generalized barycentric coordinates

30
Generalized Barycentric Coordinates

Upload: dmitry-anisimov

Post on 01-Jul-2015

676 views

Category:

Education


2 download

DESCRIPTION

My presentation on the "Geometric and Visual Computing Seminar" at the Universita della Svizzera italiana. The topic covered is generalized barycentric coordinates for convex polygons. At the beginning I do some short introduction into what is barycentric coordinates and then consider two types of generalization of these coordinates to convex polygons namely Wachspress and Mean Value Coordinates. Date of presentation: April 2012 For preparing my slides I take pictures and some other information from the internet and I try to use only legal one. But if I did not notice something and you have Rights for any kind of this information and do not want to see it in the presentation please let me know and I will remove it from the slides as fast as possible or remove the slides themselves. Thanks for your collaboration.

TRANSCRIPT

Page 1: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Page 2: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Simple  

Page 3: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Simplex  

Page 4: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Simplex  

Page 5: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

V1

V3 V2

P A2

A1

A3

A=A1+A2+A3

b1=A1/A b2=A2/A b3=A3/A

Page 6: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

1790-1868

1827

V1

V3 V2

P A2

A1

A3

A=A1+A2+A3

b1=A1/A b2=A2/A b3=A3/A

Page 7: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Proper:es:  

•  P is  inside  the  triangle  if  and  only  if  0 < b1, b2, b3 < 1.

Ø  If  b1, b2, b3 > 0 hence  P -­‐ within  the  interior  of  the  triangle.  

Ø  If  one  of  bi = 0 hence  P -­‐  on  some  edge  of  the  triangle.  

Ø  If  two  of  bi = 0 hence  P -­‐  in  some  vertex  of  the  triangle.  

Ø  b1 + b2 + b3 = 1.

Page 8: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Proper:es:  

•  By  changing  the  values  of  b1, b2, b3 between  0  and  1,  the  point  P      will  move  smoothly  inside  the  triangle.  

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 9: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Proper:es:  

•  P is  the  barycenter  of  the  points  v1, v2 and  v3 with  weights  A1, A2 and  A3 if  and  only  if:  

  P =

•  The  center  of  the  triangle  is  obtained  when  b1 = b2 = b3 = .

A1v1+A2v2+A3v3

A1+A2+A3

13

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 10: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Proper:es:  

•  P is  inside  the  triangle  if  and  only  if  0 < b1, b2, b3 < 1.

•  By  changing  the  values  of  b1, b2, b3 between  0  and  1,  the  point  P  will  move  smoothly  inside  the  triangle.  

•  P is  the  barycenter  of  the  points  v1, v2 and  v3 with  weights  A1, A2 and  A3 if  and  only  if:  

P =  

A1v1+A2v2+A3v3

A1+A2+A3

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 11: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates  

Anisimov  Dmitry  

Applica:ons:  •  Since  P is  inside  the  triangle  if  and  only  if  0 < b1, b2, b3 < 1

we  can  determine  if  a  point  P  is  inside  the  triangle.    •  Since  all  bi are  linear  polynomials  and  by  changing  the  values  of  b1, b2, b3 between  0  

and  1,  the  point  P  moves  smoothly  inside  the  triangle  

we  can  linearly  interpolate  data  placed  in  the  ver:ces  overall  triangle:    

F = bifi

i =1

3

V1

V3 V2

P

b1=A1/A b2=A2/A b3=A3/A

Page 12: Generalized Barycentric Coordinates

Outline:  

•  Introduc:on  

•  Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  

Page 13: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

vi

vi+1

vi-1

P

Ai-1

Ai

Page 14: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Ai-1

Ai vi

vi+1

vi-1

P

Bi

Page 15: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Ai-1 Ai Bi

bi=

wi

wjj =1

n∑

Normalized  Barycentric  Coordinates:  

Where  weights:   wi=c

i +1A

i −1−c

iB

i+c

i −1A

i

Ai −1

Ai

with  certain  real  func:ons  ci .  

