group theory - lecture notes complete 3rd ed

96
Course Lecture Notes 3 rd Edition

Upload: sjhsjh

Post on 24-Nov-2015

31 views

Category:

Documents


2 download

DESCRIPTION

group theory and chemistry.

TRANSCRIPT

  • CourseLectureNotes 3rd Edition

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page2

    AcknowledgmentsandWebResourcesTheselecturenoteshavebeenderivedfromseveralsourcesincludingGroupTheoryandChemistrybyDavidM.BishopISBN13:9780486673554andChemicalApplicationsofGroupTheorybyF.AlbertCottonISBN10:0471175706.PicturesofmolecularorbitalswerecalculatedusingFirefly.TheorbitalswereconvertedtocubeformatwithMoldenandrenderedwithPyMol.Forhelpwithsymmetryoperationsandsymmetryelementssee:http://www.molwave.com/software/3dmolsym/3dmolsym.htmAnimationsofmolecularvibrationscanbeseenhere:http://www.molwave.com/software/3dnormalmodes/3dnormalmodes.htm

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page3

    TableofContentsIntroduction.....................................................................................................................................6SymmetryElementsandSymmetryOperations..............................................................6IdentityE.......................................................................................................................................7RotationC.....................................................................................................................................7Reflection..................................................................................................................................8Inversioni.....................................................................................................................................8ImproperRotationS.................................................................................................................9ImmediateApplicationsofSymmetry...............................................................................10SymmetryOperations...............................................................................................................11AlgebraofOperators.................................................................................................................12Specialcaseoflinearoperators............................................................................................12Algebraoflinearoperators....................................................................................................13SumLaw.........................................................................................................................................13ProductLaw..................................................................................................................................13AssociativeLaw...........................................................................................................................13DistributiveLaw.........................................................................................................................13AlgebraofSymmetryOperators..........................................................................................14

    AssociativeLaw:..................................................................................................................14DistributiveLaw:................................................................................................................14

    DefinitionofaGroup.................................................................................................................16Summary........................................................................................................................................16ExampleGroups..........................................................................................................................17GroupMultiplicationTables..................................................................................................18RearrangementTheorem:......................................................................................................18Classes.............................................................................................................................................20SimilarityTransforms..............................................................................................................20

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page4

    PointGroups.................................................................................................................................22ClassificationofPointGroups...............................................................................................23SystematicMethodtoAssignPointGroups....................................................................24ClassesinSymmetryPointGroups.....................................................................................26PropertiesofMatrices..............................................................................................................28Matrixmathbasics.....................................................................................................................28

    AdditionandSubtraction................................................................................................28Matrixmultiplication........................................................................................................29MatrixDivision....................................................................................................................29SpecialMatrices...................................................................................................................30

    MatrixRepresentationsofSymmetryOperations........................................................31Identity....................................................................................................................................31Reflection...............................................................................................................................31Inversion.................................................................................................................................31Rotation..................................................................................................................................32ImproperRotations...........................................................................................................33

    VectorsandScalarProducts..................................................................................................35RepresentationsofGroups.....................................................................................................36TheGreatOrthogonalityTheorem......................................................................................38IrreducibleRepresentations..................................................................................................39TheReductionFormula...........................................................................................................44CharacterTables.........................................................................................................................45RegionIMullikenSymbolsforIrreducibleRepresentations...............................45RegionIICharacters..............................................................................................................46RegionIIITranslationsandRotations...........................................................................46RegionIVBinaryProducts...................................................................................................47WritingChemicallyMeaningfulRepresentations.........................................................47

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page5

    Vibrations......................................................................................................................................48SelectionRulesforVibrations...............................................................................................50SelectionRulesforRamanSpectroscopy.........................................................................51

    NormalCoordinateAnalysis..........................................................................................52IRandRamanSpectraofCH4andCH3F............................................................................60ProjectionOperator...................................................................................................................65BondingTheories.......................................................................................................................68LewisBondingTheory.............................................................................................................68VSEPRValenceShellElectronPairRepulsionTheory............................................68ValanceBondTheory................................................................................................................69HybridOrbitalTheory..............................................................................................................70MolecularOrbitalTheory........................................................................................................71

    Quantummechanicaldescriptionoforbitals..........................................................73GroupTheoryandQuantumMechanics...........................................................................74LCAOApproximation................................................................................................................75electronApproximation......................................................................................................75HckelOrbitalMethod.........................................................................................................76HckelOrbitalsforNitrite......................................................................................................77HckelMOsforCyclobutadiene..........................................................................................84HckelMOsforBoronTrifluoride.....................................................................................90Onefinalexercise....................................................................................................................95

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page6

    IntroductionSymmetry:Relationshipbetweenpartsofanobjectwithrespecttosize,shapeandposition.Easytorecognizesymmetryinnature:Flowers,leaves,animalsetc.GroupTheorydevelopedinthelate1700s.Early1800svaristeGalois18111832inventedmuchofthefundamentalsofgrouptheory.Thiscoincidedwithdevelopmentsinmatrixmathematics.Chemistsuseasubsetofgrouptheorycalledrepresentationtheory.GroupcharacterswereprimarilytheworkofGeorgeFrobenious18491917EarlychemicalapplicationstoquantummechanicscamefromtheworkofHermannWeyl18851955andEugeneWigner19021995

    SymmetryElementsandSymmetryOperationsAsymmetryelementisageometricentitypoint,lineorplaneAsymmetryoperatorperformsandactiononathreedimensionalobject

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page7

    Symmetryoperatorsaresimilartoothermathematicaloperators,,,log,cos,etcWewillbeuseonlyfivetypesofoperatorsinthissubjectOperator SymbolIdentity ERotation CMirrorplane Inversion iImproperrotation SAllsymmetryoperatorsleavetheshapemoleculeinanequivalentposition,i.e.itisindistinguishablebeforeandaftertheoperatorhasperformeditsaction.Identity(E)Thisoperatordoesnothingandisrequiredforcompleteness.Equivalenttomultiplyingby1oradding0inalgebra.Rotation(C)Rotateclockwisearoundanaxisby2/niftherotationbringstheshapemoleculeintoanequivalentposition.Thesymmetryelementiscalledtheaxisofsymmetry.Fora2\nrotationthereisannfoldaxisofsymmetry.ThisisdenotedasCn.Manymoleculeshavemorethanonesymmetryaxis.Theaxiswiththelargestniscalledtheprincipalaxis.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page8

    ConsiderasquareplanarmoleculelikePtCl4.

    possiblerotations. and WeclassifythisasE,2C4,C2.TherearealsotwootherC2axesalongthebondsandbetweenthebondsReflection()Theshapemoleculeisreflectedthroughaplane.spiegelisGermanformirrorIfaplaneistotheprincipalrotationaxisthenitiscalledhhorizontal.Ifitisalongtheprincipalaxisthenitiscalledvvertical.Theremaybemorethanonev.Iftheplanebisectsananglebetween3atomsthenitiscalledddihedral.Thereflectionplaneisthesymmetryelement.Inversion(i)Allpointsintheshapemoleculearereflectedthoughasinglepoint.Thepointisthesymmetryelementforinversion.Thisturnsthemoleculeinsideoutinasense.Thesymmetryelementisthepointthroughwhichtheshapeisinverted.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page9

    ImproperRotation(S)Rotationby2/nfollowedbyreflection,totherotationaxis.SinceperformingtwotimesisthesameasdoingnothingE,Scanonlybeperformedanoddnumberoftime. ifkisodd ifkisevenkmustbeanoddvaluee.g. and Additionally ifnisodd ifnisevenThesymmetryelementforSistherotationaxis.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page10

    ImmediateApplicationsofSymmetryDipoleMomentsIfamoleculehasadipolemomentthenthedipolemustliealongthesymmetryelementslines,planes.

    Ifamoleculehasaxisofrotation,thennodipoleexists. Ifthereisa,thenthedipolemustliewithintheplane.Ifthereare

    multiplethedipolemustlieattheintersectionoftheplanes. Ifamoleculehasaninversioncenterithennodipoleexists.

