genetica bioinformatica

37
LABORATORIO DE GENETICA 1 INTRODUCCION El impacto de la Helicobacter pylori La infección en la microbiota gástrico del Macaco Rhesus. Helicobacter pylori colonización es altamente prevalente entre los seres humanos y causa enfermedad gástrica significativa en un subconjunto de las personas infectadas. Cuando está presente, esta bacteria domina la microbiota gástrica de seres humanos e induce respuestas antimicrobianas en el huésped. Dado el contexto microbiana de H. pylori colonización influye en la evolución de la enfermedad en un modelo de ratón, hemos tratado de evaluar el impacto de H. pylori desafío a los miembros de las comunidades microbianas gástricas pre-existentes en el modelo de macacos rhesus. Profunda secuenciación del gen del ARNr 16S bacteriana identificó un perfil de la comunidad de 221 filotipos que era distinta de la de el intestino distal macaco rhesus y la boca, aunque hubo taxones en común. Altas proporciones de ambos H. pylori y H. suis fueron observados en las bibliotecas después de la exposición, pero en un momento dado, sólo uno Helicobacter especie era dominante. Sin embargo, la abundancia relativa de la no- Helicobacter taxones no fue significativamente diferente antes y después del desafío con H. pylori . Estos resultados sugieren que mientras que

Upload: glexi-vindel-rodriguez

Post on 31-May-2015

544 views

Category:

Technology


3 download

TRANSCRIPT

Page 1: Genetica bioinformatica

LABORATORIO DE GENETICA 1

INTRODUCCION

El impacto de la Helicobacter pylori La infección en la microbiota gástrico del Macaco Rhesus.

Helicobacter pylori colonización es altamente prevalente entre los seres humanos y causa enfermedad gástrica significativa en un subconjunto de las personas infectadas. Cuando está presente, esta bacteria domina la microbiota gástrica de seres humanos e induce respuestas antimicrobianas en el huésped. Dado el contexto microbiana de H. pylori colonización influye en la evolución de la enfermedad en un modelo de ratón, hemos tratado de evaluar el impacto de H. pylori desafío a los miembros de las comunidades microbianas gástricas pre-existentes en el modelo de macacos rhesus. Profunda secuenciación del gen del ARNr 16S bacteriana identificó un perfil de la comunidad de 221 filotipos que era distinta de la de el intestino distal macaco rhesus y la boca, aunque hubo taxones en común. Altas proporciones de ambos H. pylori y H. suis fueron observados en las bibliotecas después de la exposición, pero en un momento dado, sólo uno Helicobacter especie era dominante. Sin embargo, la abundancia relativa de la no- Helicobacter taxones no fue significativamente diferente antes y después del desafío con H. pylori . Estos resultados sugieren que mientras que las especies gástricas diferentes pueden mostrar exclusión competitiva en el nicho gástrico, la comunidad microbiana rhesus gástrico es en gran medida estable a pesar de los cambios inmunológicos y fisiológicos debido a H. pylori infección.

Martin ME , Bhatnagar S , George MD , parche BJ , Canfield DR , Eisen JA , Solnick JV .

Departamento de Medicina de la Universidad de California Davis, Davis, California, Estados Unidos de América, el Departamento de Microbiología e Inmunología de la Universidad de California Davis, Davis, California, Estados Unidos de América

Page 2: Genetica bioinformatica

LABORATORIO DE GENETICA 2

MARCO TEORICO

Original Article

A study on the effect of Helicobacter pylori infection on p53 expression in gastric cancer and gastritis tissues Barik A. Salih1, Zuhal Gucin2, Nizamettin Bayyurt3 1Faculty of Science, Department of Biology, Fatih University, Istanbul, Turkey 2Faculty of Medicine, Department of Pathology, Bezmialem University, Istanbul, Turkey 3Faculty of Economics and Administrative Sciences, Department of Management, Fatih University, Istanbul, Turkey

Abstract Introduction: Helicobacter pylori cause damage to gastric epithelial cells and alterations in the p53 gene that lead to cancer development. This study aimed to determine the correlation of p53 expression with H. pylori using immunohistochemistry, RFLP-PCR, and histopathology. Methodology: Gastric biopsy samples from gastric cancer (GC) (n = 54) and gastritis (n = 31) patients were examined for histopathological changes and expression of p53 protein by immunohistochemistry. Results: Immunohistochemical analysis of p53 protein expression in H. pylori-positive GC sections showed an average of 44.3% positive cells in tumors and 6.9% in normal tissues, as compared to 16.4% and 4.4% in H. pylori-negative sections. P53 expression showed significant association with H. pylori (P = 0.005), invasion depth (P = 0.029) and inflammation reaction (P = 0.008). In gastritis sections, no difference in the average p53 staining in H. pylori-positive or -negative sections was seen. PCR-RFLP results also showed no difference in genotype frequencies of p53 in H. pylori-positive or -negative gastritis sections. Histopathology study of H. pylori-positive GC sections showed that 97.2% were the intestinal type and 2.8% the diffuse type, while in H. pylori-negative sections 35.2% were the intestinal type and 64.8% the diffuse type. Biopsy sections from H. pylori-positive gastritis patients revealed more severe inflammation than those of H. pylori-negative patients. Conclusion: Our results show that H. pylori infection affects p53 expression in GC. The average p53 expression was significantly higher in tumor than in normal tissues. In gastritis sections p53 expression was significantly associated with H. pylori.

