gas chromatography- mass spectrometry dr erica zarate auckland science analytical services - mass...

20
Gas Chromatography-Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Upload: vernon-flowers

Post on 22-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Gas Chromatography-Mass Spectrometry

Dr Erica ZarateAuckland Science Analytical Services - Mass Spectrometry

12 June 2015

Page 2: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Gas chromatography -Mass Spectrometry

• Robust• More reproducible than LC-MS• Can be fully automated

– high throughput• Cheaper than other mass spec

techniques – $22 per sample if you do

prep and analysis (we provide training)

– $42/sample if we do it for you

– Full pricing on iLabImage: Gerstel

Page 3: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

GC-MS available

Agilent

Thermo

Page 4: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

• Samples are carried in a gas, not a liquid– Helium, hydrogen, nitrogen, argon, or a combination of these

• Compounds are carried and separated in a column– Typically capillary and 30– 100m for metabolomics work

• Separation is achieved by:– column heating

– sample interaction with the stationery phase inside the column

– Many different columns for different applications

How it works

~ 1 hour per

sample

Page 5: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Elution and Ionisation

• Compounds arrive separated at the end of the column• They are ionised by electron bombardment and fragment• Fragments are conveyed to detector electromagnetically• The detector amplifies the fragment signal

Page 6: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Fragmentation pattern

Chromatogram

Spectrum

Identification

Sample

Library

Page 7: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Sample Introduction

• Samples must be injected VOLATILE– They might already be volatile (eg: essential oils)

– If not, they can be made volatile (extraction into volatile solvent, derivatisation, pyrolysis).

Page 8: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

• Humans: Plasma, Serum, Urine, Saliva, Sweat, Mucus, Lymph, Milk, Hair, Faeces, Tissue, Amniotic fluid

Extraction

• Marine animals: sea urchins, sea cucumbers, corals, mussels

Anything you can think of we can probably develop an extraction method for.

• Sample size limitations:− 300uL liquids− 200mg fresh tissue

Samples can be:• Liquid• Solid• Swab samples

• Honey, Yeast, Bacteria, Wine, Juices, Fungi, Growth Media, Fruits and Veggies, Feathers, Fish oil

Examples

Page 9: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Metabolomics methods

• Screening methods (discovery – hypothesis generation)

− quick

− provide relative abundance

− only trends can be compared with published literature

− good for finding possible biomarkers

− Show response to treatment (eg:mode of action – new drugs)

− Eg. MCF and TMS methods

• Targeted methods (hypothesis testing)− take time

− cost more

− provide absolute concentrations

− data easily compared with published literature

− required for validating biomarkers

− Eg: our Q-FAMEs method, isotopically labelled internal standards

Page 10: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Derivatisation

• Trimethylsilylation– Good universal method– Most derivatives in NIST library– But derivatives not stable

• Methylchloroformate derivatisation– Good for amino acids and fatty acids– But several derivatives formed– Limited to in-house library– Stable derivatives

• Direct transesterification– Fast– Good for fatty acids– Stable derivatives

Derivatisation is a chemical reaction that makes non-volatile compounds volatile

TMS

MCF

QFAMEs

Page 11: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

What compounds can be detected?

• GC-MS is best for small molecules: ie: 0 - 800 amu

• We have in-house mass spectral libraries (reference standards)

• We can screen for unknowns using the NIST mass spectral library (>300,000 compounds)

Page 12: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

10-Heptadecenoic acid 3-Hydroxypropionic acid beta-Citryl-L-glutamic acid Glutamine Methionine Putrescine

10-Pentadecenoic acid3-Methyl-2-oxopentanoic acid beta-Methylamino-alanine Glutaric acid Myristic acid Pyroglutamic acid

11,14,17-Eicosatrienoic acid 3-Oxoadipic acid Butylated hydroxytoluene Glutathione Myristoleic acid Pyruvic acid

11,14-Eicosadienoic 4-Aminobenzoic acidbishomo-gamma-Linolenic acid Glyceric acid N-Acetylcysteine Quinic acid

13,16-Docosadienoic acid4-Aminobutyric acid (GABA) Caffeine Glycerol N-Acetylglutamic acid S-Adenosylhomocysteine