    ExampleswithH2O,NH3,PtCl4.OpticalActivityIngeneral,ifamoleculehasanimproperrotationSn,thenitisopticallyinactive.Thisisbecause,amoleculewithanSnisalwayssuperimposableonitsmirrorimage.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page11

    SymmetryOperationsIdentifyingallsymmetryelementsandoperationsinmolecules.CyclopropaneD3h

    E,2C3,3C2,h,2S3,3vThereisanandanalsocalled EthanestaggeredD3d

    E,2C3,3C2,i,2S6,3d1,3,5trihydroxybenzeneplanarC3h

    E,2C3,h2S3Thereisanandanalsocalled

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page12

    AlgebraofOperatorsAnoperatorisasymbolfortheoperationrotation,reflection,etce.g.C3istheoperatorfortheoperationofclockwiserotationby2/3Operatorscanoperateonfunctionsfxtogeneratenewfunctionse.g.Omultiplyby3fx23x2ThenOfx69x2Ocanbedefinedanywaywelike,d/dx,2,etcSpecialcaseoflinearoperatorsLinearoperatorshavethefollowingpropertyOf1f2Of1Of2AndOkf1kOf1wherekisaconstantDifferentiationclearlyisalinearoperator

    2 1or 2 1

    and 3

    3 6

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page13

    Algebraoflinearoperators1. SumLaw2. ProductLaw3. AssociativeLaw4. DistributiveLaw

    SumLaw

    ProductLaw

    O2operatesfirsttoproduceanewfunction,thenO1operatestoproduceanothernewfunction.Note:theorderofoperationsisimportanthere.O1O2maynotbethesameasO2O1,i.e.operatorsdonotnecessarilycommutewitheachother.AssociativeLaw

    2nd1st2nd1st

    DistributiveLaw

    and

    Dosymmetryoperatorsobeytheselaws?theydo

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page14

    consideracetoneE,C2,v1,v2SumLaw:thereisnoprocesstoaddsymmetryoperatorsAlgebraofSymmetryOperatorsProductLaw:Wedefinetheproductofsymmetryoperatorsas:dooneoperationfollowedbyanother:e.g.PQfmeansapplyQtofandthenapplyPtotheresultwherePandQaresomesymmetryoperation.Or,alternativelyPQRwhereRisalsoasymmetryoperation.C2v1fC2v1fC2v1v2andC2v1fresultsinthesameconfigurationasv2fAssociativeLaw:C2v1v2f C2v1v2fv1v2C2 C2v1v2C2C2E v2v2EGenericallyPQRPQRDistributiveLaw:Thereisnoprocesstoaddsymmetryoperators

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page15

    ConsidertheammoniamoleculeC3v

    E,2C3,3vNoteherethat Iftwooperatorscombinetogivetheidentity,wesaythattheyareinversetoeachother.

    Itisalsotruethat orgenericallyPQQPEi.e.symmetryoperatorsthatareinversetooneanothercommute.hhEiiEmirrorplanesarealwaysinversetothemselves,likewiseinversionisalwaysinversetoitself.GenericallywewritePQ1P1Q1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page16

    DefinitionofaGroupTherearefourdefiningrulesforgroups.

    1. Thecombinationofanytwoelementsaswellasthesquareofeachelementmustbeinthegroup.

    Combiningrulecanbedefinedasanythingmultiplication,differentiation,onefollowedbyanother,etcPQR;RmustbeinthegroupThecommutativelawmaynotholdABBA

    2. Oneelementmustcommutewithallotherelementsandleavethemunchanged.Thatis,anidentityelementmustbepresent.

    ERRER;Emustbeinthegroup3. Theassociativelawmusthold.

    PQRPQR;forallelements4. Everyelementmusthaveaninversewhichisalsointhegroup.

    RR1R1RE;R1mustbeinthegroupSummaryDefinitionofagroupPQR

    RmustbeinthegroupERRER

    EmustbeinthegroupPQRPQR

    forallelementsRR1R1RE

    R1mustbeinthegroup

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page17

    ExampleGroupsWithacombiningruleofaddition,allintegersformagroup.Theidentityelementis0,andtheinverseofeachelementisthenegativevalue.Thisisanexampleofaninfinitegroup.Withacombiningruleofmultiplication,wecanformafinitegroupwiththefollowingseti,i,1,1Theidentityelementis1inthiscase.Asetofmatricescanalsoformafinitegroupwiththecombiningruleofmatrixmultiplication.

    1 0 0 00 1 0 00 0 1 00 0 0 1

    0 1 0 01 0 0 00 0 0 10 0 1 0

    0 0 0 10 0 1 00 1 0 01 0 0 0

    0 0 1 00 0 0 11 0 0 00 1 0 0

    Theidentitymatrixis1 0 0 00 1 0 00 0 1 00 0 0 1

    e.g.

    0 1 0 01 0 0 00 0 0 10 0 1 0

    0 0 0 10 0 1 00 1 0 01 0 0 0

    0 0 1 00 0 0 11 0 0 00 1 0 0

    aikelementintheithrowandkthcolumn

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page18

    Lastly,thesetofsymmetryoperatorsnotsymmetryelementspresentforagivenmolecularshapeformsagroupwiththecombiningruleofonefollowedbyanother.Thesetypesofgroupsarecalledpointgroups.

    GroupMultiplicationTablesThenumberofelementssymmetryoperatorsinthegroupiscalledtheorderofthegrouphRearrangementTheorem:Inagroupmultiplicationtable,eachrowandcolumnlistseachelementinthegrouponceandonlyonce.Notworowsortwocolumnsmaybeidentical.Consideragroupoforder3G3 E A BE E A BA A ? ?B B ? ?TherearetwooptionsforfillingoutthetableAABorAAEIfAAEthenthetablebecomesG3 E A BE E A BA A E BB B A EThisviolatestherearrangementtheoremasthelasttwocolumnshaveelementsthatappearmorethanonce.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page19

    TheonlysolutionforgroupG3isG3 E A BE E A BA A B EB B E ANote:ThegroupG3isamemberofasetofgroupscalledcyclicgroups.CyclicgroupshavethepropertyofbeingAbelian,thatisallelementscommutewitheachother.Acyclicgroupisonewhicheveryelementcanbegeneratedbyasingleelementanditspowers.InthiscaseAAandAAA2BandAAAA3E.Therearetwopossiblegroupsoforder4G4 E A B CE E A B CA A B C EB B C E AC C E A B

    G4 E A B CE E A B CA A E C BB B C E AC C B A E

    InthesecondcaseofG4thereisasubgroupoforder2present.G2 E AE E AA A ETheorderofasubgroupgmustbeadivisoroftheorderofthemaingrouph,thatish/gk,wherekisaninteger.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page20

    ClassesGroupscanfurtherbedividedintosmallersetscalledclasses.SimilarityTransformsIfA,BandXareinagroupandX1AXBwesaythatBissimilaritytransformofAbyX.WealsocansaythatAandBareconjugateofeachother.Conjugateelementshavethefollowingproperties

    1 AllelementsareconjugatewiththemselvesAX1AXforsomeX

    2 IfAisconjugatetoB,thenBisconjugatetoAAX1BXandBY1AYwithX,Yinthegroup

    3 IfAisconjugatetoBandCthenBandCarealsoconjugatesofeachother.

    Thecompletesetofelementsoperationsthatareconjugatetoeachotheriscalledaclass.FindtheclassesinG6G6 E A B C D FE E A B C D FA A E D F B CB B F E D C AC C D F E A BD D C A B F EF F B C A E DEisinaclassbyitselfoforder1A1EAEetc..

