folleto matematica 1

71

Upload: cindy-anahite

Post on 23-Jan-2016

23 views

Category:

Documents


0 download

DESCRIPTION

Temas, conceptos básicos y ejercicios de matemática para séptimo grado

TRANSCRIPT

Page 1: Folleto Matematica 1
Page 2: Folleto Matematica 1

Números EnterosDesde hacía mucho tiempo, los chinos utilizaban bastoncillos de bambú o de

madera para representar los números y realizar, en especial, cálculos comerciales de una manera práctica, pero también para tratar cuestiones relacionadas con los aumentos y disminuciones de magnitudes, o con distancias recorridas en sentidos opuestos; esos bastoncillos eran negros o rojos según que representaran cantidades positivas o negativas, de acuerdo con una atribución del color que es justamente la opuesta a la empleada en la contabilidad occidental.

Los matemáticos hindúes del siglo VI mencionan también el uso de números negativos para tratar este tipo de problema. Los antiguos griegos, por el contrario, rechazaron que pudieran existir tales números.

En Europa medieval, los árabes dieron a conocer los números negativos de los hindúes, que en el siglo XII se utilizaban ya ocasionalmente para designar las pérdidas en el análisis de cuestiones financieras. Durante el Renacimiento, el manejo práctico de esos números en la contabilidad y otros contextos ayudó a su lenta introducción en las matemáticas.

El alemán Michael Stifel (1487-1567), monje agustino convertido al protestantismo y amigo personal de Lutero, fue uno de los primeros en admitir el uso de coeficientes negativos para el estudio de las ecuaciones cuadráticas y divulgó el uso del signo menos “―“ para designar la resta; de hecho, los signos + y ― estaban ya en uso entre los comerciantes alemanes del siglo XV para indicar el exceso o el defecto de mercancías en los almacenes. Con todo, la consideración de las cantidades negativas como correspondientes a números matemáticamente legítimos alcanzó aceptación general hasta el siglo XVIII, cuando los números negativos empezaron a ser entendidos como opuestos de los positivos.

En la matemática moderna el conjunto de los números enteros (Z) abarca todos los enteros tanto negativos como positivos, y llega hasta el infinito hacia ambos lados de una recta numérica, por tanto, en rigor no existe un comienzo, salvo que como tal se considere el CERO (el cual agregado al conjunto de los números naturales forma el conjunto de los Cardinales).

1

Page 3: Folleto Matematica 1

Operaciones en Z (con enteros positivos y negativos)

Para poder realizar las operaciones en el conjunto de los números enteros (Z) debes memorizar las siguientes reglas (son fáciles; sólo requieren de práctica).

Suma en Z (Conjunto de Números Enteros positivos y negativos):

Existen únicamente dos casos: números de igual signo y números con signo distinto. Las reglas a memorizar son las siguientes:

a) Números de igual signo: Cuando dos números tiene igual signo se debe sumar y conservar el signo.

Ejemplos: – 3 + – 8 = – 11 (sumo y conservo el signo)

12 + 25 = 37 (sumo y conservo el signo)

b) Números con distinto signo: Cuando dos números tienen distinto signo se debe restar y conservar el signo del número que tiene mayor valor absoluto (recuerda que el valor absoluto son unidades de distancia, lo cual significa que se debe considerar el número sin su signo).

Ejemplo: – 7 + 12 = 5 (tener 12 es lo mismo que tener +12, por lo tanto, los números son de distinto signo y se deben restar: 12 – 7 = 5 ¿con cuál signo queda? El valor absoluto de –7 es 7 y el valor absoluto de +12 es 12, por lo tanto, el número que tiene mayor valor absoluto es el 12; debido a esto el resultado es un número positivo).

5 + – 51 = – 46 (es negativo porque el 51 tiene mayor valor absoluto)

– 14 + 34 = 20

Resta en Z

Para restar dos números o más, es necesario realizar dos cambios de signo (uno después del otro) porque de esta manera la resta se transforma en suma y se aplican las reglas mencionadas anteriormente. Son dos los cambios de signo que deben hacerse:

a) Cambiar el signo de la resta en suma y

b) Cambiar el signo del número que está a la derecha del signo de operación por su signo contrario

Ejemplo 1:

–3 – 10

a) cambiamos el signo de resta por el de suma:

–3 + 10

b) cambiamos el signo del número que está a la derecha del signo de operación (que ahora es el +):

– 3 + – 10 = –13 (signos iguales se suma y conserva el signo)

2

Page 4: Folleto Matematica 1

Ejemplo 2:

19 – – 16

a) cambiamos el signo de resta por el de suma:

19 + –16

b) cambiamos el signo del número que está a la derecha (– 16) del signo de operación (que ahora es el +):

19 + + 16 = 19 + 16 = 35

Multiplicación y División en Z

La regla que se utiliza es la misma para multiplicar que para dividir. ¿CÓMO SE HACE? Multiplico los números y luego multiplico los signos de acuerdo a la siguiente tabla:

+ • + = +

– • – = +

+ • – = –

– • + = –

Ejemplos: – 5 • – 10 = 50 (5 • 10 = 50; – • – = +)

12 • – 4 = – 48 (12 • 4 = 48; + • – = –)

Siempre se deben multiplicar o dividir los números y luego aplicar las reglas de signos para dichas operaciones (las reglas de signos para la suma son para la suma y no deben ser confundidos con los de estas otras operaciones).

Propiedades de la suma

La suma tiene cuatro propiedades. Las propiedades son conmutativas, asociativas, distributivas y elemento neutro.

Propiedad conmutativa: Cuando se suman dos números, el resultado es el mismo independientemente del orden de los sumandos. Por ejemplo 4+2 = 2+4

Propiedad asociativa: Cuando se suman tres o más números, el resultado es el mismo independientemente del orden en que se suman los sumandos. Por ejemplo (2+3) + 4= 2 + (3+4)

Elemento neutro: La suma de cualquier número y cero es igual al número original. Por ejemplo 5 + 0 = 5.

Propiedad distributiva: La suma de dos números multiplicada por un tercer número es igual a la suma de cada sumando multiplicado por el tercer número. Por ejemplo 4 * (6+3) = 4*6 + 4*3

3

Page 5: Folleto Matematica 1

Propiedades de la resta

Propiedad 1, Operación No Interna:

El resultado de restar dos números naturales (esto es, su resta) no tiene porqué salir otro número natural.

Por esto se dice que la resta de números naturales no es una propiedad interna, el resultado final puede pertenecer a otro conjunto numérico.

Por ejemplo, esto ocurre cuando el segundo término es mayor que el primero, ¿Qué pasaría si hiciéramos 2-3 en lugar de 3-2?:

El resultado (-1) es un tipo de número que ya estudiaremos más adelante (los números negativos) pero lo importante es que NO pertenece a los números naturales (nuestros números naturales empezaban en el 0).

Propiedad 2, No Conmutativa:

El orden de los sumandos influye mucho en el resultado de una resta.

Observa en el siguiente ejemplo como el resultado varía según cómo lo hagamos:

De hecho, se supone que el número -3 no existe en el conjunto de los números que nosotros estamos estudiando, o sea, se supone que ni siquiera lo debemos usar.

Propiedad 3, Elemento Neutro:

Un elemento neutro es un número que hace que al restar "no ocurra nada", o sea, cuando tenemos un número y le restamos su elemento neutro, nos sigue apareciendo el mismo número. Así, el 0 es el elemento neutro de la resta porque cuando a un número cualquiera le restamos el 0, se sigue quedando el mismo número (no le hemos restado nada).