Key words: Helicobacter pylori; p53; gastric cancer J Infect Dev Ctries 2013; 7(9):651-657. doi:10.3855/jidc.2993 (Received 07 September 2012 – Accepted 06 February 2013) Copyright © 2013 Salih et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Page 3: Genetica bioinformatica

LABORATORIO DE GENETICA 3

Introduction Helicobacter pylori is a type-I carcinogen that plays an important role in gastric cancer (GC) [1]. Genetic alterations in p53 that control the cell cycle might change the susceptibility of tumor cells to trigger apoptosis [2,3,4]. The expression of p53, a tumor suppressor protein, has been found to play a critical role in cell cycle control and apoptosis [5,6]. p53 mutation frequencies were found to increase as gastric mucosa of patients with gastritis progress to intestinal metaplasia (IM), dysplasia and cancer [7]. Earlier reports showed that p53 immunoreactive cells were detected in normal gastric mucosa, in mucosa of patients with gastritis, and in mucosal cells adjacent to tumor tissues [8,9]; However, other investigations found no such cells in normal mucosa or in gastritis tissues [10,11]. In the presence of H. pylori, activated leukocytes produce free radicals that exert an effect on the nuclear p53 expression in immunoreactive cells detected in the neck region and the proliferative zone reflecting normal p53 response to DNA damage [12,13]. Such an effect was supported by Satoh et al. (2001) who detected significantly higher p53-positive cells during an active H. pylori infection than after eradication [14]. In addition, H. pylori infection was shown to induce p53 point mutations that were not found in H. pylori-negative gastritis patients [15]. Thus H. pylori infections and p53 expression might have a synergistic effect on gastric carcinogenesis. Berloco et al. [16], however, indicated that H. pylori infection in patients from Italy does not affect the p53 pattern in gastric mucosa and that p53 abnormality (overexpression/mutation) showed no association with gastric carcinogenesis in the population studied.

The detection of p53 as a prognostic marker using immunohistochemistry showed results that were in disagreement as far as the prevalence of p53 mutations and tumor type. While some authors found that mutations tend to affect intestinal type tumors, others found that the incidence of mutation is similar in the two main tumor types, suggesting that the p53 gene is a common target in the development of GC in general [17]. Among several polymorphisms described in p53, the codon 72 single nucleotide polymorphism (SNP) on exon 4 is the most common variant associated with cancer development. Three distinct genotype polymorphisms among the p53 codon 72 Arg-Pro (CGC-CCC) were found to exist: a homozygous arginine (Arg-Arg), homozygous proline (Pro-Pro), and heterozygous (Arg-Pro) [6]. Recently, Matsumoto et al. [18] proposed that H. pylori infection caused an aberrant expression of cytidine deaminase, an enzyme that induces p53 mutations in gastric epithelial cells, suggesting a link between H. pylori and genetic polymorphism of p53. Mutations of p53 and/or overexpression of mutant p53 protein have been reported in 60% of all cancers, including gastric cancer samples. Several studies have shown that the detection of p53 in the presence of low-grade dysplasia is a risk factor for progression to high-grade dysplasia or cancer. Thus it is expected that p53 mutation status causes the mutant type of p53

Page 4: Genetica bioinformatica

LABORATORIO DE GENETICA 4

expression [19,20]. However, no correlation was found between p53 mutation analysis and immunohistochemical staining in H. pylori-associated gastroduodenal diseases including GC. Our objectives were to investigate the effect of H. pylori on p53 expression in GC resected tumor and normal tissues and in gastritis tissues, and to compare the results of p53 mutation detected by PCR-RFLP and immunohistochemistry in gastritis tissues. This study will enhance our understanding of the effect of H. pylori infection on pathogenesis and genetic polymorphism of p53 in patients with GC and gastritis.