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page21

    OtherclassesinG6E1AEAA1AAAB1ABCC1ACBD1ADBF1AFCWeseeherethattheelementsA,BandCareallconjugatetoeachotherandformaclassoforder3.E1DEDA1DAFB1DBFC1DCFD1DDDF1DFDWeseeherethattheelementsDandFareconjugatetoeachotherandformaclassoforder2.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page22

    PointGroupsConsiderallofthesymmetryoperationsinNH3

    EvvvC3NH3 E v v v C3 E E v v v C3 v v E C3 v vv v E C3 v vv v C3 E v vC3 C3 v v v E v v v E C3NotethatalloftherulesofagroupareobeyedforthesetofallowedsymmetryoperationsinNH3.G6 E A B C D FE E A B C D FA A E D F B CB B F E D C AC C D F E A BD D C A B F EF F B C A E DComparethemultiplicationtableofNH3tothatofG6.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page23

    Thereisa1:1correspondencebetweentheelementsineachgroupEEvAvBvCC3DCFGroupsthathavea1:1correspondencearesaidtobeisomorphictoeachother.Ifthereisamorethan1:1correspondencebetweentwogroups,theyaresaidtobehomomorphictoeachother.AllgroupsarehomomorphicwiththegroupE.i.e.AE,BE,CEetcClassificationofPointGroupsSchoenfliesNotation

    GroupName

    EssentialSymmetryElements*

    Cs oneCi oneiCn oneCnDn oneCn plusnC2 toCnCnv oneCn plusnvCnh oneCn plushDnh thoseofDn plushDnd thoseofDn plusdSnevenn oneSnTd tetrahedron

    SpecialGroupsOh octahedronIh icosahedronsHh sphere

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page24

    SystematicMethodtoAssignPointGroups

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page25

    Assignthepointgroupstothefollowingmolecules

    ionlyCi

    CnC3

    C3h C3v

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page26

    ClassesinSymmetryPointGroupsYoucantestallpossiblesimilaritytransformstofindtheconjugateelements.X1AXB,howeverthisistediousandwithsymmetryelementsitismucheasiertosortclasses.Twooperationsbelongtothesameclassifonemaybereplacedbyanotherinanewcoordinatesystemwhichisaccessiblebyanallowedsymmetryoperationinthegroup.ConsiderthefollowingforaD4hgroup

    C4x,yy,xandx,yy,xReflectthecoordinatesystembyd

    x,yy,xandx,yy,xBychangingthecoordinatesystemwehavesimplyreplacetherolesthatC4andplay.Thatis and

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page27

    Moregenerallywecanstatethefollowing

    1. E,iandharealwaysinaclassbythemselves.

    2. and areinthesameclassforeachvalueofkaslongasthereisaplaneofsymmetryalongtheaxisoraC2to.Ifnotthenand areinclassesbythemselves.Likewiseforand .

    3. andareinthesameclassifthereisanoperationwhichmovesoneplaneintotheother.Likewiseforandthatarealongdifferentaxes.

    ConsidertheelementsofD4hsquareplaneThereare10classesinthisgroupwithorder14

    E and ihvandvdanddC2alongzandxyandx,yand

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page28

    PropertiesofMatricesMatrix:rectangulararrayofnumbersorelements

    aijithrowandjthcolumn

    Avectorisaonedimensionalmatrix

    ThiscouldbeasetofCartesiancoordinatesx,y,z

    MatrixmathbasicsAdditionandSubtractionMatricesmustbethesamesizeCijAijBij addorsubtractthecorrespondingelementsineachmatrixMultiplicationbyascalarkkaijkaij everyelementismultipliedbytheconstantk

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page29

    Matrixmultiplication

    aikelementintheithrowandkthcolumn

    Where c11a11b11a12b21 c12a11b12a12b22 etcmatrixmultiplicationisnotcommutativeABBAMatrixDivisionDivisionisdefinedasmultiplyingbytheinverseofamatrix.Onlysquarematricesmayhaveaninverse.TheinverseofamatrixisdefinedasAA1ij ijKroneckerdelta

    ij1ifijotherwiseij0

    1 0 00 1 00 0 1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page30

    SpecialMatricesBlockdiagonalmatrixmultiplication

    1 0 0 0 0 01 2 0 0 0 00 0 3 0 0 00 0 0 1 3 20 0 0 1 2 20 0 0 4 0 1

    4 1 0 0 0 02 3 0 0 0 00 0 1 0 0 00 0 0 0 1 20 0 0 3 0 20 0 0 2 1 1

    4 1 0 0 0 08 7 0 0 0 00 0 3 0 0 00 0 0 13 3 100 0 0 10 3 80 0 0 2 5 9

    Eachblockismultipliedindependentlyi.e.1 01 2

    4 12 3

    4 18 7

    31 3

    1 3 21 2 24 0 1

    0 1 23 0 22 1 1

    13 3 1010 3 82 5 9

    SquareMatrices Thisisthesumofthediagonalelementsofamatrixtrace.AiscalledthecharacterofmatrixApropertiesof ifCABandDBAthenCDconjugatematriceshaveidenticalPB1PBthenRBTherefore,operationsthatareinthesameclasshavethesamecharacter.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page31

    MatrixRepresentationsofSymmetryOperationsWewillnowusematricestorepresentsymmetryoperations.Considerhowanx,y,zvectoristransformedinspaceIdentityE

    1 0 00 1 00 0 1

    Reflectionxy

    1 0 00 1 00 0 1

    xz

    1 0 00 1 00 0 1

    Inversioni

    1 0 00 1 00 0 1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page32

    RotationCnaboutthezaxis

    ? ? 0? ? 00 0 1

    Thezcoordinateremainsunchanged.

    Consideracounterclockwiserotationbyaboutthezaxis

    Fromtrigonometryweknowthat cos sin and sin cos Representedinmatrixformthisgives:cos sin sin cos

    Foraclockwiserotationwefind

    cos sin sin cos

    recallcos cos sin sin

    Thetransformationmatrixforaclockwiserotationbyis:

    cos sin 0 sin cos 0

    0 0 1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page33

    ImproperRotationsSnBecauseanimproperrotationmaybeexpressedasxyCnwecanwritethefollowingsincematricesalsofollowtheassociativelaw.

    1 0 00 1 00 0 1

    cos sin 0 sin cos 0

    0 0 1

    cos sin 0 sin cos 0

    0 0 1

    Thesetofmatricesthatwehavegeneratedthattransformasetofx,y,zorthogonalcoordinatesarecalledorthogonalmatrices.Theinverseofthesematricesarefoundbyexchangingrowsintocolumnstakingthetransposeofthematrix.ConsideraC3rotationaboutthezaxis.

    0

    00 0 1

    exchangingrowsintocolumnsgives

    0

    00 0 1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page34

    Multiplyingthesetwomatricesgivestheidentitymatrix

    0

    00 0 1

    0

    00 0 1

    1 0 00 1 00 0 1

    Wealreadyknowfromsymmetrythat Hereweseethatandareinverseandorthogonaltoeachother.IngeneralwecanwriteasetofhomomorphicmatricesthatformarepresentationofagivenpointgroupForexample,considerthewatermoleculewhichbelongstotheC2vgroup.C2vcontainsE,C2,xz,yzThesetoffourmatricesbelowtransformandmultiplyexactlylikethesymmetryoperationsinC2v.Thatis,theyarehomomorphictothesymmetryoperations.

    1 0 00 1 00 0 1

    ,1 0 00 1 00 0 1

    ,1 0 00 1 00 0 1

    ,1 0 00 1 00 0 1

    EC2xzyzShowthatC2xzyz

    1 0 00 1 00 0 1

    1 0 00 1 00 0 1

    1 0 00 1 00 0 1

    Thealgebraofmatrixmultiplicationhasbeensubstitutedforthegeometryofapplyingsymmetryoperations.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page35

    VectorsandScalarProductsConsidertwovectorsin2Dspace

    ThescalarordotproductresultsinascalarornumberDefinedasthelengthofeachvectortimeseachothertimesthecosoftheanglebetweenthem:ABABcos

    If90thenAB0If0thenABAB

    Wecanwritethefollowing:angletothexaxisforAgreaterangletothexaxisforB

    ProjectionsAxAcosAyAsinBxBcosByBsin

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page36

    UsingatrigidentitywecanwriteABABcoscossinsinRearrangetoAcosBcosAsinBsinSubstitutefromaboveABAxBxAyByMoregenerally

    forndimensionalspace

    Orthogonalvectorsaredefinedasthoseforwhichthefollowingistrue

    0

    RepresentationsofGroupsThefollowingmatricesformarepresentationoftheC2vpointgroup

    1 0 00 1 00 0 1

    ,1 0 00 1 00 0 1

    ,1 0 00 1 00 0 1

    ,1 0 00 1 00 0 1

    EC2xzyzGroupMultiplicationTableforC2vC2v E C2 xz yzE E C2 xz yzC2 C2 E yz xzxz xz yz E C2yz yz xz C2 E

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page37

    HowmanyotherrepresentationsexistfortheC2vpointgroup?A:AsmanyaswecanthinkupThesetofnumbers1,1,1,1transformlikeC2vetcHowever,thereareonlyafewrepresentationsthatareoffundamentalimportance.ConsiderthematricesE,A,B,C,andweperformasimilaritytransformwithQEQ1EQAQ1AQBQ1BQEtcForexampleAQ1AQ