4

Page 6: Folleto Matematica 1

Por ejemplo:

Números Racionales

En matemática, se llama número racional a todo número que puede representarse como el cociente de dos números enteros (más precisamente, un entero y un natural positivo) es decir, una fracción común a/b con numerador a y denominador distinto de cero b. El término racional alude a fracción o parte de un todo. El conjunto de los números racionales se denota por Q (o bien, Q en Blackboard bold) que deriva de «cociente» (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros (Z), y es un subconjunto de los números reales (Z).

La representación decimal de un número racional es, o bien un número decimal finito, o bien periódico. Esto es cierto no solo para la representación de números en base 10 (sistema decimal), también lo es en base binaria, hexadecimal o cualquier otra base entera. Recíprocamente, todo número que admite una representación (en cualquier base entera) finita o periódica, es un número racional.

Definición de suma y multiplicación en Q

Se define la suma

Se define la multiplicación

5

Page 7: Folleto Matematica 1

Operaciones con números rac ionales

Suma y resta de números rac ionalesCon el mismo denominador Se suman o se restan los numeradores y se mantiene el denominador.

Con distinto denominador

En primer lugar se reducen los denominadores a común denominador , y se suman o se restan los numeradores de las fracc iones equivalentes

obtenidas .

6

Page 8: Folleto Matematica 1

Propiedades de la suma de números rac ionales

1. Interna :

a + b

2. Asociat iva :(a + b) + c = a + (b + c) ·

3. Conmutat iva :

a + b = b + a

4 . Elemento neutro:

a + 0 = a

5. Elemento opuesto

a + (−a) = 0

El opuesto del opuesto de un número es igual al mismo número.

Multiplicación de números racionales

7

Page 9: Folleto Matematica 1

Propiedades de la multiplicación de números racionales

1. Interna:

a · b

2. Asociativa:

(a · b) · c = a · (b · c )

3. Conmutativa:

a · b = b · a

4. Elemento neutro :a ·1 = a

5. Elemento inverso :

6. Distributiva:a · (b + c) = a · b + a · c

7. Sacar factor común:a · b + a · c = a · (b + c)

8

Page 10: Folleto Matematica 1

División de números racionales

.

Ejercicios de operaciones con números racionales

Calcula las siguientes operaciones con números rac ionales :

1

2

3

4

9

Page 11: Folleto Matematica 1

Efectúa las divisiones de números racionales:

1

2

3

Realiza las operaciones con números rac ionales :

1

2

10

Page 12: Folleto Matematica 1

Efectúa las operaciones con números rac ionales :

Potencias de números racionales

Potencias de exponente entero y base racional

Propiedades

1.

2.

3. Producto de potencias con la misma base:

11

Page 13: Folleto Matematica 1

4. División de potencias con la misma base:

5. Potencia de una potencia:

6. Producto de potencias con el mismo exponente :

7. Cociente de potencias con el mismo exponente:

12

Page 14: Folleto Matematica 1

Variación Proporcional

Dos magnitudes son dependientes de otra cuando al cambiar una de ellas la otra también cambia

Cuando el cociente entre dos magnitudes es constante decimos que las magnitudes son directamente proporcionales. Este cociente se denomina constante de proporcionalidad.

Primer ejemplo

La receta de un pastel de vainilla indica que para cuatro personas se necesitan 200 g de harina, 150 g de mantequilla, cuatro huevos y 120 g de azúcar. ¿Cómo adaptar la receta para cinco personas? Según varios estudios, la mayoría de la gente calcularía las cantidades para una persona (dividiendo entre cuatro) y luego las multiplicaría por el número real de personas, cinco, otras solo le sumarían lo que a una persona le corresponde. Una minoría no siente la necesidad de pasar por las cantidades unitarias (es decir por persona) y multiplicaría los números de la receta por 5/4 = 1,25 (lo que equivale a añadir cinco huevos, 250 g de harina; 187,5 g de mantequilla y 150 g de azúcar) tendrá el mismo sabor que el otro, si el cocinero aficionado se muestra tan bueno como el chef que escribió la receta.

La tabla del primer ejemplo se puede descomponer en tres de formato dos por dos:

Por tanto las propiedades de la proporcionalidad se ilustran preferentemente con tablas de cuatro casillas.

Una proporción está formada por los números a, b, c y d, si la razón entre a y b es la misma que entre c y d.

13

Page 15: Folleto Matematica 1

Una proporción está formada por dos razones iguales: a : b = c : d

Dónde a, b, c y d son distintos de cero y se lee a es a b como c es a d .

Proporción múltiple:

Una serie de razones está formada por tres o más razones iguales: a : b = c : d = e : f

Y se puede expresar como una proporción múltiple: a : c : e = b : d : f

En la proporción hay cuatro términos; a y d se llaman extremos; c y b se llaman medios.

En toda proporción el producto de los extremos es igual al producto de los medios.

Para establecer que una tabla es proporcional, se puede:

1. verificar que la segunda columna es múltiple de la primera, (primera tabla: para

pasar de la primera casilla a la segunda, hay que multiplicar por ; en la

segunda línea se tiene que multiplicar por , luego estas fracciones deben ser iguales para obtener columnas proporcionales)

2. verificar que la segunda línea es múltiple de la primera (segunda tabla, con un raciocinio parecido) o

3. verificar la igualdad de los productos cruzados: a·d = b·c. (tercera tabla: las igualdades anteriores equivalen a a·d = b·c, cuando no hay valores nulos, que por cierto no tienen un gran interés en este contexto). ya que no se puede comprobar.

Segundo ejemplo

Dos albañiles construyen un muro de doce metros de superficie en tres horas; ¿ Qué superficie construirán cinco albañiles en cuatro horas ?

Hay dos parámetros que influyen en la superficie construida: El número de albañiles y el tiempo de trabajo. No hay que resistir a la tentación de aplicar dos veces la proporcionalidad, pero eso sí, explicitando las hipótesis subyacentes.

Afirmar que el trabajo realizado es proporcional al número de albañiles equivale a decir que todos los obreros tienen la misma eficacia al trabajo (son intercambiables); y afirmar que la superficie es proporcional al tiempo de trabajo supone que el rendimiento no cambia con el tiempo: los albañiles no se cansan.

14

Page 16: Folleto Matematica 1

Admitiendo estas dos hipótesis, se puede contestar a la pregunta pasando por una etapa intermedia: ¿ Qué superficie construirían dos albañiles en cuatro horas ? El parámetro "número de albañiles" tiene un valor fijo, luego se aplica la proporcionalidad con el tiempo (subtabla roja). La superficie construida será

multiplicada por . Luego, fijando el parámetro tiempo a cuatro horas, y variando él

del número de obreros de 2 a 5, la superficie será multiplicada por (la subtabla azul es proporcional).

El resultado final es Metros cuadrados.

La proporcionalidad múltiple se resuelve así, multiplicando por los coeficientes correspondientes a cada factor:

Tercer ejemplo

Dos autos recorren exactamente el mismo camino. Al primero le ha tomado dos horas y media llegar al destino, rodando a una velocidad promedia de 70 km/h. El segundo rueda a 100 km/h. ¿Cuánto tiempo ha tardado en llegar?

Entre mayor velocidad tenga uno, menor tiempo durará el viaje. Si se multiplica por dos la velocidad, la duración del viaje se dividirá en dos. Aquí, claramente el tiempo del recorrido no es proporcional a la velocidad sino justamente lo contrario: es inversamente proporcional, es decir proporcional a la inversa de la velocidad. Esto permite responder a la pregunta:

Cambiando una multiplicación por una división (primera tabla) o aplicando la proporcionalidad con la inversa de la velocidad (segunda tabla). El tiempo será

, es decir una hora y 45 minutos.