Methodology Biopsy specimens A total of 96 biopsy samples were collected as follows: 52 samples from gastric cancer patients (12 female) of age range 33-82 years (average 61) and 44 samples from gastritis patients (21 female) of age range 15-84 years (average 46.4). Two biopsy samples from the resected stomach cancer tissues (paraffin-embedded sections), one from the normal tissue, and one from the tumor tissue were collected from each patient. Sections were examined by PCR-RFLP, immunohistochemical analysis, and histopathology. A written consent was obtained for each patient and the study was approved by the hospital ethical committee. DNA isolation and PCR DNA was extracted by the QIAamp DNA Mini Kit (Qiagen, Germany), according to the manufacturer’s instructions and stored at -20°C until used. PCR-RFLP (genotyping of p53 codon 72) Genomic DNA isolated from antral biopsies of gastritis patients was used. The genetic polymorphism of p53 codon 72 on exon 4 was detected by PCR-RFLP method as described previously [19] using the following primers (forward: 5’-TTGCCGTCCCAAGCAATGGATGA-3’), (reverse: 5’-TCTGGGAAGGGACAGAAGATGAC-3’) in a thermal cycler (Techne, Staffordshire, United Kingdom). The PCR program included a cycle of 95°C for 10 minutes, then 35 cycles (95°C for 30 seconds and 60°C for 30 seconds, 72°C for 30 seconds), and 72°C for 5 minutes. The PCR products (p53 codon 72) were digested with the restriction enzymes BstUI (Thermo Scientific, MA, USA) and electrophoresed in 3.5% agarose gel [19].

Immunohistochemistry Immunohistochemical staining of p53 were performed using streptavidin peroxidase labeled monoclonal antibody (clone DO-7, ScyTek, USA). A positive p53 protein was seen as a nuclear stain and scores of strong, moderate, and weak positive immunolabeling were used. More than 10% of strong or moderately stained cells were considered positive. Histopathology Sections of tumor and normal tissues obtained from GC patients and antral biopsy sections from gastritis patients were stained with Giemsa and haematoxylin and eosin (HE) stains. H. pylori status and density, chronic gastritis (mononuclear cell activity), neutrophil infiltration, invasion depth, inflammation reaction, glandular atrophy, and IM were evaluated and graded

Page 5: Genetica bioinformatica

LABORATORIO DE GENETICA 5

from 0-3 according to the updated Sydney system [21]. The type of GC (intestinal or diffuse) was classified according to the Lauren classification [22]. All sections were morphologically evaluated by an experienced histopathologist who was not informed about the sections. Salih

Statistical analysis A classical regression analysis using the Statistical Package for the Social Sciences (SPSS-19) (IBM SPSS Statistics 19.0, New York, USA) was used for measuring the effect of gender, age, H. pylori, IM, atrophy, tumor type, invasion depth, and inflammation reaction on p53 staining in both tumor and normal tissues of GC sections. The regression function is shown below were p53 is the dependent variable and the independent variables were listed above. The effects of gender, age, H. pylori, chronic inflammation, neutrophil infiltration, and IM on p53 staining for gastritis patients were estimated by a regression function given below: A P value of < 0.05 was considered as statistically significant.

Results H. pylori H. pylori in paraffin-embedded tissue sections detected by Giemsa staining and by PCR were positive in 35 (67.0%) of 52 GC samples. H. pylori in gastritis biopsies detected either by rapid urease test or PCR were positive in 31 (70.0%) of 44 gastritis samples. p53 expression Immunohistochemical analysis of p53 expression in H. pylori-positive GC resected tissue sections showed that the average positive cells in tumor and adjacent normal tissues were 44.3% and 6.9% respectively, while in H. pylori-negative sections they were 16.4% and 4.4% respectively. The average p53 expression was significantly higher in the tumor tissue in the presence of H. pylori than in the absence of H. pylori. We have correlated p53 average positive cell ratios with H. pylori, gender, age, invasion depth, inflammation reaction, IM, atrophy and tumor type and found a significant association with the presence of H. pylori (P = 0.005), invasion depth (P = 0.029) and inflammation reaction (P = 0.008) in tumor tissues, while no such association was observed in normal tissues (Table 1). Figure 1 shows immunohistochemical staining of p53 positive cells in H. pylori-positive tumor and normal tissue of intestinal type GC sections. The nuclei of positive cells in the tumor tissue stained more heavily brown in color than those in the normal tissue. Positive cells were commonly found in the neck region of the gastric pits (Figure 2). Figure 3 shows p53 positive cells staining in H. pylori-positive tumor tissue (diffuse type) and normal tissue of gastric cancer sections. The nuclei of positive cells were stained brown in color. Immunohistochemical analysis of p53 expression in antral biopsy sections from gastritis patients showed an average of 29.9% for p53 positive cells in H. pylori-positive sections, while in H. pylori-negative the average was 21.2%. In these sections p53 expression was significantly associated with the presence of H. pylori (P = 0.025) and neutrophil infiltration (P = 0.002) (Table 2).

