y.; Chan, C.-P.; Jin, D.-Y. Zoonotic

origins of human coronaviruses. Int. J. Biol. Sci. 2020, 16, 1686–1697.

50. Ahmad, T.; Khan, M.; Haroon; Musa, T.H.; Nasir, S.; Hui, J.; Bonilla-Aldana,

D.K.; Rodriguez-Morales, A.J. COVID-19: Zoonotic aspects. Travel Med. Infect.

Dis. 2020, doi:10.1016%2Fj.tmaid.2020.101607

51. Mackenzie, J.S.; Chua, K.B.; Daniels, P.W.; Eaton, B.T.; Field, H.E.; Hall, R.A.;

Halpin, K.; Johansen, C.A.; Kirkland, P.D.; Lam, S.K.; et al. Emerging viral

diseases of Southeast Asia and the Western Pacific. Emerg. Infect. Dis. 2001, 7,

497–504.

52. Olsen, B.; Munster, V.J.; Wallensten, A.; Waldenström, J.; Osterhaus, A.D.M.E.;

Fouchier, R.A.M. Global Patterns of Influenza a Virus in Wild Birds. Science

2006, 312, 384–388.

53. Fergus, R.; Fry, M.; Karesh, W.B.; Marra, P.P.; Newman, S.; Paul, E. Migratory

Birds and Avian Flu. Science 2006, 312, 845–846.

54. Petersen, L.R.; Marfin, A.A. Shifting Epidemiology of Flaviviridae. J. Travel

Med. 2008, 12, s3–s11.

55. Leviston, Z.; Leitch, A.; Greenhill, M.; Leonard, R.; Walker, I. Australians’

views of climate change. Canberra CSIRO 2011.

56. Price, J.C.; Walker, I.A.; Boschetti, F. Measuring cultural values and beliefs

about environment to identify their role in climate change responses. J.

Environ. Psychol. 2014, 37, 8–20.

57. Van Der Linden, S.L.; Leiserowitz, A.A.; Feinberg, G.D.; Maibach, E.W. The

Scientific Consensus on Climate Change as a Gateway Belief: Experimental

Evidence. PLoS ONE 2015, 10, e0118489.

Page 125: Fernando Juan Pérez Porras

Capítulo 3

pág. 124

58. Callaway, E. Time to use the p-word? Coronavirus enter dangerous new

phase. Nature 2020, 579, 10–38.

59. Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395,

1225–1228.

60. Hou, C.; Chen, J.; Zhou, Y.; Hua, L.; Yuan, J.; He, S.; Guo, Y.; Zhang, S.; Jia, Q.;

Zhao, C.; et al. The effectiveness of quarantine of Wuhan city against the

Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis. J.

Med. Virol. 2020, 92, 841–848.

61. Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania,

J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing

the COVID-19 outbreak in China. J. Travel Med. 2020, 27,

doi:10.1093/jtm/taaa037.

62. Peto, J.; Alwan, N.A.; Godfrey, K.M.; Burgess, R.A.; Hunter, D.J.; Riboli, E.;

Romer, P. Universal weekly testing as the UK COVID-19 lockdown exit

strategy. Lancet 2020, 395, 1420–1421.

63. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R.

Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote

Sens. Environ. 2017, 202, 18–27.

64. Eskes, H.J.; Eichmann, K.U. S5P Mission Performance Centre Nitrogen Dioxide

[L2__NO2___]. 2019. Available online: (accessed on).

65. Degraeuwe, B.; Pisoni, E.; Peduzzi, E.; De Meij, A.; Monforti-Ferrario, F.;

Bodis, K.; Mascherpa, A.; Astorga-Llorens, M.; Thunis, P.; Vignati, E. Urban

NO2 Atlas; Publications Office of the European Union: Brussels, Belgium, 2019;

ISBN 978-92-76-10386-8.

66. Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.;

Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19):

A literature review. J. Infect. Public Health 2020, 13, 667–673.

67. Ficetola, G.F.; Rubolini, D. Climate affects global patterns of COVID-19 early

outbreak dynamics. MedRxiv 2020, doi:10.1101/2020.03.23.20040501.

68. Zhu, Y.; Price, O.R.; Kilgallon, J.; Qi, Y.; Tao, S.; Jones, K.C.; Sweetman, A.J.

Drivers of contaminant levels in surface water of China during 2000–2030:

Relative importance for illustrative home and personal care product

chemicals. Environ. Int. 2018, 115, 161–169.

69. Zhu, Y.; Zhan, Y.; Wang, B.; Li, Z.; Qin, Y.; Zhang, K. Spatiotemporally

mapping of the relationship between NO2 pollution and urbanization for a

megacity in Southwest China during 2005–2016. Chemosphere 2019, 220, 155–

162.

