hapter 6. laplace transforms laplace... · 2019. 9. 6. · seoul national univ. 3 engineering math,...

51
Seoul National Univ. 1 Engineering Math, 6. Laplace Transforms CHAPTER 6. L APLACE TRANSFORMS 2019.5 서울대학교 조선해양공학과 서유택 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다.

Upload: others

Post on 19-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Seoul NationalUniv.

    1Engineering Math, 6. Laplace Transforms

    CHAPTER 6. LAPLACE TRANSFORMS

    2019.5서울대학교

    조선해양공학과

    서 유 택

    ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다.

  • Seoul NationalUniv.

    2Engineering Math, 6. Laplace Transforms

    6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

    Laplace Transform (라플라스 변환):

    - 적분 과정을 통해 주어진 함수를 새로운 함수로 변환하는 것

    Inverse Transform (역 변환):

    0

    stF s f e f t dt

    L

    1 F f t L

    Ex.1 Let f (t) = 1 when t ≥ 0. Find F(s).

    Ex.2 Let f(t) = eat when t ≥ 0, where a is a constant. Find L( f ).

    00

    1 11 0st stf e dt e s

    s s

    L L

    00

    1 1

    s a tat st ate e e dt ea s s a

    L

  • Seoul NationalUniv.

    3Engineering Math, 6. Laplace Transforms

    Theorem 1 Linearity of the Laplace Transform

    The Laplace transform is a linear operation;

    that is, for any functions f(t) and g(t) whose transforms exist and any constants a

    and b, the transform of af(t) + bg(t) exists, and

    af t bg t a f t b g t L L L

    Ex.3 Find the transform of cosh at and sinh at.

    6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

    2 2

    1 1 1 1cosh , inh

    2 2

    1 1 1 1 cosh

    2 2

    1 sinh

    2

    at at at at at at

    at at

    at

    at e e at e e e , es a s a

    sat e e

    s a s a s a

    at e

    L L

    L

    L

    L L

    L L 2 21 1 1

    2

    at aes a s a s a

    s

  • Seoul NationalUniv.

    4Engineering Math, 6. Laplace Transforms

    6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

  • Seoul NationalUniv.

    5Engineering Math, 6. Laplace Transforms

    Theorem 2 First Shifting Theorem (제 1 이동정리), s-shifting (S-이동)

    If f (t) has the transform F(s) (where s > k for some k),

    then eatf (t) has the transform F(s ‒ a) (where s – a > k). In formulas,

    or, if we take the inverse on both sides, . 1at -e f t F s a L

    Proof) We obtain F(s‒a) by replacing s with s ‒ a in the integral, so that

    ate f t F s a L

    6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

    00

    )( )}({)]([)()( tfedttfeedttfeasF atatsttas L

  • Seoul NationalUniv.

    6Engineering Math, 6. Laplace Transforms

    1at -e f t F s a L Ex. 5 Formulas 11 and 12 in Table 6.1,

    For instance, use these formulas to find the inverse of the transform.

    2 22 2cos , sinat at

    s ae t e t

    s a s a

    L L

    23 137

    2 401

    sf

    s s

    L

    1 1 12 2 2

    3 1 140 1 203 7 3cos 20 7sin 20

    1 400 1 400 1 400

    ts s

    f e t ts s s

    L L L

    ate f t F s a L

    6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

    (a = -1, = 20)

  • Seoul NationalUniv.

    7Engineering Math, 6. Laplace Transforms

    Theorem 3 Existence Theorem for Laplace Transform

    If f (t) is defined and piecewise continuous on every finite interval on the semi-

    axis t ≥ 0

    and satisfies | f(t) | ≤ Mekt for all t ≥ 0 and some constants M and k,

    that is, f (t) does not grow too fast (“growth restriction (증가제한)”),

    then the Laplace transform L ( f ) exists for all s > k.

    6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

    0 0

    0

    | ( ) | ( ) ( )st st

    kt st

    f e f t dt f t e dt

    MMe e dt

    s k

    L

    Proof) Piecewise continuous → e-st f (t) is

    integrable over any finite interval on t-axis.

    2

    (1) ( ) cosh , (2) ( ) , (3) ( )n t f t t f t t f t e

    2 3

    0

    1 !! 2! 3! !

    n nt t n t

    n

    t x x te x e t n e

    n n

    1 1

    cosh2 2

    t t t t tt e e e e e

    | f(t) | ≤ Mekt for all t ≥ 0 ?2

    cosh , ! , ?t n t tt e t n e e

    2t kte Me (not satisfied)

  • Seoul NationalUniv.

