h. utsunomiya (konan university)

25
Quantities by Photodisintegration 光光光光光光光光光光光光光光光光光 H. Utsunomiya (Konan University) RIKEN Workshop, 25-26 September 2008 Outline 1. Japan synchrotron radiation facilities 2. Photodisintegration for nuclear statistical quantities 3. Systematic study of E1 & M1 strength functions for Zr isotopes 4. Pigmy E1 resonance for Sn isotopes 5. Nuclear level density 6. Summary

Upload: lazaro

Post on 02-Feb-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Probing Nuclear Statistical Quantities by Photodisintegration 光核反応による統計的核物理量の研究. H. Utsunomiya (Konan University). RIKEN Workshop, 25-26 September 2008. Outline 1. Japan synchrotron radiation facilities 2. Photodisintegration for nuclear statistical quantities - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: H. Utsunomiya  (Konan University)

Probing Nuclear Statistical Quantities by Photodisintegration 光核反応による統計的核物理量の研究

H. Utsunomiya (Konan University)

RIKEN Workshop, 25-26 September 2008

Outline1. Japan synchrotron radiation facilities 2. Photodisintegration for nuclear statistical quantities 3. Systematic study of E1 & M1 strength functions for

Zr isotopes 4. Pigmy E1 resonance for Sn isotopes5. Nuclear level density 6. Summary

Page 2: H. Utsunomiya  (Konan University)

Konan U. H. Utsunomiya, T. Kaihori, H. Akimune, T. Yamagata AIST K. Yamada, H. Toyokawa, T. Matsumoto, H. Harano JAEA H. Harada, F. Kitatani, S. Goko RCNP T. Shima NewSUBARU S. MiyamotoTexas A&M, USA Y.-W. Lui

ULB, Brussels, Belgium S. GorielyCEA-Bruyères-le-Châtel, France S. HilaireZG Petten, The Netherlands A.J. Koning

Collaborators

この研究発表は、旧電源開発促進対策特別会計法及びに特別会計に関する法律(エネルギー対策特別会計)に基づく文部科学省からの受託事業として、北海道大学が実施した平成 18 年度、平成 19 年度および平成 20 年度「高強度パルス中性子源を用いた革新的原子炉用核データの研究開発」の成果を含みます。

Page 3: H. Utsunomiya  (Konan University)

・ VUV-IR自由電子レーザー

・レーザー逆コンプトン光・偏光アンジュレータ光・放射光

S-band small linear acc.S-band small linear acc. 

General-purpose Storage Ring TERAS

Stroge Ring NIJI-IV

Pulsed slow positron beam line

・レーザーコンプトン散乱      準単色 ps-fsⅩ線・コヒーレントテラヘルツ波

AIST Electron Accelerator FacilityAIST Electron Accelerator Facility

400MeV Electron Linear Acc. TELL

・ナノメートル~原子レベル空孔計測

Small Storage Ring NIJI-II・ SRプロセス

Page 4: H. Utsunomiya  (Konan University)

=532 nm2.4 eV

Tsukuba Electron Ring for Acceleration and Storage (TERAS)

Page 5: H. Utsunomiya  (Konan University)

( )( )EE

L

L L eγ

ε

β θ ε θ θ=

− + − −1 1cos cos

e

e

θ

εL

Ee

••EnergyEnergy

Laser Electron Beam

Inverse Compton Scattering

E = 1 – 40 MeV

= Ee/mc2

“photon accelerator”

Page 6: H. Utsunomiya  (Konan University)

Neutron Detector System

triple ring detectors

Monitor: NaI(Tl)

Triple-ring neutron detector20 3He counters (4 x 8 x 8 ) embedded in polyethylene

Page 7: H. Utsunomiya  (Konan University)

SPring-8

NewSUBARU

1 GeV 直線加速器

8 GeV シンクロトロン

New SUBARU facility 兵庫県立大高度研

Page 8: H. Utsunomiya  (Konan University)

1650450

50 300

300

1550

Beam Shutter

Target

Gamma Detector

Present: limited space

Shima: JPS meeting at Yamagata (2008)

E [MeV]

Cross Section [mb]

20 25 30 35 40 45 500

1

244He(He(,p),p)33H H (preliminary)(preliminary)

Page 9: H. Utsunomiya  (Konan University)

30005000

8000

3000

beam 輸送管輸送管内ガス : 空気

実験ターゲット( & 中性子検出器)

NaI(Tl) 検出器

実効線量限度6μSv/h 以上の範囲

実験中立ち入り禁止区域

Future: Open-space beam line?