15

Page 17: Folleto Matematica 1

Más generalmente, si una variable y es inversamente proporcional a otra variable x, se

puede aplicar la proporcionalidad con , o más bien utilizar la siguiente equivalencia:

Es decir que el producto de los valores correspondientes (aquí en la misma línea) es constante. En el ejemplo: 70 × 2,5 = 100 × 1, 75 = 175 km, que es la longitud del recorrido.

Una tabla de variación proporcional es aquella que sigue una secuencia utilizando de base el precio de algún objeto u otra cosa que pueda aumentar o disminuir cierto número u objeto de forma proporcional. Ejemplo:

Número de canicas precio

2 canicas 50 centavos

4 canicas 1 peso

6 canicas 1,50 pesos

Magnitudes Directamente Proporcionales:

Dos magnitudes son directamente proporcionales cuando al multiplicar o dividir una de ellas por un número, la otra queda multiplicada o dividida respectivamente por el mismo número.

Ejemplo:

Un automóvil consume 3 galones de gasolina por 120 km de recorrido ¿Cuantos kilómetros recorre con 20 galones?

Observamos que las magnitudes son directas Si la razón o cociente entre ellas es un valor constante. Con los datos de la tabla, hallamos la razón.

Elaboramos una tabla de proporcionalidad:

Gasolina 3 1 10 20 40 (galones)

Recorrido 120 40 400 800 1600 (kilómetros)

Con 20 galones de gasolina, el auto recorre 800 kilómetros: Mientras más kilómetros se recorran, mas galones de gasolina de consumirán. El número de kilómetros

16

Page 18: Folleto Matematica 1

recorridos es directamente proporcional (D.P) al número de galones de gasolina. Siempre que las demás condiciones se mantuvieran constantes. Esto es, que no se modificaran las condiciones climáticas o geográficas que modificaran el consumo.

Aplicaciones de proporcionalidad

REGLA DE TRES

La regla de tres es una forma de resolver problemas de proporcionalidad entre tres o más valores conocidos y una incógnita. En ella se establece una relación de linealidad (proporcionalidad) entre los valores involucrados.

La regla de tres más conocida es la regla de tres simple directa, si bien resulta muy práctico conocer la regla de tres simple inversa y la regla de tres compuesta, pues son de sencillo manejo y pueden utilizarse para la resolución de problemas cotidianos de manera efectiva.

Regla de tres simple

En la regla de tres simple, se establece la relación de proporcionalidad entre dos valores conocidos A y B, y conociendo un tercer valor X, calculamos un cuarto valor Y,

La relación de proporcionalidad puede ser directa o inversa, será directa cuando a un mayor valor de A habrá un mayor valor de B, y será inversa, cuando se dé que, a un mayor valor de A corresponda un menor valor de B, veamos cada uno de esos casos.

Regla de tres simple directa

17

Page 19: Folleto Matematica 1

La regla de tres simple directa se fundamenta en una relación de proporcionalidad, la regla de tres establece una relación de proporcionalidad, por lo que rápidamente se observa que:

Donde k es la constante de proporcionalidad, para que esta proporcionalidad se cumpla tenemos que a un aumento de A le corresponde un aumento de B en la misma proporción. Que podemos representar:

Y diremos que: A es a B directamente, como X es a Y, siendo Y igual al producto de B por X dividido entre A.

Imaginemos que se nos plantea lo siguiente:

Si necesito 8 litros de pintura para pintar 2 habitaciones, ¿cuántos litros necesito para pintar 5 habitaciones?

Este problema se interpreta de la siguiente manera: la relación es directa, dado que, a mayor número de habitaciones hará falta más pintura, y lo representamos así:

Regla de tres simple inversa

18

Page 20: Folleto Matematica 1

En la regla de tres simple inversa en la relación entre los valores se cumple que:

Donde e es un producto constante, para que esta constante se conserve, tendremos que un aumento de A, necesitara una disminución de B, para que su producto permanezca constante, si representamos la regla de tres simple inversa, tendremos:

Y diremos que: A es a B inversamente, como X es a Y, siendo Y igual al producto de A por B dividido por X.

Si por ejemplo tenemos el problema:

Si 8 trabajadores construyen un muro en 10 horas, ¿cuánto tardarán 5 obreros en levantar el mismo muro?

Si se observa con atención el sentido del enunciado, resulta evidente que cuantos más obreros trabajen, menos horas necesitarán para levantar el mismo muro (suponiendo que todos trabajen al mismo ritmo).

El total de horas de trabajo necesarias para levantar el muro son 80 horas, que pueden ser aportadas por un solo trabajador que emplee 80 horas, 2 trabajadores en 40 horas, etc. En todos los casos el número total de horas permanece constante.

Tenemos por tanto una relación de proporcionalidad inversa, y deberemos aplicar una regla de tres simple inversa, tenemos:

Regla de tres compuesta

En ocasiones el problema planteado involucra más de tres cantidades conocidas, además de la desconocida. Observemos el siguiente ejemplo:

Si 12 trabajadores construyen un muro de 100 metros en 15 horas, ¿cuántos trabajadores se necesitarán para levantar un muro de 75 metros en 26 horas?

En el problema planteado aparecen dos relaciones de proporcionalidad al mismo tiempo. Además, para completar el ejemplo, se ha incluido una relación inversa y otra directa. En efecto, si un muro de 100 metros lo construyen 12 trabajadores, es

19

Page 21: Folleto Matematica 1

evidente que para construir un muro de 75 metros se necesitarán menos trabajadores. Cuanto más pequeño es el muro, menos número de obreros precisamos: se trata de una relación de proporcionalidad directa. Por otro lado, si disponemos de 15 horas para que trabajen 12 obreros, es evidente que disponiendo de 26 horas necesitaremos menos obreros. Al aumentar una cantidad, disminuye la otra: se trata de una relación de proporcionalidad inversa.

El problema se enunciaría así:

100 metros son a 15 horas y 12 trabajadores como 75 metros son a 26 horas e Y trabajadores.

La solución al problema es multiplicar 12 por 75 y por 15, y el resultado dividirlo entre el producto de 100 por 26. Por tanto, 13500 entre 2600 resulta 5,19 (lo que por redondeo resultan ser 6 trabajadores ya que 5 trabajadores no serían suficientes).

Formalmente el problema se plantea así:

La resolución implica plantear cada regla de tres simple por separado. Por un lado, la primera, que, recordemos, es directa, y se resuelve así:

A continuación planteamos la segunda, que, recordemos, es inversa, y se resuelve así:

A continuación unimos ambas operaciones en una sola, teniendo cuidado de no repetir ningún término (es decir, añadiendo el término C una sola vez):

Lo que nos da la solución buscada.

El problema se puede plantear con todos los términos que se quiera, sean todas las relaciones directas, todas inversas o mezcladas, como en el caso anterior. Cada regla ha de plantearse con sumo cuidado, teniendo en cuenta si es inversa o directa, y teniendo en cuenta (esto es muy importante) no repetir ningún término al unir cada una de las relaciones simples.

20

Page 22: Folleto Matematica 1

Para pasar 60 grados a radianes podríamos establecer la siguiente regla de tres:

Ubicamos la incógnita en la primera posición:

Esto formaliza la pregunta "¿Cuántos radianes hay en 60 grados, dado que π radianes son 180 grados?". Así tenemos que:

Donde π es el Número π.

