gts 213-ch5 integrals

Upload: krittima-parn-suwanphorung

Post on 05-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 GTS 213-Ch5 Integrals

    1/98

    GTS 213

    Calculus for Technologist II

    CHAPTER 5INTEGRALS

    1

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    2/98

    Food for Thought

    GTS 213, S2 & S3

    2

  • 8/15/2019 GTS 213-Ch5 Integrals

    3/98

    Topical Outline3

    Topic Content

    Integrals(Ch. and !"

    Review of Calculus for Technologist I• Concepts (re#ie$"• Techni%ue of Integration (re#ie$"

    Calculus for Technologist II starts here• I proper Integrals (Section .1'"• pplication of Integrals (Chapter !"

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    4/98

    Integrals)

    *hat does +integrate ean- *hat is athe atical integral-

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    5/98

    rea ro/le

    rea of a rectangle, a triangle, or a pol0gon

    a pol0gon the area is found /0 di#iding the pol0gon intotriangles and adding the areas

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    6/98

    ut $hat if the region has cur#ed sides-!

    o$ do $e find an area under the cur#e-For e4a ple, area under 0 5 4 2 fro ' to 1

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    7/98

    rea 6nder Continuous Functions7

    The sa e concept /rea8 it do$n to s all pieces andadd the

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    8/98

  • 8/15/2019 GTS 213-Ch5 Integrals

    9/98

    eight of rectangle

    GTS 213, S2 & S3

    =

    Function y = x 2 fro ' to 1Three $a0s to "easure the height of four rectangles

    #sing right points

    9ight points 1>) 1>2 3>) 1eight ()" 2 (1"2

    #sing left points

    ?eft points

    eight #sing "i!!le points

    @iddle points

  • 8/15/2019 GTS 213-Ch5 Integrals

    10/98

    rea of rectangles under y = x 2

    GTS 213, S2 & S3

    1'

    Rectangle $ Rectangle % Rectangle & Rectangle '

    9ight points 1>) 1>2 3>) 1

    eight ()" 2 (1"2

    The area of these appro4i ating

    rectangles

    9) 5 (1>)"(

  • 8/15/2019 GTS 213-Ch5 Integrals

    11/98

    dding strips> left endpoints & right endpoints11

    ppro4i ating S $ith : rectanglesDo$ di#ide ', 1 into : inter#als? : 5 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 5 '.273)379 : 5 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 5 '.3=:)37Do$, 0ou see that L ) ( A ( R ) ('.273)37 E E '.3=:)37 "

    ?o$er esti ation 6pper esti ationGTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    12/98

    S aller 9ectangles, etter ;sti ation12

    Increasing the nu /er of strips, or increasing n

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    13/98

    The greater nu /er of strips, the /etter appro4i ation13

    Area under x 2 from 0 to 1.o 0ou notice so ething fro the ta/le-

    GTS 213, S2 & S3

    Increase n (n J"

  • 8/15/2019 GTS 213-Ch5 Integrals

    14/98

    Ke0 Concept1)

    Increase n (n J"To use a li it of appro4i ations to arri#e at the truearea under the cur#e.

    *eLfirst appro4i ate the region S /0 rectangles and thenta*e the li"it of the areas of these rectangles as $e increasethe nu /er of rectangles.

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    15/98

    ;4a ple to sho$ a li it of appro4i ation1

    For region S in the preceding e4a ple, sho$ that thesu of the areas of the upper appro4i atingrectangles approaches , that is,⅓

    Solution Rn is the su of

    the areas of the n rectanglesas sho$n on the right

    →∞= 1lim

    3nnR

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    16/98

    ;4a ple to sho$ a li it of appro4i ation (contMd"1!

    ;ach rectangle has *idth 1> n andThe heights are the #alues of the function f ( x " 5 x 2 at the points1>n, 2>n, 3>n,L, n>n, leading to

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    17/98

  • 8/15/2019 GTS 213-Ch5 Integrals

    18/98

    ;4a ple to sho$ a li it of appro4i ation (contMd"1:

    This gi#es

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    19/98

    efinition of Integral1=

    ?i8e$ise the lo$er appro4i ating su s alsoapproach , that is,⅓

    s n increases, /oth Ln and Rn /eco e /etter and /etter appro4i ations to the area of S

    →∞= 1lim

    3nnL

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    20/98

    efinition of Integral (contMd"2'

    Therefore $e define the area A to /e the li it of thesu s of the areas of the appro4i ating rectangles

    Concept di#ide an area into s all areas and ta8eli it of the su of the s all areas ppl0 this idea to ore general region.