Page 6: Genetica bioinformatica

LABORATORIO DE GENETICA 6

p53 genotyping Arg-Pro, Arg-Arg and Pro-Pro genotypes are among the three common p53 codon 72 polymorphisms. PCR-RFLP results showed that the genotype frequencies of p53 in H. pylori-positive gastritis sections were 45% (Arg/Arg), 32% (Arg/Pro), and 23% (Pro/Pro), while in H. pylori-negative sections they were 46% (Arg/Arg), 25% (Arg/Pro), and 28% (Pro/Pro). Histopathology Histopathology evaluation of the tumor type in GC sections showed that in 35 H. pylori-positive GC patients, 34 (97.2%) were of the intestinal type and one was (2.8%) of the diffuse type. Chronic gastritis was detected in all sections and of these 22 (62.0%) had IM and 14 (40%) had glandular atrophy. Of biopsy sections from the other 17 H. pylori-negative GC patients, 6 (35.2%) were of the intestinal type and 11 (64.8%) of the diffuse type. All sections showed chronic gastritis and of these 9 (52.9%) had IM. On the other hand, biopsy sections from 44 patients with gastritis revealed that in 31 H. pylori-positive patients, 100% showed chronic inflammation, 93.5% showed neutrophil infiltration, and 12.9% showed IM. Biopsy sections from the other 13 patients with no H. pylori, 84.6% had chronic inflammation, 38.4% showed neutrophil infiltration, and 7.7% had IM.

Discussion H. pylori, a major etiological factor in GC development, acts as an initial triggering mechanism that lasts for years in which chronic gastritis progress to atrophy, IM and cancer [23]. Sixty-three percent oour GC patients were found infected with H. pylori

Table 1. Statistical analysis of the association between p53 staining in tumor and normal tissues of gastric cancer sections and gender, age, H. pylori, intestinal metaplasia, atrophy, tumor type (intestinal/diffuse), invasion depth and inflammation reaction Gastric cancer section

Normal tissue Tumor tissue

Dependent variable: Sqrt(p53) Dependent variable: Sqrt(p53)

Coeff. t Sig. VIF Coeff. t Sig. VIF

Constant .096 .047 .962 -.864 -.254 .800

Page 7: Genetica bioinformatica

LABORATORIO DE GENETICA 7

Gender

.098 .145 .885 1.096 .236 .207 .837 1.096

Age .015 .578 .566 1.129 .009 .202 .841 1.129

H. pylori

.342 .397 .693 2.184 4.324 2.990 .005 2.184

IM .628 .808 .423 1.949 -2.044 -1.565 .125 1.949

Atr -.739 -.933 .356 2.024 .636 .478 .635 2.024

Tt -.331 -.334 .740 2.337 -2.100 -1.261 .214 2.337

Id .897 1.216 .231 1.216 2.795 2.255 .029 1.216

Ir -.373 -.534 .596 1.392 3.291 2.804 .008 1.392

N 52 52

F .571 2.51

Sig. .796 .025

R .31 .56

Table 2. Statistical analysis of the association between p53 staining in gastritis tissue sections and gender, age, H. pylori, chronic inflammation, neutrophil infiltration and intestinal metaplasia Gastritis

Page 8: Genetica bioinformatica

LABORATORIO DE GENETICA 8

section

Dependent variable: p53

Coeff. t Sig. VIF

Constant 42.448 4.091 .000

Gender .593 .161 .873 1.021

Age -.241 -1.762 .086 1.335

H. pylori -12.945 -2.339 .025 1.933

Chi -16.440 -1.668 .104 1.277

Ni 18.694 3.319 .002 1.689

IM -5.913 -1.135 .264 1.100

N 44

F 3.057

Sig. .016

R .58

Page 9: Genetica bioinformatica

LABORATORIO DE GENETICA 9

Figure 1. Immunohistochemical staining for p53 in H. pylori-positive tumor tissue (intestinal type) and normal tissue of gastric cancer section.

Figure 2. Immunohistochemical staining for p53 in H. pylori-positive tumor tissue (intestinal type)

Figure 3. Immunohistochemical staining for p53 in H. pylori-positive tumor tissue (diffuse type) and normal tissue of gastric cancer section