Una técnica útil para recordar cómo encontrar la solución de una regla de tres es la siguiente: X es igual al producto de los términos cruzados (π y 60, en este caso) dividido por el término que está frente a X.

Calcular cuántos minutos hay en 7 horas. Sabemos que hay 60 minutos en 1 hora, por lo que escribimos:

El resultado es:

Geometría

La Geometría (del latín geometría, que proviene del idioma griego γεωμετρία, geo tierra y metria medida), es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano o el espacio, como son: puntos, rectas, planos, politopos (paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.).

Definiciones básicas de geometría

Puntos colineales: son dos puntos que están sobre la misma recta.

Puntos Coplanares: Son puntos que están sobre el mismo plano.

21

Page 23: Folleto Matematica 1

Segmento AB: Parte de la recta AB que contiene los puntos A y B y todos los puntos entre A y B.

Semirrecta AB o rayo AB: Parte de la recta AB que contiene al punto A y todos los puntos de AB del mismo lado de B.

Ángulo: Figura formada por dos semirrectas que tienen el mismo punto inicial.

La intersección de dos figuras es el conjunto de puntos que están en ambas figuras.

Líneas Planos

Rectas Paralelas

Dos rectas son paralelas si son coplanares y no se intersecan.

Rectas Perpendiculares

Dos rectas son perpendiculares si al intersecarse forman un ángulo recto

Triángulos:

Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.

Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 lados y 3 vértices.

22

Page 24: Folleto Matematica 1

Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.

Los puntos principales de una figura geométrica, como los vértices de un polígono, suelen ser designados por letras latinas mayúsculas: A, B, C,...

Un triángulo se nombra entonces como cualquier otro polígono, nombrando sucesivamente sus vértices, por ejemplo ABC. En el caso del triángulo, los vértices pueden darse en cualquier orden, porque cualquiera de las 6 maneras posibles (ABC, ACB, BAC, BCA, CAB, CBA), corresponde a un recorrido de su perímetro. Esto ya no es cierto para polígonos con más vértices.

Los lados del triángulo se denotan, como todos los segmentos, por sus extremos: AB, BC y AC, en nuestro ejemplo.

Para nombrar la longitud de un lado, por lo general se utiliza el nombre del vértice opuesto, convertido a minúscula latina: a para BC, b para AC, c para AB.

La notación general para el ángulo entre dos segmentos OP y OQ que comparten el

extremo O es

También podemos utilizar una letra minúscula, habitualmente griega, coronada por un acento circunflejo (en rigor, los ángulos deben ser designados por letras mayúsculas y su medida por minúsculas, pero a menudo se utilizan los mismos nombres para los dos con el fin de simplificar la notación). En el caso de un triángulo, el ángulo entre dos lados todavía puede, por tolerancia y en ausencia de ambigüedad, ser designado por el nombre del vértice común, coronado por un acento circunflejo. En resumen, en nuestro ejemplo, podemos observar los ángulos:

23

Page 25: Folleto Matematica 1

Triángulos — Resumen de convenciones de designación

Vértice

sA B C

Lados (

como segmento

)

BC AC AB

Lados (

como longitud)

a b c

Ángulo

s

Clasificación de los triángulos

Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos.

Por las longitudes de sus lados

Por las longitudes de sus lados, todo triángulo se clasifica:

24

Page 26: Folleto Matematica 1

como triángulo equilátero, si sus tres lados tienen la misma longitud (los tres

ángulos internos miden 60 grados ó radianes.) como triángulo isósceles (del griego iso, igual, y skelos, piernas; es decir, "con

dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales[1] ), y

como triángulo escaleno ("cojo", en griego), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).

Equilátero Isósceles Escaleno

Por la amplitud de sus ángulos

Por la amplitud de sus ángulos, los triángulos se clasifican en:

(Clasificación por amplitud de sus ángulos)

Triángulos

Rectángulos

Oblicuángulos

Obtusángulos

Acutángulos

Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores son rectos (90°). Por ello, los triángulos obtusángulos y acutángulos son oblicuángulos. Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los otros dos son agudos (menores de 90°).Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°. El triángulo equilátero es un caso particular de triángulo acutángulo.

25

Page 27: Folleto Matematica 1

Rectángulo Obtusángulo Acutángulo

Oblicuángulos

Clasificación según los lados y los ángulos

Los triángulos acutángulos pueden ser:

Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto. Este triángulo es simétrico respecto de su altura.

Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene eje de simetría.

Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales; las tres alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales).

Los triángulos rectángulos pueden ser:

Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por el ángulo recto.

Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son diferentes.

26

Page 28: Folleto Matematica 1

Los triángulos obtusángulos pueden ser:

Triángulo

obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que forman el ángulo obtuso; el otro lado es mayor que estos dos.

Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.

Propiedades de los triángulos

Un cuadrilátero con sus diagonales.

27

Triángulo equilátero isósceles escaleno

acutángulo

rectángulo

obtusángulo

Page 29: Folleto Matematica 1

Un tetraedro.

Un triángulo puede ser definido como un polígono de tres lados, o como un polígono con tres vértices.El triángulo es el polígono más simple y el único que no tiene diagonal. Tres puntos no alineados definen siempre un triángulo (tanto en el plano como en el espacio).

Si se agrega un cuarto punto coplanar y no alineado, se obtiene un cuadrilátero que puede ser dividido en triángulos como el de la figura de la izquierda. En cambio si éste cuarto punto agregado es no coplanar y no alineado, se obtiene un tetraedro que es el Poliedro más simple y está conformado por 4 caras triangulares.

Por otra parte, cada polígono puede ser dividido en un número finito de triángulos, esto se logra por triangulación. El número mínimo de triángulos necesarios para ésta división es n − 2, donde n es el número de lados del polígono. El estudio de los triángulos es fundamental para el estudio de otros polígonos, por ejemplo para la demostración del Teorema de Pick.

La suma de los tres ángulos internos de un triángulo es siempre 180° lo que equivale a π radianes, en geometría euclidiana.[2]

28

Page 30: Folleto Matematica 1

La suma de los ángulos de un triángulo es 180 grados.

Euclides había demostrado este resultado en sus Elementos (proposición I-32) de la siguiente manera: trazamos la paralela a la línea (AB) que pasa por C. Siendo paralelas, esta recta y la recta (AB) forman con la recta (AC) ángulos iguales, codificados en color rojo en la figura de al lado (ángulos alternos-internos). Del mismo modo, los ángulos codificados en color azul son iguales (ángulos correspondientes). Por otro lado, la suma de los tres ángulos del vértice C es el ángulo llano. Así que la suma de las medidas del ángulo de color rojo, del ángulo verde y del azul es un ángulo de 180 ° (o π radianes). La suma de los ángulos de un triángulo es 180 °.

Esta propiedad es el resultado de la geometría euclidiana. No se verifica en general en la geometría no euclidiana.

La suma de las longitudes de dos de sus lados es siempre mayor que la longitud del tercer lado.

El valor de la paralela media de un triángulo (recta que une dos puntos medios de dos lados) es igual a la mitad del lado paralelo.

Para cualquier triángulo se verifica el Teorema del seno que establece: «Los lados de un triángulo son proporcionales a los senos de los ángulos opuestos»:

El teorema de Pitágoras gráficamente.