    AQ1AQ

    ThesimilaritytransformofAbyQwillblockdiagonalizeallofthematricesAlloftheresultingsubsetsformrepresentationsofthegroupaswelle.g. , , .WesaythatE,A,B,Carereduciblematricesthatformasetofreduciblerepresentations.IfQdoesnotexistwhichwillblockdiagonalizeallofthematrixrepresentationsthenwehaveanirreduciblerepresentation.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page38

    TheGreatOrthogonalityTheoremThetheoremstates

    Where;horderofthegroup#ofsymmetryoperatorsithrepresentation dimensionofe.g.33,3RgenericsymbolforanoperatortheelementinthemthrowandnthcolumnofanoperatorRinrepresentationcomplexconjugateoftheelementinthemthrowandnthcolumnofanoperatorRinrepresentationWhatdoesthisallmean?Foranytwoirreduciblerepresentations, Anycorrespondingmatrixelementsonefromeachmatrixbehaveascomponentsofavectorinhdimensionalspace,suchthatallvectorsareorthonormal.Thatis,orthogonalandofunitlength.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page39

    ExaminethetheoremundervariousconditionsIfvectorsarefromdifferentrepresentationsthentheyareorthogonal

    0ifij

    Ifvectorsarefromthesamerepresentationbutaredifferentsetsofelementsthentheyareorthogonal

    0ifmm'ornn'

    Thesquareofthelengthofanyvectorish/li

    IrreducibleRepresentationsTherearefiveimportantrulesconcerningirreduciblerepresentations

    1 Thesumofthesquaresofthedimensionsoftheirreduciblerepresentationsofagroupisequaltotheorderofthegroup

    2 Thesumofthesquaresofthecharactersinanirreduciblerepresentationisequaltotheorderofthegroup

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page40

    3 Vectorswhosecomponentsarethecharactersoftwoirreduciblerepresentationsareorthogonal

    0whenij

    4 Inagivenrepresentationreducibleorirreduciblethecharactersofallmatricesbelongingtothesameclassareidentical

    5 Thenumberofirreduciblerepresentationsofagroupisequaltothe

    numberofclassesinthegroup.Letslookatasimplegroup,C2vE,C2,v,vTherearefourelementseachinaseparateclass.Byrule5,theremustbe4irreduciblerepresentations.Byrule1,thesumofthesquaresofthedimensionsmustbeequaltoh4.

    4Theonlysolutionis 1ThereforetheC2vpointgroupmusthavefouronedimensionalirreduciblerepresentations.C2v E C2 v v1 1 1 1 1Allotherrepresentationsmustsatisfy 4Thiscanonlyworkfori1.Andforeachoftheremainingtobeorthogonalto1theremustbetwo1andtwo1.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page41

    Therefore,theremainingmustbeEisalways1C2v E C2 v v1 1 1 1 12 1 1 1 13 1 1 1 14 1 1 1 1Takeanytwoandverifythattheyareorthogonal12111111110ThesearethefourirreduciblerepresentationofthepointgroupC2vConsidertheC3vgroupE,2C3,3vTherearethreeclassessotheremustbethreeirreduciblerepresentations

    6Theonlyvalueswhichworkare 1, 1, 2Thatis,twoonedimensionalrepresentationsandonetwodimensionalrepresentation.Sofor1wecanchooseC3v E 2C3 3v1 1 1 1For2weneedtochoose1tokeeporthogonalityC3v E 2C3 3v1 1 1 12 1 1 112112113110

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page42

    C3v E 2C3 3v1 1 1 12 1 1 13 2 Tofind3wemustsolvethefollowing

    12 21 31 0

    12 21 31 0

    Solvingthissetoftwolinearequationandtwounknownsgives 1and 0

    ThereforethecompletesetofirreduciblerepresentationsisC3v E 2C3 3v1 1 1 12 1 1 13 2 1 0WehavederivedthecharactertablesforC2vandC3vcheckthebookappendixC2v E C2 v v C3v E 2C3 3vA1 1 1 1 1 A1 1 1 1A2 1 1 1 1 A2 1 1 1B1 1 1 1 1 E 2 1 0B2 1 1 1 1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page43

    Wenowknowthatthereisasimilaritytransformthatmayblockdiagonalizeareduciblerepresentation.Duringasimilaritytransformthecharacterofarepresentationisleftunchanged.

    WhereRisthecharacterofthematrixforoperationRandajisthenumberoftimesthatthejthirreduciblerepresentationappearsalongthediagonal.ThegoodnewsisthatwedonotneedtofindthematrixQtoperformthesimilaritytransformandblockdiagonalizethematrixrepresentations.Becausethecharactersareleftintact,wecanworkwiththecharactersalone.WewillmultiplytheabovebyiRandsumoveralloperations.

    and

    Recallthat

    Foreachsumoverjwehave

    Thecharactersforiandjformorthogonalvectorswecanonlyhavenonzerovalueswhenij

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page44

    TheReductionFormulaTheaboveleadstotheimportantresultcalledTheReductionFormula

    1

    Whereaiisthenumberoftimestheithirreduciblerepresentationappearsinthereduciblerepresentation.C3v E 2C3 3v1 1 1 12 1 1 13 2 1 0a 5 2 1b 7 1 3ApplythereductionformulatoaandbFora

    16 115 212 311 1

    16 115 212 311 2

    16 125 212 301 1

    Forb

    16 117 211 313 0

    16 117 211 313 3

    16 127 211 303 2

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page45

    SumthecolumnsForaC3v E 2C3 3v1 1 1 12 1 1 12 1 1 13 2 1 0a 5 2 1 ForbC3v E 2C3 3v2 1 1 12 1 1 12 1 1 13 2 1 03 2 1 0b 7 1 3

    CharacterTablesForC3vwefindthefollowingcharactertablewithfourregions,IIV.C3v E 2C3 3v A1 1 1 1 z x2y2, z2A2 1 1 1 RzE 2 1 0 x,yRx,Ry x2y2,xyxz,yzI II III IV

    RegionIMullikenSymbolsforIrreducibleRepresentations

    1 All11representationsareAorB,22areEand33areT

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page46

    2 11whicharesymmetricwithrespecttorotationby2/nabouttheprincipleCnaxisareAi.e.thecharacteris1underCn.ThosethatareantisymmetricarelabeledBthecharacteris1underCn.

    3 Subscripts1or2areaddedtoAandBtodesignatethosethataresymmetric1orantisymmetric2toaC2toCnorifnoC2ispresentthentoav.

    4 andareattachedtothosethataresymmetricorantisymmetricrelativetoah.

    5 Ingroupswithaninversioncenteri,subscriptgGermanforgeradeorevenisaddedforthosethataresymmetricwithrespecttoiorasubscriptuGermanforungeradeorunevenisaddedforthoseantisymmetricwithrespecttoi.

    6 LabelsforEandTrepresentationsaremorecomplicatedbutfollowthesamegeneralrules.

    RegionIICharactersThisregionlistthecharactersoftheirreduciblerepresentationsforallsymmetryoperationsineachgroup.RegionIIITranslationsandRotationsTheregionassignstranslationsinx,yandzandrotationsRx,Ry,Rztoirreduciblerepresentations.E.g.,inthegroupabovex,yislistedinthesamerowastheEirreduciblerepresentation.Thismeansthatifoneformedamatrixrepresentationbasedonxandycoordinates,itwouldtransformthatishavethesamecharactersasidenticallyasE.RecallthatpreviouslywelookedataC3transformationmatrixforasetofCartesiancoordinates

    0

    00 0 1

    Noticethatthismatrixisblockdiagonalized.Ifwebreakthisintoblocksweareleftwith

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page47

    and1

    ComparethecharactersofthesematricestothecharactersunderC3inthetableabove.Noticethatforx,y1andforz1.Ifyoucomparedthecharactersforalloftheothertransformationmatricesyouwillseethatx,yEandzA1asshowninregionIIIofthetable.Similaranalysiscanbemadewithrespecttorotationsaboutx,yandz.RegionIVBinaryProductsThisregionlistvariousbinaryproductsandtowhichirreduciblerepresentationthattheybelong.Thedorbitalshavethesamesymmetryasthebinaryproducts.Forexamplethedxyorbitaltransformsthesameasthexybinaryproduct.