    8Engineering Math, 6. Laplace Transforms

    Theorem 1 Laplace Transform of Derivatives (도함수의 라플라스 변환)

    6.2 Transform of Derivatives and Integrals. ODEs

    2' 0

    '' 0 ' 0 .

    f s f f ,

    f s f sf f

    L L

    L L

    00 0{ ( )} ( ) ( ) ( )

    (0) { ( )}

    st st stf t e f t dt e f t s e f t dt

    f s f t

    L

    L

    { ( )} (0)f t s f f L L

    00 0{ ( )} ( ) ( ) ( )

    (0) { ( )}

    [ (0)] (0)

    st st stf t e f t dt e f t s e f t dt

    f s f t

    s s f f f

    L

    L

    L

    2{ ( )} (0) (0)f t s f sf f L L

    3 2{ ( )} (0) (0) (0)f t s f s f sf f L L

    Proof)

    000

    000

    )()()(

    )()()(

    )()()(

    dttfedttfsetfe

    dttfedttfsetfe

    tfetfsetfe

    ststst

    ststst

    ststst

    dttftgtftgdttftg )()()()()()(

    (integration by parts)

  • Seoul NationalUniv.

    9Engineering Math, 6. Laplace Transforms

    6.2 Transform of Derivatives and Integrals. ODEs

    Ex. 1 Let f (t) = tsinωt. Find the transform of f (t).

    2

    2 2

    2 2

    22 2

    0 0,

    ' sin cos , ' 0 0,

    '' 2 cos sin

    '' 2 (0) (0)

    2 sin

    f

    f t t t t f

    f t t t t

    sf f s f sf f

    s

    sf t t

    s

    L L L

    L L

    Theorem 2 Laplace Transform of Derivatives

    Let be continuous for all t ≥ 0 and satisfy the growth restriction

    | f(t) | ≤ Mekt.

    Furthermore, let f (n) be continuous on every finite interval on the semi-axis t

    ≥ 0. 11 20 ' 0 0n nn n nf s f s f s f f L L

    )1(,....,, nfff

  • Seoul NationalUniv.

    10Engineering Math, 6. Laplace Transforms

    Theorem 3 Laplace Transform of Integral (적분의 라플라스 변환)

    Let F(s) denote the transform of a function f(t) which is piecewise

    continuous for all t ≥ 0

    and satisfies a growth restriction | f(t) | ≤ Mekt. Then, for s > 0, s > k, and t >

    0,

    10 0

    1 1

    t t

    -f t F s f d F s , f d F ss s

    L L L

    6.2 Transform of Derivatives and Integrals. ODEs

    t

    dftg0

    )()( Proof)

    → g(t) also satisfies a growth restriction.

    g'(t) = f (t), except at points at which f(t) is discontinuous.

    g'(t) is piecewise continuous on each finite interval.

    g(0) = 0.

    )}({)0()}({)}('{)}({ tgsgtgstgtf LLLL

    0 0 0| ( ) | ( ) ( ) ( 1) ( 0)

    t t tk kt ktM Mg t f d f d M e d e e k

    k k

    1{ ( )} { ( )}g t f t

    s L L

    From Theorem 1

  • Seoul NationalUniv.

    11Engineering Math, 6. Laplace Transforms

    Theorem 3 Laplace Transform of Integral

    Ex. 3 Find the inverse of and . 2 2 2 2 2

    1 1

    s s s s

    1

    2 2

    1 1sin t

    s

    L

    10 0

    1 1

    t t

    -f t F s f d F s , f d F ss s

    L L L

    6.2 Transform of Derivatives and Integrals. ODEs

    22}{sin

    stL

    1 22 2

    0

    1 sin 1 1 cos

    t

    d ts s

    L

    1 2 2 32 2 2

    0

    1 1 sin 1 cos

    tt t

    ds s

    L

    2 2{cos }

    st

    s

    L

  • Seoul NationalUniv.

    12Engineering Math, 6. Laplace Transforms

    Differential Equations, Initial Value Problems:

    Step 1 Setting up the subsidiary equation (보조방정식).

    Step 2 Solution of the subsidiary equation by algebra.

    Transfer Function (전달함수):

    Solution of the transfer function:

    Step 3 Inversion of Y to obtain y.

    y(t) = L -1 (Y).

    0 1'' ' , 0 , ' 0y ay by r t y K y K

    , Y y R r L L

    2 20 ' 0 0 0 ' 0s Y sy y a sY y bY R s s as b Y s a y y R s

    222

    1 1

    1 1

    2 4

    Q ss as b

    s a b a

    0 ' 0Y s s a y y Q s R s Q s

    6.2 Transform of Derivatives and Integrals. ODEs

  • Seoul NationalUniv.