Page 16: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

I.e.  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

bi=1

i =1

n∑

biv

i= P

i =1

n∑

Page 17: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

YES for

biv

i= P

i =1

n∑

bi=1

i =1

n∑

I.e.  

Page 18: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

YES for

bi=1

i =1

n∑

biv

i= P

i =1

n∑

I.e.  

Page 19: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

bi=1

i =1

n∑

biv

i= P

i =1

n∑

YES for

To  get  Posi:vity  we  have  to  properly  choose  func:ons  ci .  

I.e.  

Page 20: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

We  choose  func:ons  ci to  be  Euclidean  distance  between  P and  vi to  the  power  k    :  

ci = rik with  ri = ||P - vi|| and    

vi

P

ri

k ∈ R

Page 21: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Do  bi sa:sfy  all  three  proper:es  of  triangular  barycentric  coordinates?  

•  Posi:vity: bi ≥ 0 for  all  i    

•  Par::on  of  unity:    

•  Reproduc:on:    

bi=1

i =1

n∑

biv

i= P

i =1

n∑

YES for I.e.  

Page 22: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

With  such  a  choice  of  ci we  get  a  whole  family  of      three-­‐point  coordinates  bi :  

bi=

wi

wjj =1

n∑

with   wi=ri +1k A

i −1−r

ikB

i+r

i −1k A

i

Ai −1

Ai

Bi Ai-1

Ai ri-1 ri

ri+1

Page 23: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Three-­‐point  coordinates:  

•  Wachspress  Coordinates  for  k = 0    and  ci = 1.  

•  Mean  Value  Coordinates  for  k = 1 and  ci = ri  .  

Page 24: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Wachspress  coordinates:  For  the  first  :me  they  were  introduced  by  E.  L.  Wachspress  in  the  work:    “A  Ra:onal  Finite  Element  Basis”  in  1975.  

Weight  func:ons:   wi=

Di

Ai −1

Ai

and   bi=

wi

wjj =1

n∑

Di Ai-1 Ai

Page 25: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Wachspress  coordinates:  

•  Affine  precision:    •  Lagrange  property:    •  Smoothness:  bi are  C∞  inside  arbitrary  polygons*  

•  Par::on  of  unity:    

•  Behavior:  bi are  well-­‐defined  inside  convex  polygons  

•  Posi:vity:  bi are  posi:ve  inside  convex  polygons  

biϕ(v

i)

i =1

n∑ = ϕ for  any  affine  func:on    ϕ : R2 →Rd

bi(v

j) = δ

i , j=

1,i = j0,i ≠ j

#$%

&%

bi=1

i =1

n∑

*Except  poles  

Page 26: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Wachspress  coordinates:  

Page 27: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Mean  Value  coordinates:  For  the  first  :me  they  were  introduced  by  M.  Floater  in  the  work:    “Mean  Value  Coordinates”  in  2003.  

Weight  func:ons:  wi=ri −1

Ai−r

iB

i+r

i +1A

i −1

Ai −1

Ai

and   bi=

wi

wjj =1

n∑

Bi Ai-1

Ai ri-1 ri

ri+1

Page 28: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Mean  Value  coordinates:  

•  Affine  precision:  

•  Lagrange  property:  

•  Smoothness:  bi are  C∞  inside  arbitrary  polygons  except  at  the  ver:ces  vj where  they  are  only  C0  

•  Par::on  of  unity:    

•  Behavior:  bi are  well-­‐defined  inside  arbitrary  polygons    •  Posi:vity:  bi are  posi:ve  inside  convex  polygons  

biϕ(v

i)

i =1

n∑ = ϕ for  any  affine  func:on    ϕ : R2 →Rd

bi=1

i =1

n∑

bi(v

j) = δ

i , j=

1,i = j0,i ≠ j

#$%

&%

Page 29: Generalized Barycentric Coordinates

Barycentric  Coordinates  for  Planar  Convex  Polygons  

Anisimov  Dmitry  Generalized  Barycentric  Coordinates  

Proper:es  of  Mean  Value  coordinates:  

Page 30: Generalized Barycentric Coordinates

Generalized  Barycentric  Coordinates