    WritingChemicallyMeaningfulRepresentationsWewillbeginbyconsideringthesymmetryofmolecularvibrations.Toagoodapproximation,molecularmotioncanbeseparatedintotranslational,rotationalandvibrationalcomponents.Eachatominamoleculehasthreedegreesoffreedommotionpossible.Anentiremoleculethereforehas3NdegreesoffreedomforNatoms.3DOFarefortranslationinx,yandz.3DOFareforrotationinx,yandznote:linearmoleculescanonlyrotatein2dimensionsTheremainDOFarevibrationalinnatureAmoleculewillhave 3N6possiblevibrations

    3N5forlinearmolecules

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page48

    Usingthetoolsofclassicalmechanicsitispossibletosolvefortheenergiesofallvibrationsthinkballsandspringsmodelforamolecule.Thecalculationsaretediousandcomplicatedandasearlyasthe1960scomputershavebeenusedtodothecalculations.1VibrationsWecanusethetoolsofgrouptheorytodeducethequalitativeappearanceofthenormalmodesofvibration.WellstartwithasimplemoleculelikeH2O.Forwaterweexpect3N63normalmodesofvibration.Waterissimpleenoughthatwecanguessthemodes.

    symmetricstretchingantisymmetricstretchingbendingAssignthesethreevibrationstoirreduciblerepresentationsintheC2vpointgroup.C2v E C2 xz 'yz A1 1 1 1 1 zA2 1 1 1 1 RzB1 1 1 1 1 x,RyB2 1 1 1 1 y,RxConsiderthedisplacementvectorsredarrowsforeachmodeandwritewhathappensundereachsymmetryoperation.1Formoreinformationonthesecalculations,lookupFandGmatricesinagrouptheoryorphysicalchemistrytext.Insummarythismethodsumsupandsolvesallofthepotentialenergiesbasedontheforceconstants(bondstrength)anddisplacementvectors(vibrations). . where,fikistheforceconstantandsiandskaredisplacements(stretchingorbending).Thetermfiisi2representsthepotentialenergyofapurestretchorbendwhilethecrosstermsrepresentinteractionsbetweenthevibrationalmodes.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page49

    Symmetricstretching1E1,C21,xz1,'yz1AntiSymmetricstretching2E1,C21,xz1,'yz1Bending3E1,C21,xz1,'yz1C2v E C2 xz 'yzA1 1 1 1 1 zA2 1 1 1 1 RzB1 1 1 1 1 x,RyB2 1 1 1 1 y,Rx1 1 1 1 12 1 1 1 13 1 1 1 1Inamorecomplicatedcasewewouldapplythereductionformulatofindtheirrwhichcomprise.However,inthiscaseweseebyinspectionthat1A12B13A1Amoregeneralizedapproachtofindingwillbediscussedlater.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page50

    SelectionRulesforVibrationsBornOppenheimerapproximation:electronsmovefastrelativetonuclearmotion.

    Where:istheelectronicwavefunctionandisthenuclearwavefunction isthedipolemomentoperator

    e e

    Where:riistheradiusvectorfromtheorigintoachargeqianelectroninthiscaseeistheprotonchargeZisthenuclearchargeristheradiusvectorforanucleusIntegralsofthistypedefinetheoverlapofwavefunctions.Whentheaboveintegralisnotequalto0,avibrationaltransitionissaidtobeallowed.Thatis,thereexistssomedegreeofoverlapofthetwowavefunctionsallowingthetransitionfromonetotheother.In1800SirWilliamHerschelputathermometerinadispersedbeamoflight.Whenheputthethermometerintotheregionbeyondtheredlighthenotedthetemperatureincreasedevenmorethanwhenplacedinthevisiblelight.HehaddiscoveredinfraredIRlight.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page51

    SimilartoelectronictransitionswithvisibleandUVlight,IRcanstimulatetransitionsfrom12.Asimplifiedintegraldescribingthistransitionis

    whichisallowedwhentheintegraldoesnotequalzero.Inthisintegralvibrationalgroundstatewavefunctionand isthethfundamentalvibrationallevelwavefunction.Whatthisallmeansisthatavibrationaltransitionintheinfraredregionisonlyallowedifthevibrationcausesachangeinthedipolemomentofthemolecule.DipolemomentstranslatejustliketheCartesiancoordinatevectorsx,yandz.Thereforeonlyvibrationsthathavethesamesymmetryasx,yorzareallowedtransitionsintheinfrared.SelectionRulesforRamanSpectroscopyInRamanspectroscopy,incidentradiationwithanelectricfieldvectormayinduceadipoleinamolecule.Theextentofwhichdependsonthepolarizabilityofthemoleculepolarizabilityoperator.

    TransitionsinRamanspectroscopyareonlyallowedifthevibrationcausesachangeinpolarizability.Polarizabilitytransformslikethebinaryproducttermsxy,z2etcandthereforevibrationsthathavethesamesymmetryasthebinaryproductsareallowedtransitionsinRamanspectroscopy.Forwater,allthreevibrationsareIRandRamanactive.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page52

    NormalCoordinateAnalysisLetsfindallofthevibrationalmodesforwaterinasystematicway.Weexpect3N63vibrations.Asimplewaytodescribeallpossiblemotionsofamoleculeistoconsiderasetofthreeorthonormalcoordinatescenteredoneachatom.Forwater,thisresultsinasetof9vectorsshownbelow.Anypossiblemotionwillbethesumofallninecomponents.

    Now,wewillwritethefourtransformationmatricesthatrepresentthetransformationoftheseninevectorsundertheoperationsoftheC2vpointgroupE,C2,vxz,vyz

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page53

    1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1

    9

    0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 01 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0

    1

    1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1

    3

    0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 01 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0

    1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page54

    Thereduciblerepresentationthatwehavejustformedisdenoted3N,toindicatewehaveused3orthonormalvectorsoneachatom.Nowthatwehavethetransformationmatriceswecanwritethecharactersfor3NC2v E C2 xz 'yz A1 1 1 1 1 zA2 1 1 1 1 RzB1 1 1 1 1 x,RyB2 1 1 1 1 y,Rx3N 9 1 3 1 Thenextstepistofindthelinearcombinationofirreduciblerepresentationsthecomprise3N.Wedothisbyapplicationofthereductionformulato3N.

    a 14 91 11 31 11 3

    a 14 91 11 31 11 1

    a 14 91 11 31 11 3

    a 14 91 11 31 11 2

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page55

    LetsfindallofthevibrationalmodesforNH3.Weexpect3N66vibrations.Asimplewaytodescribeallpossiblemotionsofamoleculeistoconsiderasetofthreeorthonormalcoordinatescenteredoneachatom.ForNH3,thisresultsinasetof12vectors.Anymotionwillbethesumofalltwelvecomponents.

    Asperformedpreviouslyforasetofthreex,yandzvectorswecanwriteatransformationmatrixthatdescribeswhathappenstoeachofthevectorsforeachsymmetryoperationinthegroup.Wenowneedtofindthecharactersof3NC3v E 2C3 3v A1 1 1 1 z x2y2,z2A2 1 1 1 RzE 2 1 0 x,yRx,Ry x2y2,xyxz,yz3N ? ? ?Thetransformationmatriceswillbe1212.However,weareonlyinterestedinthecharactersofeachmatrix.ForEthecharacterwillbe12sinceallelementsremainunchanged.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page56

    ConsideraC3rotation:OnlyvectorsontheNatomwillgointothemselves.Fromourpreviousresultsweknowthatx,yandztransformlike

    1232 0 0 0 0 0 0 0 0 0 0

    32 12 0 0 0 0 0 0 0 0 0 0

    0 0 1 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 1 0 0 0 0

    0 0 0 0 0 0 1 0 0 0 0 0

    0 0 0 0 0 0 0 0 1 0 0 0

    0 0 0 0 0 0 0 0 0 0 1 0

    0 0 0 0 0 0 0 0 0 1 0 0

    0 0 0 0 0 0 0 0 0 0 0 1

    0 0 0 0 1 0 0 0 0 0 0 0

    0 0 0 1 0 0 0 0 0 0 0 0

    0 0 0 0 0 1 0 0 0 0 0 0Allothercomponentsareoffdiagonalanddonotcontributetothecharacterofthematrix.Here,0forC3.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page57

    Fortheverticalmirrorplane,vFourvectorsremainunchangedonNandHandtwogointo1ofthemselvesonNandH.Theother6ontheoutofplaneHatomsallbecomeoffdiagonalelements.2111111000000

    Nowwecanwrite3NC3v E 2C3 3v A1 1 1 1 z x2y2,z2A2 1 1 1 RzE 2 1 0 x,yRx,Ry x2y2,xyxz,yz3N 12 0 2Applythereductionformulatofindwhatirrcomprise3N