    13Engineering Math, 6. Laplace Transforms

    Ex. 4 Solve

    Step 1

    Step 2

    Step 3

    '' , 0 1, ' 0 1y y t y y

    2 22 21 1

    0 ' 0 1 1s Y sy y Y s Y ss s

    2 2 2 2 22 2

    1 1 1 1 1 1 1 1

    1 1 1 11

    sQ Y s Q Q

    s s s s s ss s

    1 1 1 12 21 1 1

    sinh1 1

    ty t Y e t ts s s

    L L L L

    6.2 Transform of Derivatives and Integrals. ODEs

  • Seoul NationalUniv.

    14Engineering Math, 6. Laplace Transforms

    Ex. 5 Solve

    Step 1

    Step 2

    Step 3

    6.2 Transform of Derivatives and Integrals. ODEs

    0)0(16.0)0(.09 yyyyy

    4

    35)2/1(

    08.0)2/1(16.0

    9

    )1(16.0

    22

    s

    s

    ss

    sY

    /2

    /2

    35 0.08 35( ) ( ) 0.16cos sin

    2 235 / 2

    0.16cos 2.96 0.027sin 2.96

    t

    t

    y t Y e t t

    e t t

    L -1

    )1(16.0)9(.0916.016.0 22 sYssYsYsYs

    (a = -1/2, = 354

    )

  • Seoul NationalUniv.

    15Engineering Math, 6. Laplace Transforms

    6.2 Transform of Derivatives and Integrals. ODEs

    37 12 21 , (0) 3.5, (0) 10ty y y e y y

    Q? Solve

  • Seoul NationalUniv.

    16Engineering Math, 6. Laplace Transforms

    6.2 Transform of Derivatives and Integrals. ODEs

    [ Relation of Time domain and s-Domain ]

    Time domain analysis

    (differential equation)

    Problem Answer

    Laplace Transform

    S-domain analysis

    (algebraic equation)

    Inverse Transform

  • Seoul NationalUniv.

    17Engineering Math, 6. Laplace Transforms

    The process of solution consists of three steps.

    Step 1 The given ODE is transformed into an algebraic equation (“subsidiary

    equation”).

    Step 2 The subsidiary equation is solved by purely algebraic manipulations.

    Step 3 The solution in Step 2 is transformed back, resulting in the solution of

    the given problem.

    IVP

    Initial Value

    Problem

    (초기값문제)

    AP

    Algebraic

    Problem

    (보조방정식)

    ①Solving

    AP

    by Algebra

    ②Solution

    of the

    IVP

    Solving an IVP by Laplace transforms

    6.2 Transform of Derivatives and Integrals. ODEs

  • Seoul NationalUniv.

    18Engineering Math, 6. Laplace Transforms

    6.2 Transform of Derivatives and Integrals. ODEs

    Advantages of the Laplace Method

    1. Solving a nonhomogeneous ODE does not require first solving the

    homogeneous ODE.

    2. Initial values are automatically taken care of.

    3. Complicated inputs can be handled very efficiently.

  • Seoul NationalUniv.

    19Engineering Math, 6. Laplace Transforms

    6.3 Unit Step Function (Heaviside Function).Second Shifting Theorem (t-Shifting)

    Unit Step Function (단위 계단 함수)

    • Unit Step Function (Heaviside function):

    • Laplace transform of unit step function:

    0

    1

    t au t a

    t a

    s

    e

    s

    edtedtatueatu

    as

    at

    st

    a

    stst

    1)()( 0L

    “on off function”

  • Seoul NationalUniv.

    20Engineering Math, 6. Laplace Transforms

    6.3 Unit Step Function (Heaviside Function).Second Shifting Theorem (t-Shifting)

    Unit Step Function

  • Seoul NationalUniv.

    21Engineering Math, 6. Laplace Transforms

    6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

    Theorem 1 Second Shifting Theorem (제 2이동 정리); Time Shifting

    1 , as - asf t F s f t a u t a e F s f t a u t a e F s L L L

    dtdatta ,thus,

    at

    at

    atfatuatftf

    if

    if

    )(

    0)()()(ˆ

    0

    )(

    0)()()( dfedfeesFe assasas

    0 0

    ( ) ( )

    ˆ( ) ( ) ( )

    as st

    a

    st st

    e F s e f t a dt

    e f t a u t a dt e f t dt

    Proof)

    s

    e

    s

    edtedtatueatu

    as

    at

    st

    a

    stst

    1)()( 0L

    0

    stF s f e f t dt

    L

  • Seoul NationalUniv.

