flexible retaining structure

11
1 行政院國家科學委員會專題研究計畫成果報告 現地河道安裝柔性欄阻網進行土石流防治功效評估 Flexible retaining structure for evaluation of debris-flow hazards mitigation 計畫編號︰NSC 95-2622-E-324-009 執行期限︰95 11 01 ~ 96 10 31 主持人︰林基源 朝陽科技大學營建工程研究所 產學合作廠商:豐欣營造有限公司 摘要 本研究所採用之攔截網為兼具透過性柔 性吸能構造物與透水石籠壩之功能,當土石 尚未堆滿攔截網時為柔性吸能網之功能;當 土石堆滿攔截網時則以其自重形成石籠壩。 研究並於南投縣水里鄉上安村三廍坑溪上游 現地架設土石流攔截網,進行土石流攔阻功 效評估,並將攔截網縮小尺寸,移至室內做 土石流水槽試驗。 本試驗現地所採用鋼索組成之柔性攔截 網,已發揮其柔性、吸能、高透水之特色, 成功攔截梧提颱風等數波土石流。室內水槽 試驗結果顯示,在體積濃度減少率方面,各 組試驗過攔截網後體積濃度都降到 0.3 下,在初始體積濃度為0.450.55時,體積濃 度減少率都有80%以上;初始體積濃度0.35 時體積濃度減少率為60.3% 。而體積過網率隨 體積濃度增加而減少,在土石未堆滿之前都 低於40%。貯砂率為高體積濃度時候最佳, 體積濃度在 0.65 的時候貯砂率可達到 98.88%;在體積濃度為0.35時,貯砂率下降 60%。位移計及震動計主要用於量測在多 次土石流衝擊下攔截網的位移及加速度之變 化,結果發現,當有土石堆積於攔截網前時, 攔截網所受的衝擊力及加速度明顯降低。 關鍵字:土石流、柔性攔截網、積濃度減少 率、過壩率、貯砂率 Abstract The retaining structure adopted by this research has both functions of a permeably flexible energy dissipation structure and a previous rock gabion dam. As it is not full of soils and sediments in the retaining structure, then it is the function of flexible energy dissipation structure. As it is full of soils and sediments in the retaining structure, then it becomes the function of rock gabion dam naturally. In coordination with the Program to Upgrade Industrial Technology and Enhance Human Resources of National Science Council, we set up an on-site debris-flow retaining structure in the upstream of Shan Pu Keng River, Shanan Village, Shueili Township, Nantou County to assess the effect of such debris-flow retaining structure and to shrink its size to move to the indoor for a test of debris-flow tank. For the volume concentration reduction rate, the result of indoor tank test shows that the volume concentration for all cases after passing the dam is reduced to below 03.As the initial volume concentration is 0.45 and 0.55, the volume concentration reduction rate is more than 80%.For the initial volume concentration of 0.35, then the reduction rate is 60.3%.The dam-passing rate will be reduced as increasing the volume concentration, which is less than 40% before the dam reaches the full level. The higher the volume concentration is, then the better the grain deposition rate is. As the volume concentration is 0.65, the grain deposition rate can reach 98.88%. And as the

Upload: kuang-chien-peng

Post on 20-Feb-2016

230 views

Category:

Documents


0 download

DESCRIPTION

Flexible retaining structure for evaluation of debris-flow hazards mitigation

TRANSCRIPT

  • 1

    Flexible retaining structure for evaluation of debris-flow hazards mitigation

    NSC 95-2622-E-324-009

    95 11 01~ 96 10 31

    0.30.450.5580%0.3560.3%40% 0.6598.88%0.3560%

    Abstract

    The retaining structure adopted by this research has both functions of a permeably flexible energy dissipation structure and a previous rock gabion dam. As it is not full of soils and sediments in the retaining structure, then it is the function of flexible energy dissipation structure. As it is full of soils and sediments in the retaining structure, then it becomes the function of rock gabion dam naturally. In coordination with the Program to Upgrade Industrial Technology and Enhance Human Resources of National Science Council, we set up an on-site debris-flow retaining structure in the upstream of Shan Pu Keng River, Shanan Village, Shueili Township, Nantou County to assess the effect of such debris-flow retaining structure and to shrink its size to move to the indoor for a test of debris-flow tank.