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    21/98

    ppl0ing the Idea to @ore General 9egion21

    *e start /0 su/di#iding S into n strips S 1, S 2,L, S n of e%ual $idth.The $idth of the inter#al is b N a .The $idth of su/inter#al ( x " is (b N a)/n

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    22/98

    ppl0ing the Idea to @ore General 9egion (contMd"22

    Then the area of the i th rectangle is f ( x i " x .

    So the area of S is appro4i ated /0 the su of the areas of these rectangles

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    23/98

    ppl0ing the Idea to @ore General 9egion (contMd"23

    Again+ appro,i"ation see"s to -eco"e -etter an! -etter as n increases

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    24/98

    efinition rea A of the region S 2)

    Since f is continuous,

    If $e use left endpoints

    →∞lim always exists; nn R

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    25/98

    efinition rea A of the region S (contMd"2

    if $e ta8e the height of the i th rectangle to /e the #alue of f at an0 nu /er x i * in x i P1, x i .

    The nu /ers x 1*, x 2*,…, x n* are the samp e points.

    A "ore general e,pression for the area of S GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    26/98

    Sig a Dotation2!

    Su of an0 ter s use sig a notation

    So the area

    can /e $ritten as( )

    →∞ =

    = ∆∑1

    limn

    ini

    A fx x

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    27/98

  • 8/15/2019 GTS 213-Ch5 Integrals

    28/98

    The istance ro/le2:

    Suppose the odo eter on our car is /ro8en and $e $ant to esti ate the distance dri#en o#er a 3'Psecond ti e inter#al.Solution *e ta8e speedo eter readings e#er0 fi#eseconds and record the

    con#ert the #elocit0 to ft>s, using 1 i>h 5 2:'>3!'' ft>s

    Relocit0 of the 1 st fi#e second Relocit0 of the 2nd fi#e secondGTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    29/98

    The istance ro/le2=

    istance tra#eled during thefirst fi#e seconds

    2 ft>s s 5 12 ftistance for second ti einter#al

    31 ft>s s 5 1 ft

    Relocit0 of the 1 st fi#e second Relocit0 of the 2nd fi#e second

    GTS 213, S2 & S3

    Relocit0 Function

  • 8/15/2019 GTS 213-Ch5 Integrals

    30/98

    The istance ro/le3'

    n esti ate for the total distance tra#eled

    On the other hand, use #elocit0 at the end of each ti e period. n esti atedtotal distance

    Relocit0 of the 1 st fi#e second Relocit0 of the 2nd fi#e second

    Relocit0Function

    L! =

    R! =

  • 8/15/2019 GTS 213-Ch5 Integrals

    31/98

  • 8/15/2019 GTS 213-Ch5 Integrals

    32/98

    istance ro/le Connection *ith rea (contMd"32

    The first ti e inter#althe #elocit0 is appro4i atel0 f (t ' " andso the distance tra#eled is appro4i atel0 f (t ' " t .

    Si ilarl0, the distance tra#eled during the secondti e inter#al is a/out f (t 1" t.6se the left en!points , the total distance tra#eledduring the ti e inter#al a , b

    The "ore fre.uentl/ we "easure the velocit/+the "ore accurate our esti"ates -eco"e

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    33/98

    istance ro/le Connection *ith rea (contMd"33

    6se right en!points instead of left endpoints

    istance in li it e4pression

    Thus the distance tra#eled is e%ual to the area under thegraph of the #elocit0 function.So the !istance pro-le" an! the area pro-le" arethe sa"e pro-le"0

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    34/98

    The sa e concept is also applied in 33)

    To esti ate #olu e, $e add s all #olu es together.

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    35/98

    9e#ie$ N end of Section .13

    6sing rectangles to sol#e the area pro/leefinition of area

    Sig a notation

    The distance pro/le as it relates to the areapro/le

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    36/98

    Food for Thought

    GTS 213, S2 & S3

    3!

  • 8/15/2019 GTS 213-Ch5 Integrals

    37/98

    De4t topics N Section .237

    efine definite integral using 9ie ann su segin e#aluating definite integralse#elop properties of the definite integral

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    38/98

    Find a difference /et$een these t$o integrals3:

    efinite integral Indefinite integral

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    39/98

    efinite Integral3=

    ecause f is continuous, the li it in this definition al$a0s e4istsand gi#es the sa e #alue no atter ho$ $e choose the sa plepoints x i U.