    22Engineering Math, 6. Laplace Transforms

    Ex. 1 Write the following function using unit step functions and find its

    transform.

    Step 1 Using unit step functions:

    2

    2 0 1

    12 2

    cos2

    t

    tf t t

    t t

    21 1 1

    2 1 1 1 cos2 2 2

    f t u t t u t u t t u t

    6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

    𝜋

    2

  • Seoul NationalUniv.

    23Engineering Math, 6. Laplace Transforms

    Ex. 1 Write the following function using unit step functions and find its

    transform.

    Step 1 Using unit step functions:

    Step 2

    21 1 1

    2 1 1 1 cos2 2 2

    f t u t t u t u t t u t

    6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

    22

    3 2

    1 1 1 1 1 11 1 1 1

    2 2 2 2

    st u t t t u t es s s

    L L

    2 2 22 2

    3 2

    1 1 1 1 1 1 1

    2 2 2 2 2 2 8 2 2 8

    s

    t u t t t u t es s s

    L L

    221 1 1 1

    cos sin2 2 2 1

    s

    t u t t u t es

    L L

    2

    2 23 2 3 2 2

    2 2 1 1 1 1 1

    2 2 8 1

    s ss sf e e e e

    s s s s s s s s s

    L

    asf t a u t a e F s L

    1!n

    n

    nt

    s L

  • Seoul NationalUniv.

    24Engineering Math, 6. Laplace Transforms

    Ex. 2 Find the inverse transform f(t) of

    2 3

    22 2 2 22

    s s se e eF s

    s s s

    2 31 1

    sin 1 1 sin 2 2 3 3 t

    f t t u t t u t t e u t

    1

    2 2

    1 sin t

    s

    L

    1 1 2

    22

    1 1

    2

    tt tes s

    L L

    6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

    2 3

    0 0 t 1

    sin 1 t 2

    0 2 t 3

    3 t 3t

    t

    t e

    1

    2 2

    21

    2 2

    1 sin 1 1

    1 sin 2 2

    s

    s

    et u t

    s

    et u t

    s

    L

    L

    asf t a u t a e F s L

    22}{sin

    stL

    Time shifting

    ate f t F s a L S-shifting

    where, sin 1 sin sin ,sin 2 sin 2 sint t t t t t

  • Seoul NationalUniv.

    25Engineering Math, 6. Laplace Transforms

    6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

    3 2 1 if 0 1 and 0 1

    (0) 0, (0) 0

    y y y t if t

    y y

    Q? Solve using Laplace transform.

  • Seoul NationalUniv.

    26Engineering Math, 6. Laplace Transforms

    6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

    Dirac delta function or the unit impulse function:

    Definition of the Dirac delta function

    Laplace transform of the Dirac delta function

    0 otherwise

    t at a

    0

    1 lim

    0 otherwisek k

    k

    a t a kkf t a t a f t a

    0 0

    11 1

    a k

    k

    a

    f t a dt dt t a dtk

    1

    kf t a u t a u t a kk

    1 1

    ks

    a k sas as as

    k

    ef t a e e e t a e

    ks ks

    L L

    0

    0 00

    1 1 1 1lim = lim = = ( ) 1

    0

    ks ks s ks

    k kk

    e e e des

    ks s k s dk s

  • Seoul NationalUniv.

    27Engineering Math, 6. Laplace Transforms

    Ex. 1 Mass Spring System Under a Square Wave

    Step 1

    Step 2

    Step 3

    6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

    0)0(0)0().2()1()(23 yytututryyy

    tt eeFtf 2

    2

    1

    2

    1)()( 1-L

    )()23(

    1)()(

    123 2

    2

    22 ssss eesss

    sYees

    YsYYs

    2

    2/1

    )1(

    12/1

    )2)(1(

    1

    )23(

    1)(

    2

    ssssssssssF

    )2(

    )21(

    )10(

    2/12/1

    2/12/1

    0

    )2(2)1(2)2()1(

    )1(2)1(

    t

    t

    t

    eeee

    eetttt

    tt

    )2()2()1()1(

    ))()(( 2

    tutftutf

    esFesFy ss-1L

    asf t a u t a e F s L

    Time shifting

    ate f t F s a L S-shifting

    asf t a u t a e F s L

    Time shifting

  • Seoul NationalUniv.