Page 10: H. Utsunomiya  (Konan University)

Radiative Capture and Photodisintegration

A(x, )B (x= n, p, d, t, 3He, )

A + x

B

Optical potential

continuum

Discrete levels Ex, J

Level densityMass, deformation

Nuclear Statistical Quantities in the Hauser-Feshbach model

Modified from RIPL1 Handbook/IAEA-TECDOChttp://www-nds.iaea.org/ripl/

-ray strength function

x= n: s & r processes

Page 11: H. Utsunomiya  (Konan University)

Neutron Capture and Photodisintegration

Ex

n(E,T)

Gamow peakSn

(Z,A)

(Z, A-1)

・ E1, M1 SF above and below Sn・ NLD

(,’)

n = c nγ0

∫ (E,T)σ nμ (E)dE

Planck Distr.

Brink hypothesis: GDR is built on excited states.

GDR

n(E)

Key issues

(,n)(n,)

Page 12: H. Utsunomiya  (Konan University)

Main ingredients in the Talys code

E1 strength functionLorentzian models:Axel, PR126 (1962), Kopecky & Uhl, PRC41 (1990)

HFB+QRPA model: Goriely, Khan, Samyn, NPA739 (2006)

Nuclear Level densityHFB+ Combinatorial model: Hilaire & Goriely, NPA779 (2006)

Spin-flip giant M1 strength function by Bohr & MottelsonGlobal systematics in RIPL Handbook

Lorentzian function : Eo=41A-1/3 MeV, o = 4 MeV,

fM1=1.58 10-9 A0.47 MeV-3 at 7 MeV

Talys code: Koning, Hilaire, Duijvestijn, Proc. Int. Conf. on Nuclear Data for Science and Technology AIP Conf. Proc. 769, 1154 (2005).

Page 13: H. Utsunomiya  (Konan University)

91Zr(n)90Zr

92Zr(n)91Zr

94Zr(n)93Zr

(,n) cross sections on Zr isotopes

Threshold behavior of (,n) cross sections is given by

.)(2/1+

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

l

n

no S

SEE σσ

In the E1 photo-excitation, is allowed. However, the experimental cross sections are strongly enhanced from the expected behavior. 1=l

1=l

Page 14: H. Utsunomiya  (Konan University)

91Zr(n,)92Zr

8 10 12 14 16 E [MeV]

92Zr(n)91Zr

The standard Lorentzian parametrization of the E1 -ray strength function for 92Zr can fit the (,n) data, but strongly overestimates (n,) cross sections.

The Lorentzian parametrization of the E1 -ray strength function

               

The generalized Lorentzian parametrization of the E1 -ray strength function significantly underestimates the cross sections .

Page 15: H. Utsunomiya  (Konan University)

91Zr(n,)92Zr

M1 strength in Zr isotopes in the photoneutron channel91Zr(n)90Zr

92Zr(n)91Zr

94Zr(n)93Zr

M1

M1

M1

E1

E1

E1

H. Utsunomiya et al., PRL100 (2008)

The HFB+QRPA E1 SF Plus M1 resonance Eo= 9 MeV, σ0=7.5mb, =2.5MeV in Lorentz shape.

Page 16: H. Utsunomiya  (Konan University)

M1 strength in Zr isotopes

Crawley et al., PRC26, 87 (1982)

Sn

(e,e’) weak & fragmented

(p,p’): giant M1 resonance

’): giant M1 resonance

Anantaraman et al., PRL46 (1981)

Bertrand et al., PL103B (1981)

Meuer et al., NPA 1980

Nanda et al., PRL51 (1982)

Laszewski et al., PRL59 (1987)

Sn

Sn

Sn

GDRM1

M1

M1

M1

E1

E1

E1

E1

Excitation Energy

Other probes

Page 17: H. Utsunomiya  (Konan University)