    1

    a 16 1112 210 312 3

    a 16 1112 210 312 1

    a 16 1212 210 302 4

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page58

    Wewritethefollowing 3 4

    However,3Ndescribesallpossiblemotion,includingtranslationandrotation.Inspectionofthecharactertablerevealsthat

    Thisleavesthevibrationsas 2 2noticewepredicted6normalmodesandwehave6dimensionsrepresentedtwo11andtwo22.Nowwewillwritepicturesrepresentingwhatthevibrationslooklike.issymmetricwithrespecttoalloperations

    symmetricstretchingsymmetricbending

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page59

    TheEmodesaredegenerate.Thatistheyaremadeupofvibrationsthatareofequalenergy.asymmetricstretching

    Thethirdpossiblewayofdrawinganasymmetricstretchisjustalinearcombinationofthetwoaboveaddthetwovibrations.asymmetricbending

    Aswiththestretches,thethirdbendisformedfromalinearcombinationoftheothertwoandisnotuniquesubtractthetwobends.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page60

    IRandRamanSpectraofCH4andCH3FMethaneCH4belongstotheTdpointgroupPerformthenormalcoordinateanalysisformethaneanddeterminethenumberandsymmetryofallIRandRamanactivebandsTherewillbe3569normalmodesofvibrationinbothmoleculesNormalCoordinateAnalysisofCH41stwritethecharactersfor3NTd E 8C3 3C2 6S4 6d A1 1 1 1 1 1 x2y2z2A2 1 1 1 1 1 E 2 1 2 0 0 2z2x2y2T1 3 0 1 1 1 Rx,Ry,Rz x2y2T2 3 0 1 1 1 x,y,z xy,xz,yz3N 15 0 1 1 3 Reduce3Nintoitsirreduciblerepresentations.

    124 15 0 3 6 18 1

    124 15 0 3 6 18 0

    124 30 0 6 0 0 1

    124 45 0 3 6 18 1

    124 45 0 3 6 18 3

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page61

    3 and Subtractingthetranslationalandrotationalirreduciblerepresentationsweareleftwith 2 IRactivemodesarethe6modesin2 All9modesareRamanactiveCalculatedIRandRamanspectraforCH4areshownbelow2

    2SpectracalculatedbyGAMESSusingHartreeFockmethods

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page62

    Raman Spectrum

    1400160018002000220024002600280030003200Energy (cm-1)

    0

    1

    Inte

    nsity

    NormalCoordinateAnalysisofCH3FNowweperformtheidenticalanalysisforCH3FwhichbelongstotheC3vpointgroup.1stwritethecharactersfor3NC3v E 2C3 3v A1 1 1 1 z x2y2,z2A2 1 1 1 RzE 2 1 0 x,yRx,Ry x2y2,xyxz,yz3N 15 0 3 Reduce3Nintoitsirreduciblerepresentations.

    16 15 0 9 4

    16 15 0 9 1

    16 30 0 0 5

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page63

    4 5 and Subtractingthetranslationalandrotationalirreduciblerepresentationsweareleftwith 3 3All9modesareIRactiveAll9modesareRamanactiveCalculatedIRandRamanspectraforCH3Fareshownbelow

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page64

    AlternateBasisSetsTohelpdrawpicturesofthevibrationalmodeswecanuseabasissetthatrelatesmoredirectlytovibrations,calledinternalcoordinates.ForCH4wecanuseCHbondstretchesasabasisandHCHbendsasabasis.Td E 8C3 3C2 6S4 6dCH 4 1 0 0 2 StretchesHCH 6 0 2 0 2 bends Ifweaddthisupwefindthatthisis10normalmodesbutweexpectonly9.LookingatthebendingmodesweseeanA1representation.SincethereisnowaytoincreaseallthebondanglesatonceinCH4thismustbediscounted.Inordertovisualizethevibrationsbemustmakelinearcombinationsofourbasissetelementsthatareorthonormalsymmetryadapted.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page65

    ProjectionOperatorTheprojectionoperatorallowsustofindthesymmetryadaptedlinearcombinationsweneedtovisualizethevibrationalmodesinCH4andCDH3.

    WherethedimensionoftheirreduciblerepresentationitheorderofthegroupcharacterofoperationRresultofthesymmetryoperationRonabasisfunctionProjectouttheA1modeformethanerecall Td E 8C3 3C2 6S4 6dA1 1 1 1 1 1

    Nowwemustlabelourbasisfunctionsandkeeptrackofwhathappenstothemundereachoperation.

    124

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page66

    6 6 6 6

    Asyouwouldpredictthisisthetotallysymmetricstretch

    A1stretchingmodeDothesamefortheT2modeTd E 8C3 3C2 6S4 6dT2 3 0 1 1 1 324 3 0

    324 6 2 2 2 14 3

    Thisisanasymmetricstretchingmodethatistriplydegenerate.

    T2stretchingmodesOnemustprojectouttwootherbasisfunctionstofindtheothertwomodes.Theywilllookidenticalbutberotatedrelativetothemodedrawnhere.Noticethe1functionisdisplaced3timesmorethantheother3basisfunctions.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page67

    Inananalogousmannerthebendingmodesmaybeprojectedtorevealthefollowing:

    Ebendingmodes T2bendingmodesAnimationsofthesevibrationscanbeseenonlinehere:http://www.molwave.com/software/3dnormalmodes/3dnormalmodes.htm

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page68

    BondingTheoriesLewisBondingTheoryAtomsseektoobtainanoctetofelectronsintheoutershellduetforhydrogen.Asinglebondisformedwhentwoelectronsaresharedbetweentwoatomse.g.H:HAdoublebondisformedwhentwopairsofelectronsaresharede.g.OOLewistheoryworkswellforconnectivitybutdoesnotgivepredictionsaboutthreedimensionalshape.VSEPRValenceShellElectronPairRepulsionTheoryPredictsshapebyassumingthatatomsandloneelectronpairsseektomaximizethedistancebetweenotheratomsandlonepairs.WorkswellforshapesbutmustbecombinedwithLewistheoryforconnectivityandbondorder.e.g.Anatomwithfourthingsi.e.bondsorlonepairswouldadoptatetrahedralgeometrywithrespecttothethings.Themolecularshapeisdescribedrelativetothebondsonly.NH3hasthreebondsandonelonepairontheNatom,givingatetrahedralgeometry.However,theshapeofNH3isdescribedastrigonalpyramidalwhenonlythebondsareconsidered.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page69

    ValanceBondTheoryVBtheorywasdevelopedinthe1920sandwasthefirstquantummechanicaldescriptionofbonding.InVBtheorybondsareformedfromtheoverlapofatomicorbitalsbetweenadjacentatoms.Thistheorypredicteddifferentshapesforsingleandmultiplebonds.Considertheoverlapofanelectroninhydrogen1s1orbitalandanelectroninacarbon2p1orbital

    Theresultingoverlapofwavefunctionsresultsincontinuouselectrondensitybetweentheatomswhichisclassifiedasabondinginteraction.Theresultingbondhascylindricalsymmetryrelativetothebondaxis.Doubleandtriplebondsformfromtheoverlapofadjacentparallelporbitals.Theresultisshownbelow.