    28Engineering Math, 6. Laplace Transforms

    Ex. 2 Find the response of the system in Example 1 with the square wave

    replaced by a unit impulse at time t = 1.

    Initial value problem:

    Subsidiary equation:

    '' 3 ' 2 1 , 0 0, ' 0 0y y y t y y

    2 3 2 ss Y sY Y e

    1 1

    1 2 1 2

    sseY s e

    s s s s

    6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

    21

    ( )= , ( )=at t te f t e g t es a

    L

    asf t a u t a e F s L

    1

    1 2 1

    0 0 t 1

    t 1t t

    y t Ye e

    L

    ( 1) ( 1) ( 1)( 1)f t u t g t u

    ( 1) 2( 1)( 1) ( 1)t te u t e u

    ast a e L Dirac’s Delta

    Time shifting

  • Seoul NationalUniv.

    29Engineering Math, 6. Laplace Transforms

    6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

    9 ( / 2), (0) 2, (0) 0y y t y y

    Q? Solve

  • Seoul NationalUniv.

    30Engineering Math, 6. Laplace Transforms

    Transform of a product is generally different from the product

    of the transforms of the factors.

    Convolution (합성곱):

    6.5 Convolution. Integral Equations

    0

    t

    f g t f g t d

    )()()( gfgf LLL )()()( gffg LLL

    Ex. Transform of a Convolution

    Evaluate

    Solution) ttgetf t sin)(,)(

    0

    2 2

    sin( ) ( ) ( ) { } {sin }

    1 1 1

    1 1 ( 1)( 1)

    tτ te t dτ F s G s e t

    s s s s

    L L L

    1

    2 2

    2 2

    !{ }

    1{ }

    {sin }

    {cos }

    n

    n

    at

    nt

    s

    es a

    ts

    st

    s

    L

    L

    L

    L

    0 sin( ) *sint

    te t d e t L L

    f g f g L L L

  • Seoul NationalUniv.

    31Engineering Math, 6. Laplace Transforms

    Convolution:

    Theorem 1 Convolution Theorem

    If f(t) and g(t) are piecewise continuous on [0, ∞) and of exponential order,

    then

    6.5 Convolution. Integral Equations

    0

    t

    f g t f g t d

    f g f g L L L

    Ex. 1 Let . Find h(t).

    1H s

    s a s

    1 10

    1 1 1, 1 1 1 1

    t

    at at a ate h t e e d es a s a

    L L

    ( ) ( )h H sLs

    gas

    fsas

    gfgfh1

    )(,1

    )(,11

    )()()*()(

    LLLLLL

    1

    ! 1{ } , { }n at

    n

    nt e

    s s a

    L L

  • Seoul NationalUniv.

    32Engineering Math, 6. Laplace Transforms

    6.5 Convolution. Integral Equations

    Ex. 2 Convolution

    Evaluate1

    2 2 2

    1

    ( )

    -

    s

    L

    Solution))(

    1)()(Let

    22

    ssGsF

    1

    2 2

    1 1( ) ( ) sinf t g t t

    s

    L

    1

    2 2 2 2 0

    1 1sin sin ( )

    ( )

    t- t d

    s

    L

    t

    t

    dtt

    dtt

    02

    02

    )]cos()2[cos(2

    1

    )]cos()[cos(2

    11

    tt

    t

    cos

    sin

    2

    12

    2

    0

    1 1sin (2 ) cos

    2 2

    t

    t t

    )(find,)(

    1)(

    222th

    ssH

    1

    2 2

    2 2

    !{ }

    1{ }

    {sin }

    {cos }

    n

    n

    at

    nt

    s

    es a

    ts

    st

    s

    L

    L

    L

    L

    0

    t

    f g t f g t d

  • Seoul NationalUniv.

    33Engineering Math, 6. Laplace Transforms

    6.5 Convolution. Integral Equations

    Ex. 4 Repeated Complex Factors. Resonance – Undamped mass-spring system

    tt

    tKty 0

    0

    0

    2

    0

    0 cossin

    2)(

    0)0(0)0(sin 02

    0 yytKyy

    2 2 0 00 2 2 2 2 2

    0 0

    ( )( )

    K Ks Y Y Y s

    s s

    The subsidiary equation

    222 )(

    1)(

    ssH

    tt

    tth

    cos

    sin

    2

    1)(

    2

    In Ex. 2, we found

    The solution

  • Seoul NationalUniv.