    For the volume concentration reduction rate, the result of indoor tank test shows that the volume concentration for all cases after passing the dam is reduced to below 03.As the initial volume concentration is 0.45 and 0.55, the volume concentration reduction rate is more than 80%.For the initial volume concentration of 0.35, then the reduction rate is 60.3%.The dam-passing rate will be reduced as increasing the volume concentration, which is less than 40% before the dam reaches the full level. The higher the volume concentration is, then the better the grain deposition rate is. As the volume concentration is 0.65, the grain deposition rate can reach 98.88%. And as the

  • 2

    volume concentration is 0.35, the grain deposition rate will be down to 60%. Under the strike of debris-flow again and again, we use the displacement meter and the vibration meter to measure the impact fore of sediments in the auxiliary dam and in front of the dam and the acceleration of sediments in the dam and find that they are significantly reduced. Therefore, through the test, we can find that we can truly make use of the characteristics of a retaining structure to retain & deposit the debris flow. Key WordDebris Flow, Flexible Retaining Structure, Volume Concentration Reduction Rate, Dam-passing Rate, Grain Deposition Rate

    2.1

    2.2

    19922-1

    2.3

    2-2

    (a) (b)(c)(d)(e)

    2-1

    2-2 (a)(b)

    (c)(d)(e)

  • 3

    1980 (grid-type sabo dam) 2-3

    max/ DL =1.52.0 max/ DL

    L Dmax

    L L L L

    2-3

    1989L maxD

    (1) pC pC max/ DL

    (2) L R (%)

    81601.0max/4318.53 DLR (2-1) R

    (3)

    max

    6429.06126.0D

    LQQ

    w

    p (2-2)

    pQ

    wQ

    (4)

    (5) max/ DL < 2.0

    (1k

    k

    EE

    )50% 1k

    E

    2.4

    (1999)

    22

    21

    21 ImvE (2-3)

    m [kg] Mass v [m/s] Velocity I [mkg] Rotation Mass of Inertia [l/s] Rotation Velocity

    (Impluse)

    tpFav

    (2-4) p = t t = Fav =t

    3.1

    3.1.1

  • 4

    8.22

    1957 23 5.12 () 3600 960 411 19 334 15 147 1420

    071 3-1

    3-1

    3.1.2

    3.2

    3-1

    3-2

    3-1 (kg) 1173.5 (m3) 0.576 (t/m3) 2.037 (t/m3) 1.917 (%) 5.0 (%) 77.6 #200 (%) 4.1

    0.1mm (%) 5.3 - NP - NP

    3.3

    3-3 7.5m 6m() 3m4.5m 50cm 40cm 80cm120cm 1m

  • 5

    3-4

    3-3

    3-4

    3.4

    96 8 6 8 8 96 8 8 8 98 13 101.5mm 3-5

    50m 12m 15m 3-7 4m 8~10 20~30cm14~16 50~60cm 1m

    3-5

    (96.08.12~96.08.14)

    8 14 2/3 ( 2m) 1/4( 40cm) 3-6

    3-6(96.08.14)

    3-7(96.08.14)

  • 6

    8 12 8 13 7 25 19.5cm 8cm

    4.1

    1980 grid-type sabo dam

    max/ DL =1.52.0 max/ DL 124 2"1"0.5" 4-1 #4#4

    #40.1mm 5.3 %1991 0.1mm 10 %

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.010.11101001000

    (mm)

    (%

    )

    2"1"0.5"

    4-1

    4.2

    4.2.1

    (1) 40 cm 40 cm 600 cm 420 cm#4 0324-2

    (2) 130

    (3) 320 cm 200 cm 10 cm 4-3

    4-2

    4-3

  • 7

    4.2.2

    30cm 5.08cm(2")