    Adoublebondconsistsofonebondandonebond.Atriplebondisabondandtwobonds.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page70

    HybridOrbitalTheoryVBtheorygetsusstartedbutweknowthatothergeometriesexistinmolecules.ConsidercarbonwithagroundstateelectronconfigurationofHe2s2sp2.Withtheadditionofasmallamountofenergyone2selectronispromotedtothe2pshellandthefollowingconfigurationresultsHe2s12px12py12pz1.Thisleavesfourhalffilledorbitalsthatcanoverlapwithotherorbitalsonadjacentatoms.Willthisresultindifferenttypesofbonds?Overlapofansorbitalandaporbitalwillnotbethesame.However,weknowthatinCH4allofthebondsareequivalent.Thesolutionistocreatehybridorbitalsthatareformedwhenwetakelinearcombinationsofthefouravailableatomicorbitals.Thefouruniquelinearcombinationsthatcanbeformedareasfollowsh1spxpypz h2spxpypzh3spxpypz h4spxpypzGraphicallytheresultsareshownbelow:

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page71

    Theselinearcombinationgiverisetofourneworbitalsthathaveelectrondensitypointedalongtetrahedralangles.Theorbitalsarenamedsp3hybridorbitals.Otherhybridorbitalsarepossiblewithdifferinggeometry

    Orbital Shapesp Linearsp2 Trigonalplanarsp3 Tetrahedralsp3d Trigonalpyramidalsp3d2 octahedral

    Overlapofthehybridorbitalswithotherorbitalhybridoratomicdescribethebondingnetworkinmolecule.MultiplebondsareformedwithunusedporbitalsoverlappingtoformbondsasdescribedinVBtheory.MolecularOrbitalTheoryMOtheorywasalsodevelopedduringthe1920sandisaquantummechanicaldescriptionofbonding.Alloftheprecedingbondingmodelsaretermedlocalizedelectronbondingmodelsbecauseitisassumedthatabondisformedwhenelectronsaresharedbetweentwoatomsonly.MOtheoryallowsfordelocalizationofelectrons.Thatis,electronsmaybesharedbetweenmorethantwoatomsoverlongerdistances.SimilarlytoVBtheory,MOsareformedfromtheinteractionofatomicorbitals.Hereweformlinearcombinationsofatomicorbitals.WhenwecombinetwoAOswemustformtwoMOs

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page72

    ConstructiveinterferenceleadstotheMOshowninthetopexampleandtheresultingMOissaidtobebonding.Destructiveinterferencegivesthesecondexampleistermedantibonding.ForO2theMOdiagramisshownbelow.ThiscorrectlypredictsthatO2hastwounpairedelectrons.Noneoftheprevioustheoriescouldaccommodateforthisfact.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page73

    QuantummechanicaldescriptionoforbitalsErwinSchrdingerproposedamethodtofindelectronwavefunctions.ThetimeindependentSchrdingerequationinonedimensionis

    2

    whereisthewavefunctionand

    2 1.054 10

    Vxisthepotentialenergyoftheelectronatpositionxandand

    isthekineticenergyoftheelectron.Thisequationisoften

    simplifiedas

    where iscalledtheHamiltonianoperator.WritteninthisformweseethatthisisanEigenvalueequation.ThetotalenergyoftheelectronbecomestheEigenvalueoftheHamiltonianandistheEigenfunction.describesthedynamicinformationaboutagivenelectron.Theprobabilityoffindinganelectroninagivenvolumeofinfinitelysmallsizeis

    ||

    Withregardtospecificallyidentifyingthedynamicinformationaboutanelectronwearelimitedbythefollowing:

    12

    ThisisknownastheHeisenberguncertaintyprincipleandstatesthatwecannotknowboththepositionandmomentumofaparticlewitharbitraryprecision.xistheerroruncertaintyinpositionandpistheerrorinmomentum.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page74

    GroupTheoryandQuantumMechanicsIfweexchangeanytwoparticlesinasystembycarryingoutasymmetryoperation,theHamiltonianmustremainunchangedbecauseweareinanequivalentstate.Inotherwords,theHamiltoniancommuteswithallRforagroup

    TherearecasesinwhichmultipleEigenfunctionsgivethesameEigenvalue.

    :

    WesaythattheEigenvalueisdegenerateornfolddegenerate.InthesecasestheEigenfunctionsareasolutiontotheSchrdingerequationandalsoanylinearcombinationofthedegenerateEigenfunctions

    WewillconstructtheEigenfunctionsandsubsequentlythelinearcombinationssothattheyareallorthonormaltoeachother.

    ThesetoforthonormalEigenfunctionsforamoleculecanformthebasisofanirreduciblerepresentationofthegroup.ForanondegenerateEigenfunctionwehave

    sothatRiisanEigenfunctionoftheHamiltonian.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page75

    BecauseiisnormalizedRi1i.ThereforeifweapplyallRinagrouptoanondegeneratei,wegetarepresentationwereeachmatrixelement,iRwillbe1.Aonedimensionalmatrixisbydefinitionirreducible.AsimilaranalysisfornfolddegenerateEigenfunctionswillresultinanndimensionalirreduciblerepresentation.HowdowefindthelinearcombinationofwavefunctionsthatresultinasetoforthonormalEigenfunctions?Theprojectionoperatordiscussedpreviouslyforvibrationalanalysisisusefulagainhere.

    Constructionofbasissetstoprojectisthesubjectoftheoreticalchemistryandphysics.BecausewecannotsolvetheSchrdingerequationdirectlywemustmakeapproximations.HartreeFockApproximationwriteMOsforeachelectronindependentlyoftheothers.Theerrorthatisintroducedhereisthattheelectronpositiondependsonthepositionofalloftheotherelectronselectronelectronrepulsion.Acorrectionfactormustbeappliedaftersolvingtheproblemtoaccountforthis.Thisiscalledthecorrelationenergy.RulesforMolecularOrbitals

    1 Wavefunctionscannotdistinguishbetweenelectrons2 Ifelectronsexchangepositions,thesignofthewavefunctionmust

    change.LCAOApproximationMolecularOrbitalsarelinearcombinationsofatomicorbitals.electronApproximationassumethatandbondsareindependentofeachother.Thatis,bondsarelocalized,whilebondsmaybedelocalized.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page76

    HckelOrbitalMethodWewillusearedefinedHamiltoniancalledtheeffectiveHamiltonian.

    , 2

    whereJandKaretheCoulombandexchangeintegralsrespectively.TheCoulombintegraltakesintoaccounttheelectronelectronrepulsionbetweentwoelectronsindifferentorbitals,andtheexchangeintegralrelatestotheenergywhenelectronsintwoorbitalsareexchangedwitheachother.3IntheHckelorbitalmethodweconstructnewMOsasfollows

    whereNisthenumberofatomsintheorbitalsystem,sisapzorbitalonagivenatomandCsjisacoefficientdeterminedbyprojection.Hckeltheorymakesthefollowingapproximations:

    ,

    , ifrandsarenearestneighbors0otherwise

    istheCoulombicintegralwhichraisestheenergyofawavefunctionpositivevalueandistheresonanceintegralwhichlowerstheenergyofawavefunctionnegativevalue.Theseintegralscanbeevaluatednumericallybutarebeyondthescopeofwhatwehopetoaccomplishhere.3

    3Formoreinformationonbondingtheoryconsultanappropriatetextonquantummechanics.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page77

    Asitstandssofar,wehaveamethodforfindingtheenergiesofNorbitalsforNatoms.TheresultisanNdimensionalpolynomial.Problemsofthistypecanbesolvedbutapplicationofsymmetrytothesystemgreatlyreducestheamountofworktobedone.HckelOrbitalsforNitriteConsidertheorbitalsystemforthenitriteanion

    ThismoleculebelongstotheC2vpointgroup.Wewilluseapzorbitaloneachatomtoconstructtheorbitalsystemfornitrite.Thisformsthebasisforareduciblerepresentation,AO

    WemustwritethecharactersforAOinananalogousmanneraswewrotethecharactersfor3N.Keepinmindthesignofthewavefunctionswhenperformingthesymmetryoperations.

    C2v E C2 xz 'yzA1 1 1 1 1A2 1 1 1 1B1 1 1 1 1B2 1 1 1 1AO 3 1 1 3

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page78

    NextwereduceAOtofindtheirreduciblecomponents.

    14 13 11 11 13 0

    14 13 11 11 13 1

    14 13 11 11 13 2

    14 13 11 11 13 0

    2Nextweprojectthebasisfunctionsoutoftheirreduciblerepresentations.Because1and3areequivalentitdoesntmatterwhichonewepick.However,2isuniqueandmustalsobeprojectedeachtime.

    14 12

    14 0i.e.nocontribution

    14 12

    14

    TherearetwoorbitalswithB1symmetry.Sowewilltakelinearcombinationsofthetwoprojectedorbitalstofindtheorthogonalresults

    12

    12 12

    12 12

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page79

    Lastlywemustnormalizetheorbitalssinceitisassumedthat

    ThereisanormalizationfactorNthatisfoundasfollowsfor1

    12 12 1

    14

    1

    14

    1

    Notethatthesumsheregiveijfortheindividualijterms.Therearefourintegralsinthiscaseinvolvingoverlapof1,1,1,3,3,1,3,3.Thesegive1001respectively.

