fourier series - kocwcontents.kocw.net/kocw/document/2011/korea/koyoungchai/... · 2016. 9. 9. ·...

15
Fourier Series KEEE343 Communication Theory Lecture #4, March 15, 2011 Prof.Young-Chai Ko [email protected] 2011년 3월 15일 화요일

Upload: others

Post on 05-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Fourier SeriesKEEE343 Communication Theory

    Lecture #4, March 15, 2011Prof. Young-Chai [email protected]

    2011년 3월 15일 화요일

    mailto:[email protected]:[email protected]

  • Review

    ·System classification·Continuous-time, linear, time-invariant systems

    ·Convolution of two continuous-time signals

    ·Impulse response to the Linear Time-Invariant (LTI) Systems

    y(t) = x(t) ∗ h(t) =� ∞

    −∞x(τ)h(t− τ) dτ

    LTISystem

    δ(t) h(t)

    x(t) y(t) = x(t) ∗ h(t)

    2011년 3월 15일 화요일

  • Summary

    ·Properties of the Convolution Integral·Fourier series·Periodic signal

    ·Complex exponential Fourier Series

    ·Trigonometric Fourier Series

    2011년 3월 15일 화요일

  • Properties of the Convolution Integral

    ·Associativity

    ·Commutativity

    ·Distributive with respect to addition

    ·Convolution with the unit impulse

    ·Convolution with the shifted unit impulse

    ·Derivative property

    x(t) ∗ (v(t) ∗ w(t)) = (x(t) ∗ v(t)) ∗ w(t)

    x(t) ∗ v(t) = v(t) ∗ x(t)

    x(t) ∗ (v(t) + w(t)) = x(t) ∗ v(t) + x(t) ∗ w(t)

    x(t) ∗ δ(t) = x(t)

    x(t) ∗ δ(t− t0) = x(t− t0)

    d

    dt[x(t) ∗ v(t)] = dx(t)

    dt∗ v(t) d

    2

    dt2[x(t) ∗ v(t)] = dx(t)

    dt∗ dv(t)

    dt

    2011년 3월 15일 화요일

  • Example: Convolution Integral

    ·Suppose that , where is the rectangular pulse.

    ·Find the convolution integral:

    x(t) = h(t) = p(t) p(t)

    p( t )

    0 T t

    y(t) =

    � ∞

    −∞x(τ)h(t− τ) dτ

    2011년 3월 15일 화요일

  • • There are four cases to be considered:

    • Case 1:

    • Case 2:

    t ≤ 0

    0 T t

    t-T t

    ⇒ y(t) = 0

    0 ≤ t ≤ T

    0 T t t - T t

    y(t) =

    � t

    0dτ = t

    2011년 3월 15일 화요일

  • • Case 3:

    • Case 4:

    0 ≤ t− T ≤ T → T ≤ t ≤ 2T

    0 T t

    t - T t

    y(t) =

    � T

    t−Tdτ = T − (t− T ) = 2T − t

    T ≤ t− T −→ 2T ≤ t

    0 T t

    t - T t

    y(t) = 0

    2011년 3월 15일 화요일

  • y(t) = x(t) ∗ h(t)

    0 T t

    2T

    2011년 3월 15일 화요일

  • Fourier Series

    ·Motivation·Representation of continuous-time, periodic signals in the frequency domain.

    ·Periodic signals occur frequently in the communication signals.

    ·Outline·Biography of J. Fourier

    ·Fourier series of periodic functions

    ·Examples of Fourier series

    ·Fourier transforms of periodic functions - relations to Fourier series

    2011년 3월 15일 화요일

  • J. Fourier

    ·Joseph Fourier

    • was born in Auxerre, France on March 21, 1768 and died in Paris on May 4, 1830.

    • was a French mathematician and physicist best known for initiating the investigation of Fourier series and their applications to problems to heat transfer and vibration.

    • The Fourier transform and Fourier’s Law are also named in his honor.

    • Fourier is also generally credited with the discovery of the greenhouse effect.

    • Detailed biography can be found at http://en.wikipedia.org/wiki/Joseph_Fourier.

    2011년 3월 15일 화요일

    http://en.wikipediahttp://en.wikipediahttp://en.wikipediahttp://en.wikipedia

  • Periodic Signals

    ·Periodic signals if

    ·Fundamental period of is the smallest positive value of

    ·Fundamental frequency

    ·Two basic examples of periodic signals·Real sinusoidal signal

    ·Imaginary exponential signal

    x(t+ T ) = x(t), for all t

    T0 x(t) T

    f0 =1

    T0

    x(t) = cos(ω0t+ φ)

    x(t) = ejω0t

    where is called the fundamental angular frequency.ω0 = 2π/T0 = 2πf0

    2011년 3월 15일 화요일

  • Fourier’s Insight

    ·Fourier’s insight was that (under certain circumstances), one can write a series expansion for a - periodic function in terms of sines and cosines.

    ·Then it was proved that any periodic signal can be converged to the sum of orthogonal sines and cosines (or exponential) functions.

    2011년 3월 15일 화요일

  • Complex Exponential Fourier Series

    ·Periodic time function· is a periodic time function with

    ·Such a periodic function can be expanded in an infinite series of exponential time functions called the Fourier series.

    x(t) T

    x(t)

    T 0 t

    x(t) =∞�

    k=−∞cke

    jkω0t =∞�

    k=−∞cke

    j2πkt/T0

    2011년 3월 15일 화요일

  • Coefficients of Complex Exponential Fourier Series

    ·Exponential Fourier series representation

    ·Note: are known as complex Fourier coefficients and are given as

    ·where denotes the integral over any one period of and 0 to or to are commonly used.

    ·Setting k=0, we have

    ck

    ck =1

    T0

    T0

    x(t)e−jkω0t dt

    x(t)�

    T0 T0−T0/2 +T0/2

    x(t) =∞�

    k=−∞cke

    jkω0t =∞�

    k=−∞cke

    j2πkt/T0

    c0 =1

    T0

    T0

    x(t) dt

    2011년 3월 15일 화요일

  • • equals the average value of over a period.

    • When is real, then it follows

    • Therefore,

    c0 x(t)

    x(t)c−k = c

    ∗k

    |c−k| = |c∗k|

    2011년 3월 15일 화요일