Page 10: Genetica bioinformatica

LABORATORIO DE GENETICA 10

and the percentage was also high (70.4%) in our gastritis patients. p53 alterations were shown to have an important role in GC development worldwide. Immunohistochemical analysis of p53 overexpression in our tumor tissue GC sections showed that the average staining was significantly higher in the presence of H. pylori than in the absence of H. pylori and also higher than that in the normal tissues, excluding H. pylori. Also, in our antral biopsy sections from gastritis patients, the average results of p53 expression were significantly associated with the presence of H. pylori and neutrophil infiltration. Previously, Polat et al. [12] investigated p53 expression in H. pylori-positive and -negative Turkish patients with gastritis using histological evaluation and reported a 10.9% overexpression of p53 in the presence of H. pylori. Similarly, Sadeghi et al. [24] showed that p53 expression was more prevalent in an H. pylori-positive group and indicated that this overexpression might contribute to the pathogenesis of gastritis and GC. However, Zhang et al. [25] reported no p53 protein expression in normal gastric mucosa but such protein was significantly increased in GC tissues in the presence of H. pylori, and they concluded that H. pylori infection might strengthen p53 mutation. On the other hand, Berloco et al. [16] reported earlier that H. pylori infection does not affect p53 expression in gastric mucosa and that p53 mutations did not correlate with H. pylori in GC patients in the Italian populations. In another study, no expression of mutant type p53 protein was found in H. pylori-positive or -negative gastric mucosa of the control group [19]. The role of H. pylori in the expression of p53 was studied earlier by Satoh et al. [26], who found that p53 positive cells in H. pylori-infected gastric mucosa before treatment decreased significantly one month after H. pylori eradication. Andre et al. [27] also suggested that H. pylori cagA-positive strains contribute significantly to p53 alteration in GC. Murakami et al. [15] reported that H. pylori infection can induce p53 point mutations in gastric mucosa of gastritis patients that in turn leads to dysplasia or carcinoma. Similarly, Takeda et al. [28] also reported that an overexpression of p53 was associated with gastric mucosal alterations in early tumor tissues. p53 overexpression has been reported in 17% to 90.7% of invasive tumors. The degree of p53 expression correlates with the proliferative rate of the

Page 11: Genetica bioinformatica

LABORATORIO DE GENETICA 11

tumors, perhaps explaining the higher incidence of p53 positivity in intestinal versus diffuse GC [29]. Earlier studies have shown that p53 mutations can occur in the early stages of GC development, present even in normal mucosa, and increase in frequency during the progression of the developed cancer. Reports on the frequencies of p53 mutations showed a prevelance rate that varied between 0% and 77% in gastric carcinomas [29]. Since the majority of published reports on the detection of p53 expression varied in terms of the antibodies used, the method of detection, and the different interpretation approaches, it is not surprising to find contradictions in the results presented by those studies. Determination of the genotype frequencies of p53 in our gastritis sections using PCR-RFLP showed no significant differences in the prevalence of allelic variations in both H. pylori-positive and -negative gastritis sections. Fenoglio-Preiser et al. [29] also showed no differences in p53 polymorphism in the presence or absence of H. pylori infection. We have also found that p53 was significantly associated with the presence of H. pylori, invasion depth, and inflammation reaction in tumor but not normal tissues of GC sections. These observations show that H. pylori has a direct effect on tumor cell kinetics. In addition, the majority of tumors detected in our H. pylori-positive sections were of the intestinal type, emphasizing the important role of H. pylori in this process. In gastritis sections, p53 was significantly associated with the presence of H. pylori and neutrophil infiltration. H. pylori infection affects p53 expression in tumor tissue of GC sections. The average p53 expression was significantly higher in tumor than in normal tissues. In gastritis sections p53 expression was significantly associated with H. pylori. Overall, the detection of p53 in tumor tissue of resected GC sections provided additional supportive evidence for the effect of H. pylori on its expression.

Acknowledgements This study was supported by the grant of Fatih University (# P50031003_2).

References 1. Targa AC, César ACG, Cury PM, and Silva AE (2007) Apoptosis in different gastric lesions and gastric cancer: relationship with Helicobacter pylori, over expression of p53 and aneuploidy. Genet Mol Res 6: 554-565. 2. Mainwaring PN, Ellis PA, Detre S, Smith IE (1998) Comparison of in situ methods to assess DNA cleavage in apoptotic cells in patients with breast cancer. J Clin Pathol 51: 34-37. 3. De Luca A, Iaquinto G (2004) Helicobacter pylori and gastric diseases: a dangerous association. Cancer Lett 213: 1-10. Sugiyama T, Asaka M (2004) Helicobacter pylori infection and gastric cancer. Med Electron Microsc 37: 149- 157.