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    40/98

    efinite integral 9ie ann Su)'

    *e could replace x $ith an0 other letter $ithoutchanging the #alue of the integral

    9ie ann Su

    ( ) ( ) ( )= =∫ ∫ ∫

    b b b

    a a a fxdx ftdt frdr

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    41/98

    efinite integral 9ie ann Su (contMd")1

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    42/98

    efinite Integral for Degati#e & ositi#e Function)2

    If f ta8es on /oth positi#e and negati#e #alues,

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    43/98

    efinite Integral for 6ne%ual *idth)3

    For une%ual $idth, the definition of a definiteintegral /eco es

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    44/98

    ;#aluating Integrals

    GTS 213, S2 & S3

    ))

    ;#aluating definite integrals /0 definition re%uiresthat $e $or8 $ith su s.On the ne4t slide $e gi#e for ulas forL

    su s of po$ers of positi#e integers, and $or8ing $ith sig a notation

  • 8/15/2019 GTS 213-Ch5 Integrals

    45/98

    6seful for ulas $hen $or8ing $ith sig a notation)

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    46/98

    roperties of the efinite Integral)!

    *e can define

    If a = b , then x 5 ' and so

    ( ) >even ifba fxdx a b

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    47/98

    Further roperties)7

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    48/98

    Further roperties (contMd"):

    *e illustrate the first t$o properties

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    49/98

    ;4ercise)=

    6se the properties of integrals to e#aluate

    ( )+1 2

    04 3 .x dx

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    50/98

    Solution'

    Solution roperties 2 and 3 gi#e

    ropert0 1 gi#es lso, $e found earlier that

    GTS 213, S2 & S3

    ( )= − =1

    0 4 41 0 4dx=1 2

    0

    1 , so3

    xdx

  • 8/15/2019 GTS 213-Ch5 Integrals

    51/98

    ropert0 1

    ;4ercise ItMs 8no$ that( )

    =100 17 and fxdx

    ( ) ( )= ∫ 8 100 012, nd . fxdx fxdx

    GTS 213, S2 & S3

    :

  • 8/15/2019 GTS 213-Ch5 Integrals

    52/98

    Co parison roperties2

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    53/98

    ropert0 :3

    ;4ercise 6se ropert0 : to esti ate− 21

    0.xe dx

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    54/98

    Solution

    GTS 213, S2 & S3

    )

    ecausefunction on ', 1 , its

    a/solute a4i u #alue is " 5 f ('" 5 1 anda/solute ini u #alue is m 5 f (1" 5 eP1.

    So /0 ropert0 :,

    ( ) −

    = 2 is a d ecrea singx fx e

  • 8/15/2019 GTS 213-Ch5 Integrals

    55/98

    roperties of the efinite Integral (contMd"

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    56/98

    9e#ie$ N Section .2!

    efinition of definite integral9ie ann su s;#aluating definite integrals

    Interpreting definite integrals as areasroperties of the definite integral

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    57/98

    De4t N Section .37

    Introduce the ;#aluation Theoreiscuss indefinite integrals

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    58/98

    GTS 213, S2 & S3

    :

    8e0 disco#er0 in the histor0 of calculus, due toDe$ton and ?ei/niV ($or8ing independentl0", $asthat $e can calculate

    antideri#ati#e # of f .This disco#er0, called the ;#aluation Theore , ispart of the Funda ental Theore of Calculus.

    ( ) if we happen to know an

    b

    a fxdx

  • 8/15/2019 GTS 213-Ch5 Integrals

    59/98

    ;#aluation Theore=

    *e can calculate antideri#ati#e # of f .

    ;4a ple an antideri#ati#e of f ( x " 5 x 2 is # ( x " 5 ( "⅓ x 3,so

    @uch easier than using 9ie ann Su .

    ( ) if we happen to know anb

    a fxdx

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    60/98

    T$o e4a ples!'

    ;#aluate

    Solution n antideri#ati#e of f ( x " 5 e x is # ( x " 5 e x , so

    Find the area under the cosine cur#e fro ' to /, $here ' / W>2.Solution ere f(4" 5 cos 4 and F(4" 5 sin 4

    31

    .xedx

    GTS 213, S2 & S3

    = = −3

    3 311 .

    x xedx e e e

    ]= = = − =∫ 00 cos sin sin sin0 sin .b b A xdx x b b

  • 8/15/2019 GTS 213-Ch5 Integrals

    61/98

    Indefinite Integral!1

    ecause of the relation /et$een antideri#ati#es andintegrals, the notation 1 f 2 x 3 dx is traditionall0 usedfor an antideri#ati#e of f and is called an indefiniteinte$ra .