    34Engineering Math, 6. Laplace Transforms

    Property of convolution

    Commutative Law (교환법칙):

    Distributive Law (분배법칙):

    Associative Law (결합법칙):

    Unusual Properties of Convolution:

    6.5 Convolution. Integral Equations

    f g g f

    1 2 1 2f g g f g f g

    f g v f g v

    000 ff

    1f f

    Ex. 3 Unusual Properties of Convolution

    ttdtt

    2

    0 2

    111*

  • Seoul NationalUniv.

    35Engineering Math, 6. Laplace Transforms

    Application to Nonhomogeneous Linear ODEs by convolution

    6.5 Convolution. Integral Equations

    If

    0 1'' ' , 0 , ' 0y ay by r t y K y K

    2

    2

    0 ' 0 0

    0 ' 0

    s Y sy y a sY y bY R s

    s as b Y s a y y R s

    , Y y R r L L

    222

    1 1

    1 1

    2 4

    Q ss as b

    s a b a

    0)0(0)0( yy RQY

    t

    drtqty0

    )()()(

    0

    t

    f g t f g t d

    f g g f

  • Seoul NationalUniv.

    36Engineering Math, 6. Laplace Transforms

    Theorem 1 Convolution Theorem

    If f(t) and g(t) are piecewise continuous on [0, ∞) and of exponential order, then

    6.5 Convolution. Integral Equations

    f g f g L L L

    Proof)

    ),[,, ttppt

    0 0( ) ( ) ( ) ( )s spF s e f d and G s e g p dp

    dttgeedttgesG ststs )()()( )(

    ddttgefddttgeefesGsF ststss

    )()()()()()(00

    )()()()()()()(000

    sHhdtthedtdtgfesGsF stt

    st

    L

    0)(

    ddttf

    0 0)(

    t

    dtdf

    ( ) ( )f g h H s L L

  • Seoul NationalUniv.

    37Engineering Math, 6. Laplace Transforms

    Ex. 5 Response of a Damped Vibrating System to a Single Square Wave

    6.5 Convolution. Integral Equations

    0)0(0)0().2()1()(23 yytututryyy

    tt eetq 2)(

    2

    1

    1

    1

    )23(

    1)()(

    123

    2

    22

    sssssQee

    sYsYYs ss

    0,1For yt

    ( ) 2( )

    1 1

    ( ) 2( ) ( 1) 2( 1)

    1

    For 1 2, ( ) 1

    1 1 1

    2 2 2

    t tt t

    t

    t t t t

    t y q t d e e d

    e e e e

    2 2( ) 2( )

    0 1 1For 2 , ( ) 1 ( ) 1

    tt tt y q t d q t d e e d

    ( ) 1, only for 1 2r t t

    2

    ( ) 2( ) ( 2) 2( 2) ( 1) 2( 1)

    1

    1 1 1

    2 2 2

    t t t t t te e e e e e

  • Seoul NationalUniv.

    38Engineering Math, 6. Laplace Transforms

    Integral Equation: Equation in which the unknown function appears in an integral.

    Ex. 6 Solve the Volterra integral equation of the second kind.

    Equation written as a convolution:

    Apply the convolution theorem:

    0

    sin

    t

    y t y t d t

    siny y t t

    2 21 1

    1Y s Y s

    s s

    2 3

    4 2 4

    1 1 1

    6

    s tY s y t t

    s s s

    6.5 Convolution. Integral Equations (적분방정식)

    )()( tYy L

    Unknown

    t

    dthftgtf0

    )()()()( : Volterra integral equation for f(t)

    1

    !{ }n

    n

    nt

    s L

  • Seoul NationalUniv.

    39Engineering Math, 6. Laplace Transforms

    6.5 Convolution. Integral Equations

    Solve

    ttt tffordefettf

    0

    2 )()(3)(

    Solution)

    1 1 1 1

    3 4

    2! 3! 1 1( ) 3 2

    1f t

    s s s s

    L L L L

    tett 213 32

    Example An Integral Equation

    2 0( ) 3 ( )t

    t tf t t e f e d L L L L

    1

    1)(

    1

    1!23)(

    3

    ssF

    sssF

    1

    2166)(

    43

    sssssF

    0

    1

    2 2

    2 2

    !{ }

    1{ }

    {sin }

    {cos }

    t

    n

    n

    at

    f g t f g t d

    f g f g

    nt

    s

    es a

    ts

    st

    s

    L L L

    L

    L

    L

    L

  • Seoul NationalUniv.

    40Engineering Math, 6. Laplace Transforms

    6.5 Convolution. Integral Equations

    0( ) 2 ( )

    tt ty t e y e d te Q? Solve

    Q? find if equals: f t f tL

    9

    , ?( 3)

    f t f ts s

    L

  • Seoul NationalUniv.