96Zr(,n)95Zr

NLDHFB+ CombinatorialGoriley & Hilaire (2008)

Optical potentialKoning & Delaroche (2003)

96Zr(n)95Zr

-ray strength functions E1 : HFB+QRPA, Goriely et al. (2004)M1 resonance in Lorentz shapeEo = 8.5 MeV (9.0 MeV for 91,92,94Zr)0 =7.5mb=2.5 MeV

Preliminary

Page 18: H. Utsunomiya  (Konan University)

95Zr(n,)96Zr

Uncertainties : 30 – 40% in 0.01 – 1 MeV

95Zr(n,)96Zr

NLD models1.HFB+Combinatorial2.BSFG3.CT (Constant Temp.)4.GSM (Gen. Superfluid)5.HFBCS+statisticales

Optical potential models1.KD (Koning & Delaroche 2003)2.JLM (Bauge et al. 2001)

Sources of uncertainties

95Zr[T1/2=64 d](n, )96Zrs-process branching

Preliminary

Page 19: H. Utsunomiya  (Konan University)

93Zr(n,)94Zr

Preliminary

93Zr(n,)94Zr

93Zr[T1/2=1.5 ×106 y](n, )94Zr Transmutation of nuclear waste 93Zr known as LLFP (long-lived fission products)

Sources of uncertaintiesNLD & Optical pot. models

Uncertainties : 40 – 50% in 0.01 – 1 MeV

Page 20: H. Utsunomiya  (Konan University)

Pigmy E1 resonance in 117Sn

2/1

)(+

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

l

n

no S

SEE σσ

断面積のしきい値振る舞い( 1 点鎖線、 l=1 )に従わない。

Lorentz 型のガンマ線強度関数(破線)で117Sn(g,n) 断面積はフィットできるが、116Sn(n,g) 断面積は overestimate する。

Solution :  HFB+QRPA ガンマ線強度関数(点線)に Pigmy resonance( Eo=8.5 MeV, =2 MeV, so=7 mb in Gaussian shape )を導入すれば、 117Sn(,n)断面積だけでなく 116Sn(n,) 断面積もほぼ再現できる。

117Sn(,n)116Sn 116Sn(n,)117Sn

Page 21: H. Utsunomiya  (Konan University)

Pigmy resonance in 116Sn

しきい値が高い even-A 核である 116Sn の場合は、 pigmy resonanceの high energy part が (g,n) 断面積に寄与していると考えられる。

                            

Page 22: H. Utsunomiya  (Konan University)

-ray SF for 117,116SnComparison with Oslo data

117Sn

116Sn

Page 23: H. Utsunomiya  (Konan University)

s-process production of 180Tam

180Ta1+

2+

9- 75.3

42

0

181Ta7/2+

9/2-, 7/2-, 5/2-

E1

T1/2 > 1.2×1015y

T1/2=8.152h

4+, 3+

5-, 4-, 3-, 2-

8+

6+

7-

5-(7/2+)

T1/2=1.82y179Ta

s wave neutron s wave

neutron

Nuclear Level Density

(9-) = total - gs

Page 24: H. Utsunomiya  (Konan University)

Experimental results, and comparison with theoretical models

Present work (2006)

0.1

1

10

100

7 8 9 10 11 12 13 14

Cross Section [mb]

E[ ]MeV

181 (Ta , )n 180Ta

181 (Ta , )n 180Tam

Goko et al. Phys. Rev. Lett. 96, 192501 (2006)

IAEA : Lee et al. (1998)

HF + BCS NLD

Combinatorial NLD Hilaire & Goriely, NPA779 (2006)

High-spin states with are needed in Ex < 5 MeV.

5≥J

Page 25: H. Utsunomiya  (Konan University)

Summary

The SF and NLD are key nuclear statistical quantities in the Hauser-Feshbach model calculations of reaction rates of direct relevance to the nucleosynthesis of heavy elements.

Systematic studies of extra -ray strength arising from M1 and pigmy E1 resonance in the low-energy tail of GDR are important to improve the predictive power of the Hauser-Feshbach model for the nucleosynthesis of heavy elements.

The unique spin and parity of isomeric states can be a good probe of NLD by measuring relevant partial cross sections