Para cualquier triángulo se verifica el Teorema del coseno que demuestra que «El cuadrado de un lado es igual a la suma de los cuadrados de los otros lados menos el doble del producto de estos lados por el coseno del ángulo comprendido»:

29

Page 31: Folleto Matematica 1

Para cualquier triángulo rectángulo, cuyos catetos miden a y b, y cuya hipotenusa mida c, se verifica el Teorema de Pitágoras:

(1)

De la ecuación anterior se deducen fácilmente 3 fórmulas de aplicación práctica:

Pitágoras ( c²=a²+b² ) – Fórmulas prácticas

Cálculo de los lados y los ángulos de un triángulo

En general, hay varios métodos aceptados para calcular la longitud de un lado y la medida de un ángulo. Mientras que ciertos métodos pueden ser adecuados para calcular los valores de un triángulo rectángulo, otros pueden ser requeridos en situaciones más complejas.

Para resolver triángulos (en general) se suele utilizar los teoremas del seno y del coseno, para el caso especial de triángulos rectángulos se utiliza generalmente el Teorema de Pitágoras.

Razones trigonométricas en triángulos rectángulos

Un triángulo rectángulo siempre incluye un ángulo de 90° (π/2 radianes), aquí etiquetado C. Los ángulos A y B pueden variar. Las funciones trigonométricas especifican las relaciones entre las longitudes de los lados y los ángulos interiores de un triángulo rectángulo.

30

Page 32: Folleto Matematica 1

En triángulos rectángulos, las razones trigonométricas del seno, el coseno y la tangente pueden ser usadas para encontrar los ángulos y las longitudes de lados desconocidos. Los lados del triángulo son encontrados como sigue:

La hipotenusa es el lado opuesto al ángulo recto, o definida como el lado más largo de un triángulo rectángulo, en este caso c.

El cateto opuesto es el lado opuesto al ángulo en que estamos interesados, en este caso a.

El cateto adyacente es el lado que está en contacto con el ángulo en que estamos interesados y el de ángulo recto, por lo tanto su nombre. En este caso el cateto adyacente es b.

Seno, coseno y tangente

El seno de un ángulo es el cociente entre la longitud del cateto opuesto con la longitud de la hipotenusa. En nuestro caso

El coseno de un ángulo es el cociente entre la longitud del cateto del lado adyacente y la longitud de la hipotenusa. En nuestro caso

La tangente de un ángulo es el cociente entre la longitud del cateto opuesto y la longitud del cateto adyacente. En nuestro caso

Observe que este cociente de las tres relaciones anteriores no depende del tamaño del triángulo rectángulo, mientras contenga el ángulo A, puesto que todos esos triángulos son semejantes.

Las siglas "SOH-CAH-TOA" son un mnemónico útil para estos cocientes.

Funciones inversas

Las funciones trigonométricas inversas pueden ser usadas para calcular los ángulos internos de un triángulo rectángulo al tener la longitud de dos lados cualesquiera.

Arcsin (arcoseno) puede ser usado para calcular un ángulo con la longitud del cateto opuesto y la de la hipotenusa.

31

Page 33: Folleto Matematica 1

Arccos (arcocoseno) puede ser usado para calcular un ángulo con la longitud del cateto adyacente y la de la hipotenusa.

Arctan (arcotangente) puede ser usada para calcular un ángulo con la longitud del cateto opuesto y la del cateto adyacente.

En los cursos introductorios de geometría y trigonometría, la notación sin−1, cos−1, etc., es frecuentemente usada en lugar de arcsin, arccos, etc. Sin embargo, la notación de arcsin, arccos, etc., es estándar en matemáticas superiores donde las funciones trigonométricas son comúnmente elevadas a potencias, pues esto evita la confusión entre el inverso multiplicativo y el inverso compositivo.

Cuadrilátero

Un cuadrilátero es un polígono que tiene cuatro lados. Los cuadriláteros pueden tener distintas formas, pero todos ellos tienen cuatro vértices y dos diagonales.

32

Page 34: Folleto Matematica 1

Elementos de un cuadrilátero

Los elementos de un cuadrilátero son los siguientes:

4 vértices: los puntos de intersección de los lados que conforman el cuadrilátero;

4 lados: los segmentos limitados por dos vértices contiguos; 2 diagonales: los segmentos cuyos extremos son dos vértices no contiguos; 4 ángulos interiores: conformados por dos lados y un vértice común; 4 ángulos exteriores: conformados por un lado, un vértice y la prolongación del

lado adyacente.

Clasificación de los cuadriláteros

Los cuadriláteros se clasifican en:

1. Paralelogramos (sus lados enfrentados son paralelos) 1. Rectángulos

1. Cuadrado2. Rectángulo

2. Oblicuángulos 1. Rombo2. Romboide

2. Trapecios (dos de sus lados son paralelos y los otros dos no) 1. Trapecio rectángulo2. Trapecio isósceles3. Trapecio escaleno

3. Trapezoide (no tiene lados paralelos) 1. Trapezoide simétrico o deltoides2. Trapezoide asimétrico

33

Page 35: Folleto Matematica 1

Circunferencia

Definición: Una circunferencia es el conjunto de todos los puntos de un plano que equidistan de otro punto fijo y coplanar llamado centro.

A la distancia entre cualquiera de sus puntos y el centro se le denomina radio. El segmento de recta formado por dos radios alineados se llama diámetro. Es la mayor distancia posible entre dos puntos que pertenezcan a la circunferencia. La longitud del diámetro es el doble de la longitud del radio. La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.

Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono de infinitos lados, cuya apotema coincide con su radio.

La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.

Es una curva plana con infinitos ejes de simetría y sus aplicaciones son muy numerosas.

34

Page 36: Folleto Matematica 1

Elementos de la circunferencia

Secantes, cuerdas y tangentes.

La mediatriz de una cuerda pasa por el centro de la circunferencia.

Existen varios puntos, rectas y segmentos, singulares en la circunferencia:

Centro, el punto interior equidistante de todos los puntos de la circunferencia;

Radio, el segmento que une el centro con un punto cualquiera de la circunferencia;

Diámetro, el mayor segmento que une dos puntos de la circunferencia (necesariamente pasa por el centro);

Cuerda, el segmento que une dos puntos de la circunferencia; (las cuerdas de longitud máxima son los diámetros)

Recta secante, la que corta a la circunferencia en dos puntos;

Recta tangente, la que toca a la circunferencia en un sólo punto;

Punto de tangencia, el de contacto de la recta tangente con la circunferencia;

Arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia;

Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro.

Dos circunferencias

35

Page 37: Folleto Matematica 1

Dos circunferencias, en función de sus posiciones relativas, se denominan:

Exteriores, si no tienen puntos comunes y la distancia que hay entre sus centros es mayor que la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 1)

Tangentes exteriormente, si tienen un punto común y todos los demás puntos de una son exteriores a la otra. La distancia que hay entre sus centros es igual a la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 2)

Secantes, si se cortan en dos puntos distintos y la distancia entre sus centros es menor a la suma de sus radios. No importa que tengan igual o distinto radio. Dos circunferencias distintas no pueden cortarse en más de dos puntos. Dos circunferencias son secantes ortogonalmente si el ángulo entre sus tangentes en los dos puntos de contacto es recto. (Figura 3)

Tangentes interiormente, si tienen un punto común y todos los demás puntos de una de ellas son interiores a la otra exclusivamente. La distancia que hay entre sus centros es igual al valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra. (Figura 4)

Interiores excéntricas, si no tienen ningún punto común y la distancia entre sus centros es mayor que 0 y menor que el valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra.