    41Engineering Math, 6. Laplace Transforms

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    Differentiation of Transforms

    L (f ) f (t)

    Ex.1 We shall derive the following three formulas.

    2

    2 2

    1

    s 3

    1sin cos

    2t t t

    222 ss

    tt

    sin2

    2222

    s

    s ttt

    cossin

    2

    1

    0

    stF s f e f t dt

    L 0

    stdF

    F s e tf t dt tfds

    L

    1 , tf t F s F s tf t L L

  • Seoul NationalUniv.

    42Engineering Math, 6. Laplace Transforms

    2 2sin t s

    LBy differentiation

    2

    2 2sin

    2

    t st

    s

    L

    2 2coss

    ts

    LBy differentiation

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    222

    22

    222

    222

    222

    2

    22

    )()(

    2

    )(

    21)()cos(

    s

    s

    s

    ss

    s

    s

    ssFttL

    222 )(

    2)()sin(

    s

    ssFttL

    L (f ) f (t)

    2

    2 2

    1

    s 3

    1sin cos

    2t t t

    222 ss

    tt

    sin2

    2222

    s

    s ttt

    cossin

    2

    1

    )()}({

    ),()}({

    1 tfsF

    sFttf

    - L

    L

    2 2

    2 2 2( cos )

    ( )

    st t

    s

    L

  • Seoul NationalUniv.

    43Engineering Math, 6. Laplace Transforms

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    L (f ) f (t)

    2

    2 2

    1

    s 3

    1sin cos

    2t t t

    222 ss

    tt

    sin2

    2222

    s

    s ttt

    cossin

    2

    1

    )()}({

    ),()}({

    1 tfsF

    sFttf

    -L

    L

    2 2 2 2 2 2 2

    2 2 2 2 2 2 2 2 2 2 2

    1 1 1 1 1sin cos

    2 2 ( ) ( ) 2 ( ) ( )

    s s s st t t

    s s s s

    L

    2 2 2 2 2 2

    2 2 2 2 2 2 2 2 2 2 2

    1 1 1 1 1sin cos

    2 2 ( ) ( ) 2 ( )

    s s st t t

    s s s

    L

    2 2sin t s

    L

    2 2

    2 2 2( cos )

    ( )

    st t

    s

    L

    2

    2 2 2 2 2 2 2

    1 2 1

    2 ( ) ( )s s

  • Seoul NationalUniv.

    44Engineering Math, 6. Laplace Transforms

    1 s s

    f t f tF s ds F s ds

    t t

    L L Integration of Transforms:

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    Proof)

    sddttfesdsFs

    ts

    s

    ~)(~)~(0

    ~

    dtsdetfdtsdtfesdsFs

    ts

    s

    ts

    s

    0

    ~

    0

    ~ ~)(~)(~)~(

    t

    e

    t

    esde

    st

    s

    ts

    s

    ts

    ~~ ~

    t

    tfdt

    t

    tfesdsF st

    s

    )()(~)~(0

    L

  • Seoul NationalUniv.

    45Engineering Math, 6. Laplace Transforms

    1 , s s

    f t f tF s ds F s ds

    t t

    L L

    Ex. 2 Find the inverse transform of

    Case 1 Differentiation of transform

    Case 2 Integration of transform

    2 2 2

    2 2ln 1 ln

    s

    s s

    21 1

    2 2 2 2

    2 2ln 1 2cos 2

    2cos 2 2 1 cos

    s sF s f F s t tf t

    s s s

    tf t t

    t t

    L L L

    2 2 2 2 2 22 2

    ln lnd s s

    s sds s s

    2 2 2

    2 2ln 1 ln

    s

    s s

    Derivative

    1

    2 2

    21 1

    2

    2 2 2 cos 1

    2ln 1 1 cos

    s

    sG s g t G t

    s s

    g tG s ds t

    s t t

    L

    L L

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    )()}({

    ),()}({

    1 tfsF

    sFttf

    - L

    L

    Because the lower limit of the integral is “s”

  • Seoul NationalUniv.