    Do nu /ers thereX

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    62/98

    Indefinite Integral (condMt"!2

    *e recall that if # is an antideri#ati#e of f on aninter#al % , then the ost general antideri#ati#e of f on % is # ( x " A & , $here & is an ar/itrar0 constant.So, an indefinite integral Y f ( x " dx can representeitherL

    a particular antideri#ati#e of f , oran entire fa il0 of antideri#ati#es.

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    63/98

    Ta/le of Integrals!3

    *e restate the antideri#ati#es $e 8no$, in thenotation of indefinite integrals. n0 for ula can /e #erified /0 differentiating the function on theright.9eference age !P1'

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    64/98

    GTS 213, S2 & S3

    !)

  • 8/15/2019 GTS 213-Ch5 Integrals

    65/98

    ;4a ple!

    Find the general indefinite integralY (1' x ) N 2sec 2 x " dx

    Solution 0 Ta/le 1,

    Graph the antideri#ati#e for se#eral #alues of &

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    66/98

    ;4ercise, re#ie$ techni%ue!!

    ;#aluate

    Solution First $e $rite the integrand ore si pl0,

    and then $e appl0 our antideri#ati#e for ulas.

    + −2 2921

    2 1 .t t t dtt

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    67/98

    9e#ie$ N Section .3!7

    The ;#aluation TheoreIndefinite Integrals

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    68/98

    De4t!:

    Techni%ue of IntegrationTa/le of Integrals ?oo8 in the ta/le first. If $e cannot findentr0 that rese /les our gi#en integral, then tr0 the follo$ingtechni%ues

    The Su/stitution 9uleIntegration /0 artsTrigono etric Su/stitution

    artial Fractions

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    69/98

    Techni%ue of Integration Ta/le of Integrals!=

    9eference age ! P1', on the /ac8 of te4t/oo8.

    If $e cannot find an0 entr0 that rese /les our gi#enintegral, then tr0 other ethods. 9e#ie$ Se ester 1Mscontent.

    GTS 213, S2 & S3

  • 8/15/2019 GTS 213-Ch5 Integrals

    70/98

    Zuestion

    GTS 213, S2 & S3

    7'

    The %uestion arises *ill our /asic integrationfor ulas, together $ith the

    Su/stitution 9ule,integration /0 parts,ta/les of integrals, andco puter alge/ra s0ste s

    ena/le us to find the integral of ever/ continuousfunction-

    $

  • 8/15/2019 GTS 213-Ch5 Integrals

    71/98

    The ns$er

    GTS 213, S2 & S3

    71

    The ans$er is No , at least not in ter s of thefunctions $ith $hich $e are fa iliar.

    It can /e sho$n, for e,a"ple , that $e $ill ne#er

    succeed in e#aluatingter s of functions that $e 8no$.?ater, though, $e $ill see ho$ to e,press such

    integrals as infinite series .

    2

    inx

    edx

    f

  • 8/15/2019 GTS 213-Ch5 Integrals

    72/98

    Food for Thought

    GTS 213, S2 & S3

    72

  • 8/15/2019 GTS 213-Ch5 Integrals

    73/98

    De4t N Section .1'73

    Calculus II starts hereI"proper IntegralsGoals

    efine i proper integrals of T0pes 1 and 2Stud0 con#ergence and di#ergence of i proper integrals6se co parison to help decide $hether an i proper integralcon#erges

    GTS 213, S2 & S3

    I d i f I I l

  • 8/15/2019 GTS 213-Ch5 Integrals

    74/98

    Introduction of I proper Integrals7)

    In defining a !efinite integral $e assu ed thatL

    f is defined on a finite inter#al a , b and that f has no infinite discontinuit0.

    *e $ant to e4tend this to the cases $herethe interval is infinite+ and>or T0pe 1

    f has an infinite !iscontinuit/ T0pe 2

    Such integrals are called improper .

    GTS 213, S2 & S3

    ( )b

    a fxdx

    T0 1 I fi i I # l

  • 8/15/2019 GTS 213-Ch5 Integrals

    75/98

    T0pe 1 Infinite Inter#als

    GTS 213, S2 & S3

    7

    ?et S /e the infinite region that liesunder the cur#e y 5 1> x 2,a/o#e the x Pa4is, andto the right of the line x 5 1.