    15cm 30cm2.54cm(1")

    40cm 30cm2.54cm(1")

    30cm 2.54cm(1")

    4-4

    4-5

    4.3

    4.3.1

    4-1

    4-1

    Test1 0.65 23 1" 3 Test2 0.55 23 2" 3 Test3 0.65 23 2" 3 Test4 0.6 23 1" 3 Test5 0.55 23 1" 3 Test6 0.45 23 1" 4 Test7 0.35 23 1" 4 Test8 0.55 23 0.5" 4 Test9 0.45 23 0.5" 4 Test10 0.35 23 0.5" 4

    4.3.2

    (1) LVDT

    (2)()

    (3)( 30)

    (4)

    (5) 34

    (6)

    5.1

    34 5-1

    5.2

    11 3 mm

  • 8

    5-3

    5-1

    5-2

    5-3

    5.3 Rv

    Rv Rv

    %1000

    10 C

    CCRV

    C0 C1

    0

    0.20.4

    0.60.8

    11.2

    0 1 2 3 4 5

    (%)

    0.35 0.5"0.45 0.5"0.55 0.5"

    5-4

    (Dmax=0.5")

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5

    (%)

    0.35 1"0.45 1"0.55 1"

    5-5

    (Dmax=1")

    5.4 Rp

    V0 V1Rp

    %1000

    1 VVRP

    V0 V1

  • 9

    0%5%

    10%15%20%25%30%35%40%45%

    0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7Cv

    %

    5-6

    0.35 40.25% 0.65 1.13% 0.35

    5.5

    Rs

    %100 PTTRS

    T P

    0.45 90% 0.35 60.0% 5-7 0.45 0.450.35 91.6%~98.9%60%

    60%

    65%

    70%

    75%

    80%

    85%

    90%

    95%

    100%

    0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Cv

    %

    5-7

    5.6

    - LVDT

    Excel 5-8 6%42% =L1-L2/L

    Test 4

    -100

    1020304050607080

    1 1.5 2 2.5 3 3.5 4 4.5(s)

    LVDT

    (mm)

    5-8

    5.7

    5-95-11 X

  • 10

    0.262(cm/s2) 0.054(cm/s2) 0.016 (cm/s2)

    Test 3

    -1

    -0.5

    0

    0.5

    1

    0 0.5 1 1.5 2 2.5 3 3.5 4sec

    Vlo

    t

    X

    5-9

    Test 3

    -1

    -0.5

    0

    0.5

    1

    0 0.5 1 1.5 2 2.5 3 3.5 4sec

    Vlot

    X

    5-10

    Test 3

    -1

    -0.5

    0

    0.5

    1

    0 0.5 1 1.5 2 2.5 3 3.5 4sec

    Vlot

    X

    5-11

    1.

    2..

    3. 0.35 40.25% 0.65 1.13% 0.35

    4. 0.45 90% 0.35 60.0%

    5.

    6%~42%

    0.262(cm/s2) 0.054(cm/s2)0.016 (cm/s2)

    (NSC 95-2622-E-324-009-CC3)

    1. - 1851992

    2. No.11437-441980

    3.

  • 11

    No.20B-2 1-311977

    4. ()87 1998

    5. 452000

    6. 1994

    7. No.23B-21980

    8. ()No.1391993

    9. No.74 21-281999

    10. 1989

    11. 1999

    12. Johnson, A.M. and Rodine, J.D., Debris Flow, Slope Instability, John Wiley & Son Ltd., pp. 257-361,1984.

    13. Halliday, D. and Resnick, R.,Fumdamentals of physicsJohn Wiley & SonsInc.pp.102~103N.Y., 1970.

    14. Timoshenko, S., Strength of Materials, Partl1 Elementary Theory and Problems, D.Van Nostrand Company, Inc.,pp.301~302,N.Y., 1956.