    46Engineering Math, 6. Laplace Transforms

    Special Linear ODEs with Variable Coefficients

    2 2

    ' 0

    '' 0 ' 0 2 0

    d dYty sY y Y s

    ds ds

    d dYty s Y sy y sY s y

    ds ds

    L

    L

    Ex. 3 Laguerre’s Equation, Laguerre Polynomials

    Laguerre’s ODE: '' 1 ' 0 0 1 2 , (0) '(0) 0ty t y ny n , , , y y

    22 0 0 0 dY dY

    sY s y sY y Y s nYds ds

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    2' 0

    '' 0 ' 0 .

    f s f f ,

    f s f sf f

    L L

    L L

    )()}({ sFttf L

    1

    !{ }

    ( 1)

    n t

    n

    nt e

    s

    L

    2 1 0dY

    s s n s Yds

    2

    1 1

    1

    dY n s n nds ds

    Y s s s s

    1

    1

    n

    n

    sY

    s

    ate f t F s a L S-shifting

    In the mean time,1

    !{ }n

    n

    nt

    s L

    1( ) ?nl Y L

    Rodrigues’s formula

    1

    ( 1) ln ln( 1) ( 1) ln ln ln

    n

    n

    sY n s n s Y

    s

  • Seoul NationalUniv.

    47Engineering Math, 6. Laplace Transforms

    Ex.3 Laguerre’s Equation, Laguerre Polynomials

    Laguerre’s ODE: '' 1 ' 0 0 1 2 , (0) '(0) 0ty t y ny n , , , y y

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    1

    !( )

    ( 1)

    n nn t

    n n

    d n st e

    dt s

    L

    Ys

    s

    s

    sn

    net

    dt

    d

    n

    el

    n

    n

    n

    ntn

    n

    nt

    n

    11

    )1(

    )11(

    )1(!

    !

    1)(

    !}{ LL ate f t F s a L

    S-shifting

    1

    1 0

    , 1, 2, !

    t nn n t

    n

    , n

    l t Y e dt e n

    n dt

    L

    11 20 ' 0 0n nn n n nf s f s f s f f s f L L L

    ( 1)( ) (0) (0) ,..., (0) 0n t nf t t e f f f 1

    !{ }

    ( 1)

    n t

    n

    nt e

    s

    L

    1

    1n

    n

    sY

    s

    Back to 1( ) ?nl Y L

  • Seoul NationalUniv.

    48Engineering Math, 6. Laplace Transforms

    6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

    Q? Solve 2 sin 3 ?t t L

    Q? Solve 2 2 , ?( 16)s

    f t f ts

    L

  • Seoul NationalUniv.

    49Engineering Math, 6. Laplace Transforms

    6.7 Systems of ODEs

    1 11 1 12 2 1

    2 21 1 22 2 2

    ( )

    ( )

    y a y a y g t

    y a y a y g t

    )()0(

    )()0(

    222212122

    121211111

    sGYaYaysY

    sGYaYaysY

    )()0()(

    )()0()(

    22222121

    11212111

    sGyYsaYa

    sGyYaYsa

    )(),(

    ),(),(

    2211

    2211

    gGgG

    yYyY

    L L

    L L

    )(),(, 21

    21

    1

    121 YyYyYY-- L L

    The Laplace transform method may also be used for solving systems of

    ODE (연립상미분방정식),a first-order linear system with constant coefficients.

  • Seoul NationalUniv.

    50Engineering Math, 6. Laplace Transforms

    6.7 Systems of ODEs

    Ex. 3 Model of Two Masses on Springs

    The mechanical system consists of two bodies of mass 1 on three springs of

    the same spring constant k. Damping is assumed to be practically zero.

    2

    1 1 2 1

    2

    2 2 1 2

    3

    3

    s Y s k kY k Y Y

    s Y s k k Y Y kY

    1 1 2 1

    2 2 1 2

    ''

    ''

    y ky k y y

    y k y y ky

    1 2

    1 2

    0 1, 0 1,

    ' 0 3 , 0 3

    y y

    y k y k

    Laplace

    transform

    Model of the

    physical

    system:

    Initial

    conditions:

    2' 0

    '' 0 ' 0 .

    f s f f ,

    f s f sf f

    L L

    L L

  • Seoul NationalUniv.

    51Engineering Math, 6. Laplace Transforms

    6.7 Systems of ODEs

    2

    1 1 2 1

    2

    2 2 1 2

    3

    3

    s Y s k kY k Y Y

    s Y s k k Y Y kY

    2

    1 2 2 22 2

    2

    2 2 2 22 2

    3 2 3 3

    32

    3 2 3 3

    32

    s k s k k s k s kY

    s k s ks k k

    s k s k k s k s kY

    s k s ks k k

    Cramer’s rule or Elimination

    1

    1 1

    1

    2 2

    cos sin 3

    cos sin 3

    y t Y kt kt

    y t Y kt kt

    L

    L

    Inverse transform

    Ex. 3 Model of Two Masses on Springs