    Is the area of Sinfinite-

    T0 1 ( Md"

  • 8/15/2019 GTS 213-Ch5 Integrals

    76/98

    T0pe 1 (contMd"

    GTS 213, S2 & S3

    7!

    The area of the part of S thatlies to the left of the line x 5 t is

    Dotice that A(t " E 1 no atter ho$ large t is chosen, and A(t " 1 as t J.

    The area of the infinite region S is e%ual to 1.

    T0 1 ( Md"

  • 8/15/2019 GTS 213-Ch5 Integrals

    77/98

    T0pe 1 (contMd"

    GTS 213, S2 & S3

    77

    efine the integral of f o#er an infinite inter#al as the li itof integrals o#er finite inter#als

    Pa/ attentionon a !irection of t

    T0pe 1 (contMd" Con#ergence and di#ergence

  • 8/15/2019 GTS 213-Ch5 Integrals

    78/98

    T0pe 1 (contMd Con#ergence and di#ergenceof T0pe 1

    GTS 213, S2 & S3

    7:

    For e4a ple, ( )∞

    ∫ 1 1/ is divergent, since xdx

    T0 1 ( tMd" # # di#

  • 8/15/2019 GTS 213-Ch5 Integrals

    79/98

    T0pe 1 (contMd" con#ergence #s. di#ergence

    GTS 213, S2 & S3

    7=

    Thus $e ha#e sho$n that

    4 l # l t0 xd

  • 8/15/2019 GTS 213-Ch5 Integrals

    80/98

    ;4a ple ;#aluate

    GTS 213, S2 & S3

    :'

    Solution art (/" of the definition gi#es

    *e integrate /0 parts $ith u 5 x , d! 5 e x dx , so that du 5 dx , ! 5 e x

    *e 8no$ that e t ' as t NJ[ so /0 lM ospitalMs 9ule $e ha#e

    Therefore

    −∞.xxedx

    4 l

  • 8/15/2019 GTS 213-Ch5 Integrals

    81/98

    ;4a ple

    GTS 213, S2 & S3

    :1

    For $hat #alues of p is the integralcon#ergent-Solution *e 8no$ fro our first e4a ple that theintegral di#erges if p 5 1[ for p \ 1,

    1 1 p dxx

    S l ti ( tMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    82/98

    Solution (contMd"

    GTS 213, S2 & S3

    :2

    If p ] 1, then p N 1 ] ', so as t J, t p P1 J and 1> t p P1 '.Therefore

    and so the integral con#erges.

    ut if p E 1, then p N 1 E ' and so

    *e su ariVe this result for future reference

    T0pe 2 iscontinuous Integrands

  • 8/15/2019 GTS 213-Ch5 Integrals

    83/98

    T0pe 2 iscontinuous Integrands

    GTS 213, S2 & S3

    :3

    Suppose that f isa positi#e continuous function defined on a finite inter#al a , b" /ut hasa #ertical as0 ptote at b.

    ?et S /e the un/ounded region under the graph of f and a/o#e the x Pa4is /et$een a and b'

    T0pe 2 (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    84/98

    T0pe 2 (contMd"

    GTS 213, S2 & S3

    :)

    The area of the part of S /et$een a and t is

    If it happens that A(t " approaches a nu /er A as t b N , then $e sa0 that the area of the region S is A and $e $rite

    *e use this e%uation to define an i proper integralof T0pe 2L

    e#en $hen f is not positi#e function,no atter $hat t0pe of discontinuit0 f has at b.

    ( ) ( )=∫ ta A t fxdx

    ( ) ( )−→= ∫ limb ta at b fxdx fxdx

    T0pe 2 (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    85/98

    T0pe 2 (contMd

    GTS 213, S2 & S3

    :

    T0pe 2 (contMd" Con#ergence and di#ergence

  • 8/15/2019 GTS 213-Ch5 Integrals

    86/98

    of T0pe 2

    GTS 213, S2 & S3

    :!

    So 0ou need to 8no$ $here the discontinuit0 is, or $here a

    #ertical as0 ptote is.

    ;4a ple Find5 1 dx

  • 8/15/2019 GTS 213-Ch5 Integrals

    87/98

    ;4a ple Find

    GTS 213, S2 & S3

    :7

    Solution First, this integral is i proper /ecause as0 ptote x 5 2Since the infinite discontinuit0 occurs at the leftendpoint of 2, , $e use part (/" of the definition

    Thus, the integral con#erges.