1-Aminocyclopropane-1-carboxylic acid 4-Hydroxycinnamic acid cis-4-Hydroxyproline Glycine NADP_NADPH S-Adenosylmethionine

1-Phenylethanol4-Hydroxyphenylacetic acid cis-Aconitic acid Glyoxylic acid N-alpha-Acetyllysine Salicylic acid

2,3-Butanediol 4-Hydroxyphenylethanol cis-Vaccenic acid Gondoic acid Nervonic acid Sebacic acid

2,4-Diaminobutyric acid4-Methyl-2-oxopentanoic acid Citraconic acid Heneicosanoic acid Nicotinamide Serine

2,6-Diaminopimelic acid 5-Hydroxy-L-lysine Citramalic acid Heptadecane Nicotinic acid Sinapic acid

2-Aminoadipic acid5-Hydroxymethyl-2-furaldehyde Citric acid Hexanoic acid Nonacosane Stearic acid

2-Aminophenylacetic acid 5-Methyltryptophan Creatinine Hippuric acid Nonadecanoic acid Suberic acid

2-Hydroxybutyric acid5-Oxotetrahydrofuran-2-carboxylic acid Cystathionine Histidine Norvaline Succinic acid

2-Hydroxycinnamic acid 9-Heptadecenoic acid Cysteine Homocysteine O-Acetylserine Syringic acid2-Hydroxyisobutyric acid Adipic acid Dibutyl phthalate Indole-3-butyric acid Octanoic acid Tartaric acid2-Isopropylmalic acid Adrenic acid Decanoic acid Isocitric acid Oleic acid Thiamine2-Methyloctadecanoic acid Alanine Docosahexaenoic acid Isoleucine Ornithine Threonine2-Oxoadipic acid alpha-Linolenic acid Dodecane Itaconic acid Oxalic acid trans-4-Hydroxyproline2-Oxobutyric acid Anthranilic acid Dodecanoic acid Lactic acid Oxaloacetic acid trans-Cinnamic acid2-Oxoglutaric acid Arachidic acid Docosapentaenoic acid Leucine Palmitic acid Tricosane

2-Oxovaleric acid Arachidonic acidEthylenediaminetetraacetic acid Levulinic acid Palmitoleic acid Tricosanoic acid

2-Phosphoenolpyruvic acid Asparagine Eicosapentaenoic acid Lignoceric acid para-Toluic acid Tridecane2-Phosphoglyceric acid Aspartic acid Erucic acid Linoleic acid Pentadecane Tridecanoic acid3,5-Diiodo-L-tyrosine Azelaic acid Ferulic acid Lysine Pentadecanoic acid Tryptophan3-Hydroxybenzoic acid Behenic acid Fumaric acid Malic acid Phenethyl acetate Tyrosine3-Hydroxydecanoic acid Benzoic acid gamma-Linolenic acid Malonic acid Phenylalanine Undecanoic acid3-Hydroxyoctanoic acid beta-Alanine Glutamic acid Margaric acid Pimelic acid Valine

Proline Vanillic acid

MCF Amino acids, fatty acids and organic acids

In-house libraries

Page 13: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Fatty acidsHexanoic acid (C6_0) 9,12-trans-Octadecadienoic acid (E,E) C18:2(n-6t)Octanoic acid (C8_0) 7-trans-Nonadecenoic acid, (7E)- C19:1(n-12t)Decanoic acid (C10_0) 10-trans-Nonadecenoic acid, (10E)- (C19_1n-10t)Undecanoic acid (C11_0) 9,12-cis-Octadecadienoic acid (Z,Z) (C18_2n-6c)Dodecanoic acid (C12_0) Eicosanoic acid (C20_0)

Tridecanoic acid (C13_0)6,9,12-cis-Octadecatrienoic acid, (6Z,9Z,12Z)- (C18_3n-6c)

Tetradecanoic acid (C14_0) 11-trans-Eicosenoic acid, (11E)- C20:1(n-9t)

9-trans-Tetradecenoic acid (C14_1n-5t)9,12,15-cis-Octadecatrienoic acid, (9Z,12Z,15Z)- C18:3(n-3c)