Interiores concéntricas, si tienen el mismo centro (la distancia entre sus centros es 0) y distinto radio. Forman una figura conocida como corona circular o anillo. Una de ellas tiene que tener mayor radio que la otra. (Figura 5)

Coincidentes, si tienen el mismo centro y el mismo radio. Si dos circunferencias tienen más de dos puntos comunes, necesariamente son circunferencias coincidentes.

Ángulos en una circunferencia

Ángulos en la circunferencia.

36

Page 38: Folleto Matematica 1

Arco capaz: los cuatro ángulos inscritos determinan el mismo arco y por tanto son iguales.

Un ángulo, respecto de una circunferencia, puede ser:

Ángulo central, si tiene su vértice en el centro de ésta. Sus lados contienen a dos radios.

La amplitud de un ángulo central es igual a la del arco que abarca.

Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas.

La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior que limita dicha base.

Ángulo semi-inscrito, si su vértice es un punto de la circunferencia y sus lados contienen una cuerda y una recta tangente a la circunferencia. El vértice es el punto de tangencia.

La amplitud de un ángulo semi-inscrito es la mitad de la del arco que abarca.

Ángulo interior, si su vértice está en el interior de la circunferencia.

La amplitud de un ángulo interior es la mitad de la suma de dos medidas: la del arco que abarcan sus lados más la del arco que abarcan sus prolongaciones.

Ángulo exterior, si tiene su vértice en el exterior de la circunferencia

Longitud de la circunferencia

La longitud de una circunferencia es:

Donde es la longitud del radio.

Pues (número pi), por definición, es el cociente entre la longitud de la circunferencia y el diámetro:

Diámetro Perímetro y área de una circunferencia

37

Page 39: Folleto Matematica 1

Diámetro: El diámetro es la medida una orilla a otra de la circunferencia pasando por el centro. Para calcular el diámetro utilizaremos la siguiente fórmula:

d= 2R (diámetro es igual a dos veces el radio)

Perímetro: Es la medida del contorno de la circunferencia. Para calcularlo utilizaremos la siguiente fórmula:

p= d*R

Área: El área es la medida de la extensión comprendida en una figura de dos dimensiones. Utilizaremos las siguientes fórmulas para calcularla:

A=π r2 A= P∗R2

Volumen: El volumen de un cuerpo es el número de unidades cubicas que lo componen

Vamos a aprender a calcular el volumen de los cubos y para ello vamos a utilizar una formula muy fácil. V=L*L*L

Ejemplo:

38

L L

L

7.7 CM.

9.9 CM.

6 CM.

Page 40: Folleto Matematica 1

V=L*L*L

V=6*7.7*9.9

V=457.38 CM³

ESTADISTICA

La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilado a partir de otros datos numéricos.

Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.

"La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares". (Gini, 1953.

Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee.

Población:

El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.

"Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996).

"Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).

Ejemplo:

Los miembros del Colegio de Ingenieros del Estado Cojedes.

El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita. Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos. Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de estudiante del Núcleo San Carlos de la Universidad Nacional Experimental Simón Rodríguez.

39

Page 41: Folleto Matematica 1

Cuando la población es muy grande, es obvio que la observación de todos los elementos se dificulte en cuanto al trabajo, tiempo y costos necesario para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.

Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra.

Muestra:

"Se llama muestra a una parte de la población a estudiar que sirve para representarla". Murria R. Spiegel (1991).

"Una muestra es una colección de algunos elementos de la población, pero no de todos". Levin & Rubin (1996).

"Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia", Cadenas (1974).

Ejemplo;

El estudio realizado a 50 miembros del Colegio de Ingenieros del Estado Cojedes.

El estudio de muestras es más sencillo que el estudio de la población completa; cuesta menos y lleva menos tiempo. Por último se aprobado que el examen de una población entera todavía permite la aceptación de elementos defectuosos, por tanto, en algunos casos, el muestreo puede elevar el nivel de calidad.

Una muestra representativa contiene las características relevantes de la población en las mismas proporciones que están incluidas en tal población.

Los expertos en estadística recogen datos de una muestra. Utilizan esta información para hacer referencias sobre la población que está representada por la muestra. En consecuencia muestra y población son conceptos relativos. Una población es un todo y una muestra es una fracción o segmento de ese todo.

Muestreo:

Esto no es más que el procedimiento empleado para obtener una o más muestras de una población; el muestreo es una técnica que sirve para obtener una o más muestras de población.

Este se realiza una vez que se ha establecido un marco muestral representativo de la población, se procede a la selección de los elementos de la muestra aunque hay muchos diseños de la muestra.

40

Page 42: Folleto Matematica 1

Al tomar varias muestras de una población, las estadísticas que calculamos para cada muestra no necesariamente serían iguales, y lo más probable es que variaran de una muestra a otra.

Ejemplo;

Consideremos como una población a los estudiantes de educación del Núcleo San Carlos de la UNESR, determinando por lo menos dos caracteres ser estudiados en dicha población;

Religión de los estudiantes Sexo.

Tipos de muestreo

Existen dos métodos para seleccionar muestras de poblaciones; el muestreo no aleatorio o de juicio y el muestreo aleatorio o de probabilidad. En este último todos los elementos de la población tienen la oportunidad de ser escogidos en la muestra. Una muestra seleccionada por muestreo de juicio se basa en la experiencia de alguien con la población. Algunas veces una muestra de juicio se usa como guía o muestra tentativa para decidir como tomar una muestra aleatoria más adelante. Las muestras de juicio evitan el análisis estadístico necesarios para hacer muestras de probabilidad.

Variables y Atributos:

Las variables, también suelen ser llamados caracteres cuantitativos, son aquellos que pueden ser expresados mediante números. Son caracteres susceptibles de medición. Como por ejemplo, la estatura, el peso, el salario, la edad, etc.

Según, Murray R. Spiegel, (1992) "una variable es un símbolo, tal como X, Y, Hx, que puede tomar un valor cualquiera de un conjunto determinado de ellos, llamado dominio de la variable. Si la variable puede tomar solamente un valor, se llama constante."

Todos los elementos de la población poseen los mismos tipos de caracteres, pero como estos en general no suelen representarse con la misma intensidad, es obvio que las variables toman distintos valores. Por lo tanto estos distintos números o medidas que toman los caracteres son los "valores de la variable". Todos ellos juntos constituyen una variable.

Los atributos también llamados caracteres cualitativos, son aquellos que no son susceptibles de medición, es decir que no se pueden expresar mediante un número.

IUTIN (1997). "Reciben el nombre de variables cualitativas o atributos, aquellas características que pueden presentarse en individuos que constituyen un conjunto.

La forma de expresar los atributos es mediante palabras, por ejemplo; profesión, estado civil, sexo, nacionalidad, etc. Puede notar que los atributos no se presentan en la misma forma en todos los elementos. Estas distintas formas en que se presentan los atributos reciben el nombre de "modalidades".

Ejemplo;

El estado civil de cada uno de los estudiantes del curso de estadísticas I, no se presenta en la misma modalidad en todos.

41

Page 43: Folleto Matematica 1

Formas de Observar la Población:

1. Atendiendo a la fuente se clasifican en directa o indirecta.

Censo:

Se entiende por censo aquella numeración que se efectúa a todos y cada uno de los caracteres componentes de una población.

Para Levin & Rubin (1996) "Algunas veces es posible y práctico examinar a cada persona o elemento de la población que deseamos describir. A esto lo llamamos una numeración completa o censo. Utilizamos el muestre cuando no es posible contar o medir todos los elementos de la población.