Page 12: Genetica bioinformatica

LABORATORIO DE GENETICA 12

5. Levine AJ (1997) p53 the cellular gatekeeper for growth and division. Cell 88: 323-331. 6. Shepherd T, Tolbert D, Benedetti J (2000) Alterations in exon 4 of the p53 gene in gastric carcinoma. J Gastroenterol 118: 1039-1044. 7. Yamada Y, Yoshida T, Hayashi K, Sekiya T, Yokata J, Hirohashi S, Nakatani K, Nakano H, Sugimura T, Terada M (1991) p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases. Cancer Res 51: 5800-5805. 8. Feng CW, Wang LD, Jiao LH, Liu B, Zheng S, Xie XJ (2002) Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features. BMC Cancer 2: 8-12. 9. Shiao Y-H, Palli D, Caporaso NE, Alvord WG, Amorosi A, Nesi G, Saieva C, Masala G, Fraumeni JF, Jr, Rice JM (2000) Genetic and immunohistochemical analyses of p53 independently predict regional metastasis of gastric cancers. Cancer Epidemiol Biomarkers Prev 9: 631-633. 10. Sasaki I, Yao T, Nawata H, Tsuneyoshi M (1999) Minute gastric carcinoma of differentiated type with special reference to the significance of intestinal metaplasia, proliferative zone and p53 protein during tumor development. Cancer 85: 1719-1729. 11. Blok P, Craanen ME, Dekker W, Offerhaus GJA, Tytgat GN (1998) No evidence for functional inactivation of wild-type p53 protein by MDM2 over expression in gastric carcinogenesis. J Pathol 186: 36-40. 12. Polat A, Cinel L, Dusmez D, Aydin O, Egilmez R (2002) Expression of cell-cycle related proteins in Helicobacter pylori gastritis and association with gastric carcinoma. Neoplasma 49: 95-100. 13. Shiao Y-H, Rugge M, Correa P, Lehmann HP, Scheer WD (1994) p53 alteration in gastric precancerous lesions. Am J Pathol 144: 511-517. 14. Satoh K, Kihira K, Kawata H, Tokumaru K, Kumakura Y, Ishino Y, Kawakami S, Inoue K, Kojima T, Satoh Y, Mutoh H, Sugano K (2001) p53 expression in the gastric mucosa before and after eradication of Helicobacter pylori. Helicobacter 6: 31-36. 15. Murakami K, Fujioka T, Okimoto T, Mitsuishi Y, Oda T, Nishizono A, Nasu M (1999) Analysis of p53 gene mutations in Helicobacter pylori-associated gastritis mucosa in endoscopic biopsy specimens. Scand J Gastroenterol 34: 474-477. 16. Berloco P, Russo F, Cariola F, Gentile M, Giorgio P, Caruso ML, Valentini AM, Di Matteo G, Di Leo A (2003) Low presence of p53 abnormalities in H. pylori-infected gastric mucosa and in gastric adenocarcinoma J Gastroenterol 38: 28-36. 17. Rugge M, Shiao, Y-H, Busatto G, Cassaro M, Strobbe C, Russo VM, Leo G, Parenti AR, Scapinelli A, Arslan P, Egarter V (2000) The p53 gene in patients under the age of 40 with gastric cancer: mutation rates are low, but are associated with a cardiac location. Mol Pathol 53: 207-210.

Page 13: Genetica bioinformatica

LABORATORIO DE GENETICA 13

18. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, Azuma T, Okazaki IM, Honjo T, Chiba T (2007) Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 13: 470-476. 19. Kim N, Cho S, Lee HS, Park JH, Kim JH. Kim JS, Jung HC, Song IS (2010) The Discrepancy between Genetic Polymorphism of p53 Codon 72 and the Expression of p53 Protein in Helicobacter pylori-Associated Gastric Cancer in Korea. Dig Dis Sci 55: 101-110. 20. Kodama M, Murakami K, Okimoto T, Sato R, Watanabe K, Fujioka T (2007) Expression of mutant type-p53 products in H. pylori-associated chronic gastritis. World J Gastroenterol 13: 1541-1546. 21. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated Sydney system. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 20: 1161-11181. 22. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64: 31-49. 23. Correa P (2004) The biological model of gastric carcinogenesis. IARC Sci Publ 2: 301-310. 24. Najjar Sadeghi R, Azimzadeh P, Vahedi M, Mirsattari D, Molaei M, Mohebbi SR, Zojaji H, Fatemi SR, Zali MR (2011) Profile and frequency of p53 gene alterations in gastritis lesions from Iran. Digestion 83: 65-75. 25. Zhang Z, Yuan Y, Gao H, Dong M, Wang L, Gong YH (2001) Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions. World J Gastroenterol 7: 779-782. 26. Satoh K, Kihira K, Kawata H, Tokumaru K, Kumakura Y, Ishino Y, Kawakami S, Inoue K, Kojima T, Satoh Y, Mutoh H, Sugano K (2001) p53 expression in the gastric mucosa before and after eradication of Helicobacter pylori. Helicobacter 6: 31-36. 27. Andre AR, Ferreira MV, Mota RM, Ferrasi AC, Pardini MI, Rabenhorst SH (2010) Gastric adenocarcinoma and Helicobacter pylori: correlation with p53 mutation and p27 immunoexpression. Cancer Epidemiol 34: 618-625. 28. Takeda Y, Yashima K, Hayashi A, Sasaki S, Kawaguchi K, Harada K, Murawaki Y, Ito H (2012) Expression of AID, P53, and Mlh1 proteins in endoscopically resected differentiated-type early gastric cancer. World J Gastrointest Oncol 4: 131-137. 29. Fenoglio-Preiser CM, Wang J, Stemmermann GN, Noffsinger A (2003) TP53 and Gastric Carcinoma: A Review. Hum Mut 21: 258-270.