9-cis-Tetradecenoic acid (C14_1n-5c) 11-cis-Eicosenoic acid, (11Z)- C20:1(n-9c)Pentadecanoic acid (C15_0) Heneicosanoic acid (C21_0)10-trans-Pentadecenoic acid (C15_1n-5t) 11,14-cis-Eicosadienoic C20:2(n-6c)10-cis-Pentadecenoic acid (C15_1n-5c) Docosanoic acid (C22_0)

Hexadecanoic acid (C16_0)8,11,14-cis-Eicosatrienoic acid, (8Z,11Z,14Z)-C20:3(n-6c)

9-trans-Hexadecenoic acid (C16_1n-7t) 13-trans-Docosenoic acid, (13E)- (C22_1n-9t)9-cis-Hexadecenoic acid (C16_1n-7c) 11,14,17-cis-Eicosatrienoic acid C20:3(n-3c)Heptadecanoic acid (C17_0) 13-cis-Docosenoic acid, (13Z)- (C22_1n-9c)10-trans-Heptadecenoic acid, (10E) (C17_1n-7t) 5,8,11,14-cis-Eicosatetraenoic acid (C20_4n-6c)10-cis-Heptadecenoic acid, (10Z)- (C17_1n-7c) Tricosanoic acid (C23_0)Octadecanoic acid (C18_0) 13,16-cis-Docosadienoic acid (C22_2n-6c)

6-trans-Octadecenoic acid, (E)- C18:1(n-12t)5,8,11,14,17-cis-Eicosapentaenoic acid, (5Z,8Z,11Z,14Z,17Z)- C20:5(n-3)

9-trans-Octadecenoic acid, (9E)- C18:1(n-9t) Tetracosanoic acid (C24_0)11-trans-Octadecenoic acid, (E)- C18:1(n-7t) 15-cis-Tetracosenoic acid, (15Z)-(C24_1n-9c)

6-cis-Octadecenoic acid, (Z)- C18:1(n-12c)7,10,13,16-cis-Docosatetraenoic acid, (7Z,10Z,13Z,16Z)- C22:4(n-6c)

9-cis-Octadecenoic acid (9Z)- (C18_1n-9c)4,7,10,13,16-cis-Docosapentaenoic acid, (4Z,7Z,10Z,13Z,16Z) C22:5(n-6c)

11-cis-Octadecenoic acid, (Z)- C18:1(n-7c)7,10,13,16,19-cis-Docosapentaenoic acid, (7Z,10Z,13Z,16Z,19Z)-C22:5(n-3c)

Nonadecanoic acid (C19_0)4,7,10,13,16,19-cis-Docosahexaenoic acid, (4Z,7Z,10Z,13Z,16Z,19Z) C22:6(n-3c)

ducitol

fructose

myoinositol

glucose

glycerol

mannitol

sorbitol

fucitol

ribitol

galactose

mannose

rhamnose

sorbose

arabinose

ribose

trehalose

xylose

lactose

maltose

QFAMEs

TMS

In-house libraries

Sugars

Page 14: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Metabolomics methods

TMS (~300 compounds)

MCF (~100 compounds)

Same sample extract, different derivatisation method (mussel gill tissue)

Page 15: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Metabolomics methods

QFAMEs (~60 compounds)

MCF (~100 compounds)

Same sample, different extraction and derivatisation method (human plasma)

Page 16: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Automated Data Processing

Both in GUI-R developed by Morgan Han

Metab (Aggio)

lower false positive, higher missing values

MSOmics (Han)

higher false positive, fewer zero values

They use R – XCMS package

Two options

Page 17: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Data processing

Figure: Morgan Han

• Big data – eg. 1000 samples each with 10-20MB datafile

• Need to be processed batchwise so that a data matrix is generated, enabling sample comparison for each compound

Page 18: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Data matrix

Samples

Compounds

Page 19: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Data analysis

Help with data analysis:• Silas Villas Boas and Morgan Han (Metabolomics Lab)• Katya Ruggiero and Kevin Chang (Statistics Consulting

Centre)

Page 20: Gas Chromatography- Mass Spectrometry Dr Erica Zarate Auckland Science Analytical Services - Mass Spectrometry 12 June 2015

Current UoA research