    14

    2 1

    solvingforNwefindN2ournormalized1isthen A2symmetry

    Moregenerallyforanormalizedwavefunctionhastheform

    andweknownormalizedwavefunctionsfollow;

    1

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page80

    Therefore;1

    1

    Theintegralintheaboveexpressionmustevaluateto1sincethebasisfunctionsjareorthonormalwavefunctions.SolvingforthenormalizationfactorNigives;

    1

    Applyingthisto2abovewefind,

    and

    andthenormalizedwavefunctionbecomes;

    B1symmetry

    Similarlywefindthenormalized3tobe

    B1symmetry

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page81

    Ifweevaluate,foreachneworbitalwefindthat

    , 22

    , 22

    DistributingtheiacrosstheHamiltonianandseparatingtheintegralsweareleftwiththefollowingsum

    22 , 22

    22

    , 22 22

    , 22 22

    , 22

    TheseintegralsevaluateaccordingtoHckelapproximationsas

    , 12 0 0

    12

    Simplifyingleavesuswith:

    , 12

    Asimilaranalysisfor2and3yields:,

    ,

    Inorderofincreasingenergywefind213

    Recallthatisanegativetermandlowerstheenergyoftheorbital.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page82

    Drawingpicturesoftheorbitalshelpstovisualizetheresults

    B1antibondingorbital

    43A2nonbondingorbital

    B1bondingorbital

    43

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page83

    Nitriteorbitalscalculatedusingabinitiomethods.

    B1antibondingorbital

    A2nonbondingorbital

    B1bondingorbital

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page84

    HckelMOsforCyclobutadieneFindtheorbitalsforcyclobutadieneusingtheHckelorbitalmethod.CyclobutadienebelongstotheD4hpointgroup.Thisgrouphasanorderof16.Toreducethework,wecanuseasubgroupofD4h,D4whichhasanorderof8.Indoingsoweloseinformationabouttheoddorevennatureoftheorbitalgoru.However,oncetheMOsareconstructedwecaneasilydetermineanMOsgorustatusthroughexaminationofsymmetryoperationsonthenewMOs.Thebasissetwillbethefourpzorbitalsperpendiculartothemolecularplane.

    WritingAOforD4wefind;

    D4 E 2C4 C2 2C2 2C2A1 1 1 1 1 1A2 1 1 1 1 1B1 1 1 1 1 1B2 1 1 1 1 1E 2 0 2 0 0AO 4 0 0 2 0

    ReducingAOresultsinAO

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page85

    Nowwemustprojectoutthesymmetryadaptedlinearcombinationsandthennormalizetheresultingfunctions.

    18

    14

    18

    14

    28 2 2 12

    BecauseEistwodimensional,wemustprojectanadditionalorbital.

    28 2 2 12

    ThetwoEMOswillbethelinearcombinationsumanddifferenceofthetwoprojectionswehavejustmade.

    12

    12

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page86

    NormalizingtheMOsresultsinthefollowingorthonormalsetoffunctions A2symmetry

    B2symmetry

    Esymmetry

    EsymmetryToputtheorbitalinthecorrectorderenergetically,weevaluate,foreachMO., 2

    , 2

    ,

    , BecausetheEorbitalisdegenerate,bothorbitalsmusthavethesameenergy.Wefindtheinorderofincreasingenergy,13,42.LastlywecanlookathowtheeachoftheseorbitalstransformsintheD4hpointgroupandassignthegorusubscript.Forexample,theB2orbitalcouldbeB2uorB2g.Underinversionitheorbitalgoesinto1ofitselfsoitmustbeB2uthecharacterunderiforB2gis1and1forB2u.AnalysisoftheremainingorbitsgivesA2uandEg.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page87

    B2u antibonding

    2

    Egbonding

    A2ubonding

    2molecularorbitalsascalculatedbyabinitiomethods

    B2u

    Eg

    A2u

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page88

    Anoteofcaution.WemightbetemptedtoviewcyclobutadieneasanaromaticringsystembasedupontheappearanceoftheA2uorbital.However,examinationoftheelectrondensitycolormappedwiththeelectrostaticpotentialrednegative,bluepositiverevealsanonuniformelectrondensitydistribution.Thisindicatesthatcyclobutadieneisnotaromaticbutratheralternatingdoubleandsinglebonds.

    Ifthestructureisgeometryoptimized,weseethatthesymmetryisnolongerD4h,butratherthatofarectangle,D2h.Theelectrostaticpotentialmapplacesextraelectrondensityalongtheshorterdoublebondswewouldpredict.TheHckelruleforaromaticityrequires4n2electronsandherewehaveonly4electrons,sothelackofaromaticityisexpected.

    Ifthesymmetrychanges,thesymmetryofthemolecularorbitalsalsochanges.Calculationsoftheneworbitalsareshownonthefollowingpage.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page89

    Abinitiocalculationsfortheorbitalsingeometryoptimizedcyclobutadiene.

    Au

    B3g

    B2g

    B1u

    NoticethatthegeneralshapeoftheMOsissimilartowhatwecalculatedforthemoleculeunderD4hsymmetry,buttheEgorbitalhassplitintothenondegenerateB2gandB3gorbitalsshownabove.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page90

    HckelMOsforBoronTrifluoride

    D3h E 2C3 3C2 h 2S3 3vA1 1 1 1 1 1 1A2 1 1 1 1 1 1E 2 1 0 2 1 0A1 1 1 1 1 1 1A2 1 1 1 1 1 1E 2 1 0 2 1 0

    ConstructtheHckelmolecularorbitalsforcarbonateandcomparetotheresultsforsemiempiricalcalculationsofallmolecularorbitalsforcarbonate.Step1.FindAOD3h E 2C3 3C2 h 2S3 3vAO 4 1 2 4 1 2Step2.Applythereductionformulatofindtheirreduciblerepresentations.

    112 4 2 6 4 2 6 0

    112 4 2 6 4 2 6 0

    112 8 2 0 8 2 0 0

    112 4 2 6 4 2 6 0

    112 4 2 6 4 2 6 2

    112 8 2 0 8 2 0 1

    2

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page91

    Step3.ProjectthenewMOsBecause1isonthecenteratomwemustproject1andoneoftheothersandmakelinearcombinationstobesuretohavecompleteorbitals.

    112

    112 13

    Takingthelinearcombinationsofthesetwoweobtainthefollowing:

    13 13

    13

    13 13

    13

    Normalizingtheseresultsgives:

    32 13

    13

    13

    32 13

    13

    13

    NowprojecttheEorbitals 112 2 2 0

    Because1doesnotcontributetotheEorbitalwemustprojecttwootherbasisfunctionsandtaketheirlinearcombinations.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page92

    212 2 2 16 2

    212 2 2 16 2

    16 2

    16 3 3

    Afternormalizationweareleftwith

    16 2

    12

    Step4.DeterminetheenergyofeachorbitalbyevaluatingHeff,.

    , 34

    13

    13

    13

    19

    13

    19

    13

    19

    13

    32

    , 34

    13

    13

    13

    19

    13

    19

    13

    19

    13

    32

    , 16 4

    , 12

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page93

    Step5.ConstructtheMOdiagramanddrawpicturesoftheMOs

    A2

    E

    A2

    Thesesketchesareatopdownview.Thesignofthewavefunctionisoppositeonthebottomside.

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page94

    AbinitiocalculationsgivethefollowingMOpicturesandthecorrespondingenergyinHartree.

    A20.0418Ha

    E0.9073Ha

    A20.9411Ha

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page95

    Onefinalexercise

    1. ConstructtheorthonormalHckelmolecularorbitalsforbenzeneusingthesubgroupD6givenbelowandabasissetofthesixpzorbitalsthatlieperpendiculartotheplaneofthering.

    2. DeterminethecorrectorderingoftheMOsenergeticallyandconstruct

    theMOdiagramforthesystem.RefertothefullD6hpointgroupcharactertabletoassigngandudesignationstotheorbitals.

    3. Sketcheachofthesixorbitals.Compareyourresultstotheabinitio

    calculationsonthefollowingpage.D6 E 2C6 2C3 C2 3C2 3C2A1 1 1 1 1 1 1A2 1 1 1 1 1 1B1 1 1 1 1 1 1B2 1 1 1 1 1 1E1 2 1 1 2 0 0E2 2 1 1 2 0 0AO

  • IntroductiontotheChemicalApplicationsofGroupTheory

    Page96

    Abinitiocalculationsfortheorbitalsofbenzeneareshownbelow

    B2g0.3480Ha

    E2u0.1322Ha

    E1g0.3396Ha

    A2u0.5073Ha