Corresponding author Barik A. Salih Faculty of Science, Department of Biology Fatih University

Page 14: Genetica bioinformatica

LABORATORIO DE GENETICA 14

B. Cekmece Istanbul, Turkey Telephone: +90 212 8663300 Fax: +90 212 8663402 Email: [email protected] Conflict of interests: No conflict of interests is declared.

PROCEDIMIENTOSBúsqueda de literatura científica

1. Ingresar al sitio de la NCBI: www.ncbi.nlm.nih.gov/ “Centro Nacional de la Información de los Estados Unidos”. Este sitio nos brinda una enorme gama de

posibilidades para el trabajo de

investigación en

Page 15: Genetica bioinformatica

LABORATORIO DE GENETICA 15

Microbiología, podemos encontrar literatura científica y homologías de secuencias en bases de datos internacionales.

2. Dar clic en PubMed www.ncbi.nlm.nih.gov/pubmed/. Esta es una biblioteca virtual que nos permite tener acceso a 100,000 artículos recientes de mas de 100 revistas científicas y de muchas áreas de las ciencias biológicas.

3. Hacer la búsqueda por tema en este caso investigaremos sobre el efecto de helicobacter. Obtendremos varios resultados pero no todos los artículos son gratuitos así que seleccionaremos el articulo 98. http://www.ncbi.nlm.nih.gov/pubmed/?term=helicobacter+pylori

Page 16: Genetica bioinformatica

LABORATORIO DE GENETICA 16

4. Para descargar la información seleccionamos JIDC open Access to full text (icono verde que se encuentra a la derecha). http://www.ncbi.nlm.nih.gov/pubmed/24042100

5. Ya seleccionado JIDC open Access to full text descargamos la información en la parte inferior de la página donde dice texto completo: PDF http://www.jidc.org/index.php/journal/article/view/24042100

Page 17: Genetica bioinformatica

LABORATORIO DE GENETICA 17

6. Nuestro último paso será dar clic en DESCARGAR ESTE ARCHIVO PDF.

Búsqueda de homologías de secuencias en bases de datos

1. Vuelve a http://www.ncbi.nlm.nih.gov/ y busca el recuadro a la izquierda el vínculo genomas y mapas.

Page 18: Genetica bioinformatica

LABORATORIO DE GENETICA 18

2. Entramos en el vínculo genoma. Esta base de datos nos provee información sobre más 1000 organismos, cromosomas complejos, mapas de secuencias, mapas genéticos y físicos. Con esta herramienta podemos encontrar los detalles de genomas de eucariotas, procariotas y virus, entre otras. http://www.ncbi.nlm.nih.gov/genome

3. En la barra de búsqueda ingresa: eukaryotay seleccionamos Cryptococcus neoformans. (articulo 1) http://www.ncbi.nlm.nih.gov/genome/?term=eukaryota

Page 19: Genetica bioinformatica

LABORATORIO DE GENETICA 19

4. Encontraremos el tamaño de genoma en esta especie que es de 19.05 Mb. Y también que este genoma esta organizado en cromosoma 14. http://www.ncbi.nlm.nih.gov/genome/61

5. Entra en el cromosoma 1 ahí se encuentra toda la información de la que se dispone este cromosoma, incluyendo los loci que lo componen y los genes situados dentro de ellos, con sus respectivas secuencias de aminoácidos. http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?taxid=5207&amp;chr=1

Page 20: Genetica bioinformatica

LABORATORIO DE GENETICA 20

6. Ingresa en Descargar / Ver secuencia / Evidencia y podremos visualizar que este cromosoma se compone de 2300533 pares de baseshttp://www.ncbi.nlm.nih.gov/projects/mapview/seq_reg.cgi?taxid=5207&chr=1&from=1&to=2300533

7. Clic en Mostrar y podremos visualizar la secuencia de nucleótido en que se compone este cromosoma.

Page 21: Genetica bioinformatica

LABORATORIO DE GENETICA 21

Búsqueda de secuencia de nucleótidos

1. Entra de nuevo a la página de inicio de NCBI busca la herramienta BLAST que se encuentra en el lado derecho de la página. Ahora entra a la herramienta explosión de nucleótidos. http://blast.ncbi.nlm.nih.gov/Blast.cgi

2. Ahora ingresa en el cuadro siguiente la secuencia 5-AAA CTT CCT TGT GTT AGA TAC AC-3. Y presiona el botón BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi?