Si es posible listar (o enumerar) y observar cada elemento de la población, los censos se utilizan rara vez porque a menudo su compilación es bastante difícil, consume mucho tiempo por lo que resulta demasiado costoso.

Encuesta:

Se entiende por encuesta las observaciones realizadas por muestreo, es decir son observaciones parciales.

El diseño de encuestas es exclusivo de las ciencias sociales y parte de la premisa de que si queremos conocer algo sobre el comportamiento de las personas, lo mejor, más directo y simple es preguntárselo directamente a ellas. (Cadenas, 1974).

Según Antonio Napolitano "La encuesta, es un método mediante el cual se quiere averiguar. Se efectúa a través de cuestionarios verbales o escritos que son aplicados a un gran número de personas".

Estadística Descriptiva:

Tienen por objeto fundamental describir y analizar las características de un conjunto de datos, obteniéndose de esa manera conclusiones sobre las características de dicho conjunto y sobre las relaciones existentes con otras poblaciones, a fin de compararlas. No obstante puede no solo referirse a la observación de todos los elementos de una población (observación exhaustiva) sino también a la descripción de los elementos de una muestra (observación parcial).

Pre-Algebra

Lenguaje Algebraico

El lenguaje que usamos en operaciones aritméticas en las que sólo intervienen números se llama lenguaje numérico.

42

Page 44: Folleto Matematica 1

En ocasiones empleamos letras para representar cualquier número desconocido, realizamos operaciones aritméticas con ellas e, incluso, las incluimos en expresiones matemáticas para poder calcular su valor numérico.

El lenguaje que utiliza letras en combinación con números y signos, y, además, las trata como números en operaciones y propiedades, se llama lenguaje algebraico.

La parte de las Matemáticas que estudia la relación entre números, letras y signos se llama Álgebra.

Características del lenguaje algebraico

1.- El lenguaje algebraico es más preciso que el lenguaje numérico: podemos expresar enunciados de una forma más breve.

El conjunto de los múltiplos de 5 es 5 • = {±5, ±10, ±15,...}.

En lenguaje algebraico se expresa 5 • n, con n un número entero.

2.- El lenguaje algebraico permite expresar relaciones y propiedades numéricas de carácter general.

La propiedad conmutativa del producto se expresa a • b = b • a, donde a y b son dos números cualesquiera.

3.- Con el lenguaje algebraico expresamos números desconocidos y realizamos operaciones aritméticas con ellos.

El doble de un número es seis se expresa 2 • x = 6.

Expresiones algebraicas

Una expresión algebraica es un conjunto de números y letras que se combinan con los signos de las operaciones aritméticas. Una expresión algebraica se define como aquella que está constituida por coeficientes, exponentes y bases.

Coeficiente numérico: es la cantidad numérica o letra que se encuentra a la izquierda de la base, la cual indica la cantidad de veces que la base se debe sumar o restar dependiendo del signo que tenga.

Ejemplos:

7x4 = x4 + x4 + x4 + x4 + x4 + x4 + x4

– 3x2 = – x2 – x2 – x2

43

Page 45: Folleto Matematica 1

Exponente numérico: es la cantidad que se encuentra arriba a la derecha de la base, la cual indica la cantidad de veces que la base se toma como producto.

Ejemplos:

5x3 = 5 (x) (x) (x)

8(– x + 5)2 = 8(– x + 5) (– x + 5)

Valor numérico de una expresión algebraica

El valor numérico de una expresión algebraica es el número que resulta de sustituir las letras por números y realizar a continuación las operaciones que se indican.

Una cantidad desconocida se puede representar con alguna letra llamada variable.

A modo de ejemplos, ofrecemos un listado de frases con un contenido matemático traducidas a una expresión algebraica:

Frase Expresión algebraica

La suma de 2 y un número 2 + d (la "d" representa la cantidad desconocida)

3 más que un número x + 3

La diferencia entre un número y 5 a - 5

4 menos que n 4 - n

Un número aumentado en 1 k + 1

Un número disminuido en 10 z - 10

El producto de dos números a • b

Dos veces la suma de dos números 2 ( a + b)

Dos veces un número sumado a otro

2a + b

Cinco veces un número 5x

Ene veces (desconocida) un número conocido

n multiplicado por el número conocido

El cociente de dos números a b

La suma de dos números x + y

10 más que n n + 10

Un número aumentado en 3 a + 3

Un número disminuido en 2 a – 2

El producto de p y q p • q

Uno restado a un número n – 1

El antecesor de un número cualquiera

x – 1

El sucesor de un número cualquiera x + 1

44

Page 46: Folleto Matematica 1

3 veces la diferencia de dos números

3(a – b)

10 más que 3 veces un número 10 + 3b

La diferencia de dos números a – b

La suma de 24 y 19 24 + 19 = 43

19 más que 33 33 + 19 = 52

Dos veces la diferencia de 9 y 4 2(9 – 4) = 18 – 8 = 10

El producto de 6 y 16 6 • 16 = 96

3 veces la diferencia de 27 y 21 3(27 – 21) = 81 – 63 = 18

La diferencia de 9 al cuadrado y 4 al cuadrado

92 – 42 = 81 – 16 = 65

El cociente de 3 al cubo y 9 33 / 9 = 27 / 9 = 3

12 al cuadrado dividido por el producto de 8 y 12

122 ÷ (8 • 12) = 144 ÷ 96 = 1,5

Reducción de términos Semejantes

En una expresión algebraica se llaman términos semejantes a todos aquellos términos que tienen igual factor literal, es decir, a aquellos términos que tienen iguales letras (símbolos literales) e iguales exponentes.

Por ejemplo:

6 a2b3 es término semejante con – 2 a2b3 porque ambos tienen el mismo factor literal (a2b3)

1/3 x5yz es término semejante con x5yz porque ambos tienen el mismo factor literal (x5yz)

0,3 a2c no es término semejante con 4 ac2 porque los exponentes no son iguales, están al revés.

Reducir términos semejantes significa sumar o restar los coeficientes numéricos en una expresión algebraica, que tengan el mismo factor literal.

Para desarrollar un ejercicio de este tipo, se suman o restan los coeficientes numéricos y se conserva el factor literal.

Recordando cómo se suman los números enteros:

Las reglas de suma se aplican únicamente a dos casos: números de igual signo y números con signo distinto.

Las reglas a memorizar son las siguientes:

a) Números de igual signo: Cuando dos números tienen igual signo se debe sumar y conservar el signo.

Ej. : – 3 + – 8 = – 11 (sumo y conservo el signo)

45

Page 47: Folleto Matematica 1

12 + 25 = 37 (sumo y conservo el signo)

Ej. : – 7 + 12 = 5 (tener 12 es lo mismo que tener +12, por lo tanto, los números son de distinto signo y se deben restar: 12 - 7 = 5

b) Números con distinto signo: Cuando dos números tienen distinto signo se debe restar y conservar el signo del número que tiene mayor valor absoluto

5 + – 51 = – 46 (es negativo porque el 51 tiene mayor valor absoluto)

– 14 + 34 = 20

Recordando cómo se resta:

Para restar dos números o más, es necesario realizar dos cambios de signo porque de esta manera la resta se transforma en suma y se aplican las reglas mencionadas anteriormente.