    −2 .2dx

    x

    ( ) = −1/ 2 has the vertical fx x

    Solution (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    88/98

    Solution (contMd

    GTS 213, S2 & S3

    ::

    −5

    21 .

    2dx

    x

    ;4a ple ;#aluate3

    ifpossibledx

  • 8/15/2019 GTS 213-Ch5 Integrals

    89/98

    ;4a ple ;#aluate

    GTS 213, S2 & S3

    :=

    Solution Dote that the line x 5 1 is a #erticalas0 ptote of the integrand.Since it occurs in the iddle of ', 3 , $e need part(c" of the definition $ith ( 5 1

    −0 if possible.1x

    Solution (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    90/98

    Solution (contMd

    GTS 213, S2 & S3

    ='

    /ecause 1 N t ' A as t 1N .Thus the integral di#erges (e#en though

    ]

    ( )

    ( )

    − −

    → →

    = −− −

    = − − −

    = − = −∞

    ∫ ∫ 1 00 01 11

    1

    Now =lim limln 11 1

    lim ln 1 ln 1

    limln1

    t t

    t t

    t

    t

    dx dx xx x

    t

    t

    −3

    1 con verges).

    1dx

    x

    di#ergei#erge con#erge

    Su ar0 I proper Integrals occur $hen

  • 8/15/2019 GTS 213-Ch5 Integrals

    91/98

    Su ar0 I proper Integrals occur $hen=1

    The do ain ofintegration, fro a to b,is not finite

    T0pe 1 Infinite Inter#als

    The range of theintegrand is not finiteon this do ain

    T0pe 2 iscontinuousIntegrands

    GTS 213, S2 & S3

    Food for Thought

  • 8/15/2019 GTS 213-Ch5 Integrals

    92/98

    Food for Thought

    GTS 213, S2 & S3

    =2

    Co parison Test

  • 8/15/2019 GTS 213-Ch5 Integrals

    93/98

    Co parison Test

    GTS 213, S2 & S3

    =3

    oes a gi#en i proper integral con#erge-

    So eti es it is i possi/le to find the e4act #alue ofan i proper integralLLand 0et it is i portant to 8no$ $hether it iscon#ergent or di#ergent.In such cases a co parison test such as the follo$ing

    theore can /e #er0 useful. *e state the test for T0pe 1 integrals[ a si ilar #ersion holds for T0pe 2

    Co parison Test (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    94/98

    Co parison Test (contMd

    GTS 213, S2 & S3

    =)

    The idea /ehind the theore is that if the area under the graph of f is finite, then so is the area under

    the graph of $[the area under the graph of $ is infinite, then so is the areaunder the graph of f .

    ;4a ple

  • 8/15/2019 GTS 213-Ch5 Integrals

    95/98

    ;4a ple

    GTS 213, S2 & S3

    =

    Sho$ thatSolution It is not possi/le to e#aluate the integraldirectl0 since +ordinar0 antideri#ati#e.

    Instead $e $rite

    ∞ − 2

    0 is convergent.xe

    − 2 has noxe

    n ordinar0definite integral

    6se Co parison Test

    Solution (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    96/98

    Solution (contMd

    GTS 213, S2 & S3

    =!

    In the second integral $e use the fact that for x 1 $e ha#e x 2 x , so N x 2 N x and therefore

    right

    nd the integral of e N x is eas0 to e#aluate.

    − −≤2 , as shown on thex xe e

    Solution (contMd"

  • 8/15/2019 GTS 213-Ch5 Integrals

    97/98

    Solution (contMd

    GTS 213, S2 & S3

    =7

    Thus, ta8ing f ( x " 5 e N x and

    in the Co parison Theore sho$s thatIt follo$s that

    ( ) −=2x gx e

    ∞−

    2

    1 is convergent.xe dx∞ − 20

    is convergent.xe dx

    n ordinar0definite integral

    Con#ergent

    6se Co parison Test

    Con#ergent

    Convergent

    9e#ie$ N Section 1'

  • 8/15/2019 GTS 213-Ch5 Integrals

    98/98

    9e#ie$ N Section .1=:

    T$o t0pes of i proper integralT0pe 1 (infinite inter#als"T0pe 2 (discontinuous integrands"

    Co parison Theore