Page 22: Genetica bioinformatica

LABORATORIO DE GENETICA 22

PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome

3. Ahora podremos visualizar los resultados que nos indican con cuales secuencias de cuales organismos es compatible tu olinucleotido. (los resultados se presentan en 3 formas). En la forma 1 cada una de las barras de colores representa una secuencia encontrada en las bases de datos, si presionamos la primera barra de color azul observaremos una explicación de ese resultado. http://blast.ncbi.nlm.nih.gov/Blast.cgi#315488081

Forma 1

Page 23: Genetica bioinformatica

LABORATORIO DE GENETICA 23

Cada una de las barras de colores representa una secuencia encontrada en las bases de datos, si presionamos la primera barra de color azul observaremos una explicación de ese resultado.

Forma 2

Forma 3

Page 24: Genetica bioinformatica

LABORATORIO DE GENETICA 24

DATOSEncuentra al menos 4 secuencias de primers de otros artículos científicos que hayan sido usados en una reacción de amplificación (PCR) y encuentra las secuencias o genes específicos que amplifican, los organismos que la tiene y el % de identidad.

USO DE REACCIONES EN CADENA DE POLIMERASA PARA CARACTERIZAR AISLAMIENTOS NATIVOS DE Bacillus thuringiensis.

Características de los oligonucleótidos Generales usados para amplificar genes cry del B. thuringiensis mediante la PCR.

PAR DE OLIGONUCLEOTIDOS

(POSICION)

GEN RECONOCIDO

TAMAÑO DEL PRODUCTO DE

PCR (PB”)

SECUENCIA 5' - 3' REFERENCIA

cry1s (depende del gen amplificado)

Cry1A (a,b,c) cry1Ba, Ca, Da, Ea, Fa

272 - 290 GTAGAAGAGGAA GTCTATCCAA

TATCGGTTTCTGG GAAGTA

Ceron et al., (1996)

Page 25: Genetica bioinformatica

LABORATORIO DE GENETICA 25

PAR DE OLIGONUCLEOTIDO

S (POSICION)

GEN RECONOCIDO

TAMAÑO DEL PRODUCTO DE

PCR (PB”)

SECUENCIA 5' - 3' REFERENCIA

cry1As 1(310-330) 2(780-800)

Cry1A (a,b,c) 490 CCGGTGCTGGATT TGTGTTA

AATCCCGTATTGT ACCAGCG

Carozzi et al., (1991)

Page 26: Genetica bioinformatica

LABORATORIO DE GENETICA 26

PAR DE OLIGONUCLEOTIDO

S (POSICION)

GEN RECONOCIDO

TAMAÑO DEL PRODUCTO DE

PCR (PB”)

SECUENCIA 5' - 3' REFERENCIA

cry1As 1(648-669) 2(1235-121)

Cry1lAa 588 AAATCAATGGGAA ATCTTTATG

Bacillus thuringiensis

Page 27: Genetica bioinformatica

LABORATORIO DE GENETICA 27

TCTCTTGTAAGTT GGGCTGT

PAR DE OLIGONUCLEOTIDO

GEN RECONOCIDO

TAMAÑO DEL PRODUCTO DE

SECUENCIA 5' - 3' REFERENCIA

Page 28: Genetica bioinformatica

LABORATORIO DE GENETICA 28

S (POSICION) PCR (PB”)

cry1As 1(301-320) 2(531-513)

Cry2Aa 231 ATGTAGCTCCTGT AGTCGGA

CCCTTATATTCGC TTGGAG

Bacillus thuringiensis

Page 29: Genetica bioinformatica

LABORATORIO DE GENETICA 29

CONCLUSIONES

Con esta práctica aprendimos a utilizar las herramientas de bioinformática ya que son de vital importancia para la búsqueda de información científica confiable para cualquier tipo de investigación biológica que nosotros deseamos realizar.

El Centro Nacional para la Información Biotecnológica (NCBI) es un sitio donde podemos encontrar información que nos permite conocer la secuencia de algunos organismos.

La herramienta de BLAST nos permite encontrar las secuencias de nucleótidos y también ver si es compatible con el organismo buscado.

Page 30: Genetica bioinformatica

LABORATORIO DE GENETICA 30

BIBLIOGRAFIA

http://www.ncbi.nlm.nih.gov/pubmed/24116104El impacto de la Helicobacter pylori La infección en la microbiota gástrico del Macaco RhesusDepartamento de Medicina de la Universidad de California Davis, Davis, California, Estados Unidos de América, el Departamento de Microbiología e Inmunología de la Universidad de California Davis, Davis, California, Estados Unidos de América.

http://www.jidc.org/index.php/journal/article/view/24042100 Original Article PDF. A study on the effect of Helicobacter pylori infection on p53 expression in gastric cancer and gastritis tissues.

http://www.ncbi.nlm.nih.gov/CBBresearch/Marino/reprints/Corpoica_pp_1-9.pdf Uso de reacciones en cadena polimerasa para caracterizar aislamientos nativos de Bacillus thuringiensis.