Son dos los cambios de signo que deben hacerse:

a) Cambiar el signo de la resta en suma

b) Cambiar el signo del número que está a la derecha del signo de operación por su signo contrario

Ej.: – 3 – 10 = – 3 + – 10 = – 13 (signos iguales se suma y conserva el signo)

19 – 16 = 19 + – 16 = 19 – 16 = 3

Ejemplo 1:

xy3 – 3 x2y + 5 xy3 – 12 x2y + 6 Hay dos tipos de factores literales: xy3 y x2y

Hay también una constante numérica: 6

Para resolver este ejercicio se suman los coeficientes numéricos de xy3 con 5xy3 y –3 x2y con –12 x2y.

Hay que tener presente que cuando una expresión no tiene un coeficiente, es decir, un número significa que es 1 (x3y = 1 xy3).

xy3 – 3 x2y + 5 xy3 – 12 x2y + 6 = 6 xy3 + – 15 x2y + 6

1 + 5 = 6

– 3 – 12 = – 15

Ejemplo 2:

3ab – 5abc + 8ab + 6abc –10 + 14ab – 20 = 25ab + 1abc – 30

Operaciones:

3 + 8 +14 = 25 ab

– 5 + 6 = + 1 abc

– 10 – 20 = – 30

Ecuaciones lineales o de primer grado

46

Page 48: Folleto Matematica 1

Una ecuación es una igualdad donde por lo menos hay un número desconocido, llamado incógnita o variable, y que se cumple para determinado valor numérico de dicha incógnita.

Se denominan ecuaciones lineales o de primer grado a las igualdades algebraicas con incógnitas cuyo exponente es 1 (elevadas a uno, que no se escribe).

Como procedimiento general para resolver ecuaciones enteras de primer grado se deben seguir los siguientes pasos:

1. Se reducen los términos semejantes, cuando es posible.

2. Se hace la transposición de términos (aplicando inverso aditivo o multiplicativo), los que contengan la incógnita se ubican en el miembro izquierdo, y los que carezcan de ella en el derecho.

3. Se reducen términos semejantes, hasta donde es posible.

4. Se despeja la incógnita, dividiendo ambos miembros de la ecuación por el coeficiente de la incógnita (inverso multiplicativo), y se simplifica.

Resolución de ecuaciones de primer grado con una incógnita

Para resolver ecuaciones de primer grado con una incógnita, aplicamos el criterio del operador inverso (inverso aditivo o inverso multiplicativo), como veremos en el siguiente ejemplo:

Resolver la ecuación 2x – 3 = 53

Debemos tener las letras a un lado y los números al otro lado de la igualdad (=), entonces para llevar el –3 al otro lado de la igualdad, le aplicamos el inverso aditivo (el inverso aditivo de –3 es +3, porque la operación inversa de la resta es la suma).

Entonces hacemos:

2x – 3 + 3 = 53 + 3

En el primer miembro –3 se elimina con +3 y tendremos:

2x = 53 + 3

2x = 56

Ahora tenemos el número 2 que está multiplicando a la variable o incógnita x, entonces lo pasaremos al otro lado de la igualdad dividiendo. Para hacerlo, aplicamos el inverso multiplicativo de 2 (que es ½) a ambos lados de la ecuación:

2x • ½ = 56 • ½

Simplificamos y tendremos ahora:

x = 56 / 2

x = 28

47

Page 49: Folleto Matematica 1

Entonces el valor de la incógnita o variable "x" es 28.

Resolvamos otros ejemplos:

Llevamos los términos semejantes a un lado de la igualdad y los términos independientes al otro lado

de la igualdad (hemos aplicado operaciones inversas donde era necesario).

Resolvemos las operaciones indicadas anteriormente.

Aplicamos operaciones inversas, y simplificamos.

(pasamos todos los términos con “x” a la izquierda, cambiado el signo 8x pasa como – 8x)

(redujimos los términos semejantes en el primer miembro: 5x – 8x = – 3x)

(dividimos ambos términos por – 3 para despejar la “x”)

(– 15 dividido – 3 es igual a 5. Número negativo dividido por un número negativo, el resultado es positivo)

(pasamos a la derecha los términos conocidos, en este caso sólo +1 que pasa como – 1)

(reducción de términos semejantes: 2 – 1 = 1)

(Dividimos ambos términos por 4 para que, al simplificar 4/4 quede la x sola).Esto es lo mismo que tener 4x = 1 y simplemente

pasar a la derecha como divisor el 4 que en la izquierda está multiplicando.

48

Page 50: Folleto Matematica 1

(Léase, menos un tercio). La fracción es negativa pues se divide un positivo, el 1, con un negativo, el – 3.

Resolución de ecuaciones con agrupaciones de signos

Para resolver este tipo de ecuaciones primero debemos suprimir los signos de agrupación considerando la ley de signos, y en caso de existir varias agrupaciones, desarrollamos de adentro hacia afuera las operaciones.

Veamos el siguiente ejemplo:

49

Page 51: Folleto Matematica 1

Primero quitamos los paréntesis.

Reducimos términos semejantes.

Ahora quitamos los corchetes.

Transponemos los términos, empleando el criterio de operaciones

inversas.

Nuevamente reducimos términos semejantes

Despejamos x pasando a dividir a – 2, luego simplificamos.

Advertencia

Para suprimir los signos de agrupación debemos tener en cuenta que:

a) Si tenemos un signo + antes de un signo de agrupación no afecta en nada a lo que esté dentro de este signo. Por ejemplo: + (3x – 5) = 3x – 5

b) Si por el contrario, tenemos un signo – antes del signo de agrupación, este signo afectará a todo lo que esté dentro del signo. Todos los términos dentro del signo de agrupación cambiarán de signo. Por ejemplo: – (3x – 5) = – 3x + 5

Resolución de ecuaciones con productos incluidos

Para resolver este tipo de ecuaciones, primero se efectúan los productos incluidos y luego se sigue el procedimiento general (aplicando el criterio de las operaciones inversas).

Observemos un ejemplo:

50

Page 52: Folleto Matematica 1

Resolvemos el producto indicado, y adicionalmente eliminamos los paréntesis.

Llevamos los términos semejantes a un lado de la igualdad, y los términos

independientes al otro lado (empleamos operaciones inversas.)

Reducimos términos semejantes en ambos lados de la igualdad.

Despejamos x pasando 3 a dividir.

Resolución de problemas mediante ecuaciones

Para resolver un problema, debemos plantearlo en forma matemática y luego realizar las operaciones correspondientes para hallar el valor de la incógnita (el dato que deseamos conocer).

Veamos un problema característico:

Pedro es 3 años menor que Álvaro, pero es 7 años mayor que María. Si la suma de las edades de los tres es 38, ¿qué edad tiene cada uno?

Digamos que las edades de los tres son:

X edad de Pedroy edad de Álvaroz edad de María

Sabemos que la edad de Álvaro es igual a la edad de Pedro más 3 años (Pedro es tres años menor que Álvaro):

y = x + 3

51

Page 53: Folleto Matematica 1

También sabemos que la edad de María es igual a la edad de Pedro menos 7 años (Pedro es 7 años mayor que María):

z = x – 7

Ahora tenemos que:

Edad de Pedro: x

Edad de Álvaro: x +3

Edad de María: x – 7

La suma de las tres edades es 38:

x + x +3 + x – 7 = 38

Resolviendo está última ecuación tendremos:

x = 14 (esta es la edad de Pedro)

Finalmente:

Edad de Pedro: x = 14 años

Edad de Álvaro: x + 3 = 17 años

Edad de María: x – 7 = 7 años

52

Page 54: Folleto Matematica 1

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_____________________________________________

53

Anotaciones

Page 55: Folleto Matematica 1

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_____________________________________________

54

Anotaciones

Page 56: Folleto Matematica 1

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_____________________________________________

55

Anotaciones