70. De Tráfico, D.G.; Del, I.M. Evolución del Tráfico por el efecto COVID-19.

Available online: http://www.dgt.es/Galerias/covid-19/Evolucion-

Intensidades-dia-02-04-2020-Periodo-Coronavirus.pdf (accessed on 9 May

2020).

71. Banister, D. Energy, quality of life and the environment: The role of transport.

Transp. Rev. 1996, 16, 23–35.

Page 126: Fernando Juan Pérez Porras

Capítulo 3

pág. 125

72. Camagni, R.; Gibelli, M.C.; Rigamonti, P. Urban mobility and urban form: The

social and environmental costs of different patterns of urban expansion. Ecol.

Econ. 2002, 40, 199–216.

73. Ambarwati, L.; Verhaeghe, R.; Van Arem, B.; Pel, A.J. The influence of

integrated space–transport development strategies on air pollution in urban

areas. Transp. Res. Part D Transp. Environ. 2016, 44, 134–146.

© 2020 by the authors. Submitted for possible open access

publication under the terms and conditions of the Creative

Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

Page 127: Fernando Juan Pérez Porras
Page 128: Fernando Juan Pérez Porras

Conclusiones

Las características de los vehículos aéreos no tripulados por su baja

altitud de vuelo, su bajo coste y gran flexibilidad, ofrecen nuevas

oportunidades para las aplicaciones de agricultura de precisión

aumentando la resolución espacial y temporal con datos de múltiples

fuentes. Aun así, uno de los puntos débiles de los UAV comerciales y de

bajo coste es hasta ahora la autonomía de vuelo, lo que implica la

miniaturización máxima de la electrónica de las cargas de pago, para

aumentar el rendimiento de la autonomía lo máximo posible.

A pesar de que las plataformas no tripuladas con sensores son

fácilmente accesibles en la actualidad y se han usado ampliamente en una

gran cantidad de proyectos con éxitos diversos, todavía es necesario seguir

trabajando en el pre-procesamiento de los datos capturados por las

distintas fuentes con objeto de poder realizar análisis concluyentes sobre

los mismos.

Por otro lado, la reducción en tamaño de los componentes electrónicos

genera problemas que son necesarios resolver con metodologías

estandarizadas para su posterior aplicación sobre los cultivos agrarios.

Cada tipo de sensor pasivo miniaturizado necesita de correcciones para

ofrecer resultados similares a los sensores embarcados en plataformas

aéreas tripuladas o satelitales. Las técnicas tradicionales de pre-procesado

y corrección de captura de datos se están actualizando por procedimientos

más avanzados a partir de modelos matemáticos que explican y corrigen

su comportamiento.

En general, como se ha comprobado con los resultados obtenidos en el

capítulo 1 de la tesis, una nueva metodología de pre-procesamiento de

datos ha sido aplicada a los datos termográficos capturados por el sensor

embarcado en el UAV. Una vez que los datos han sido pre-procesados se

han aplicado metodologías clásicas para las correcciones atmosféricas, que

en este caso si han surtido efecto. En definitiva, los datos capturados por

plataformas UAV menores de 25 kg con pequeños sensores necesitan de un

pre-procesado para posteriormente aplicar sobre ellos técnicas clásicas de

teledetección.

Cada vez es más importante divulgar este tipo de pre-procesado de

datos en todos los ámbitos, académico, empresarial, industrial, etc. Debido

a la velocidad a la que avanza la tecnología, es necesario que se transfiera

Page 129: Fernando Juan Pérez Porras

Conclusiones

pág. 128

de forma rápida este conocimiento como se ha visto en el capítulo 2, para

que las técnicas aplicadas sobre los datos capturados de UAV sean las

correctas e incorporen esta fase en el procesamiento.

Una vez que se han corregido los datos capturados por estos sensores

de UAV a partir de este nuevo concepto para la modelización de la deriva

térmica, el flujo de trabajo para generar productos a través de teledetección

sigue una estructura fija y estandarizada que permite a partir de datos

capturados por un sensor y datos terreno, generar modelos predictivos.

Finalmente, en el capítulo 3 de la tesis, se ha seguido un flujo de trabajo

para la predicción de variables ambientales desde satélite de forma análoga

a como se realiza a partir de datos capturados por sensores de UAV, una

vez pre-procesados. Esto es de gran importancia ya que identifica un flujo

de trabajo estándar para teledetección donde la única diferencia entre el

procesado de datos desde UAV y satélite, sólo implica un pre-procesado

inicial en los datos capturados desde plataformas no tripuladas.