hpm 與高中幾何教學:以圓錐曲線的正焦弦為例

20
HPM 通訊第十一卷第二、三期合刊第一版 HPM 與高中幾何教學:以圓錐曲線的 正焦弦為例 法國的數學天才-巴斯卡 (Blaise Pascal, 1623-1662) 苦學有成的中國數學巨匠—華羅庚 (1910~1985) 《中國數理天文學》後記 發行人:洪萬生(台灣師大數學系教授) 主編:蘇惠玉(西松高中)副主編:林倉億(家齊女中) 助理編輯:李建勳、黃俊瑋(台灣師大數學所研究生) 編輯小組:蘇意雯(成功高中)蘇俊鴻(北一女中) 黃清揚(福和國中)葉吉海(新竹高中) 陳彥宏(成功高中)陳啟文(中山女高) 王文珮(青溪國中)黃哲男(台南女中) 英家銘(台師大數學系)謝佳叡(台師大數學 創刊日:1998 10 5 每月 5 日出刊 系) 網址:http://math.ntnu.edu.tw/horng HPM 與高中幾何教學:以圓錐曲線的正焦弦為例 蘇惠玉 台北市西松高中 摘要 在現行的高中教材中,無論是高三的舊教材,或是高一二的 95 課綱,其中幾何學的 內容部分,仍是以解析幾何的形式為主,不重視幾何關係的瞭解,反而著重在以代數形式 來講述幾何內容,讓學生習慣以代數方式來理解幾何概念。本文首先試著分析目前高中數 學教科書中,對於幾何部份的教材編寫上,由於編寫者的意識型態不同,理念不同,數學 教師對教科書的詮釋就會因此而有不同,因而造成目前高中幾何教學著重在代數方程式上 的一些問題。同時本文也試著從歷史文本中尋找材料,簡單舉例說明數學教師可以如何應 用這些史料在幾何單元教學上,例如三角函數的正餘弦定理,最後再以圓錐曲線的正焦弦 為例,說明如何利用數學史料於此單元的教學,尤其是阿波羅尼斯的《錐線論》中對圓錐 曲線的 3 個命題,將此 3 個命題的內容與意涵,尤其是正焦弦在圓錐曲線的幾何意義上所 扮演的角色,將其適當地融入教學中,將可使學生真正學習圓錐曲線的幾何知識,而不再 只是代數形式的幾何知識。教師藉由數學史的幫助,除了使學生的一些認知障礙獲得解決 之外,也可促進自己本身的專業成長。 關鍵詞:解析幾何、圓錐截痕、正焦弦 一、 高中數學中的幾何與代數方法 在現行的高中教材中,無論是高三所用的舊課程,或是目前高一、二所用的 95 課綱, 課程中有關幾何的內容,可以分成下面幾個部分: 1. 函數圖形:包括多項函數中的一次、二次及三次圖形;指數、對數函數;三角函

Upload: others

Post on 02-Apr-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

19101985


















1998 10 5 5
http://math.ntnu.edu.tw/horng


3 3

1.




Girolamo Cardano, 1501~1576 1545 Ars magna
On the Rules of Algebra


F. Viète, 1540~1603
In Artem Analyticem Isagoge, Introduction to Analytic Art, 1591

Introduction to Analytic Art
— Pappus
analysissynthesis



zetetics (seekink the truth
)
poristics
rhetics exegetics



HPM







sin( )y a bx c d= + +

a b c R A B C = = =


A B C = = 2


ABC a, b, cA(0, 0)B(c, 0) C
( cos , sin )C b A b A
2 2 2( cos ) ( sin 0)BC b A c b A= − + −
2 2 2 2 2cos 2 cos sinb A bc A c b− + + A 2 2 2 cosb c bc A+ −
BC a= 2 2 2 2 cosa b c bc= + − A
x

+ =
− =


2
(2006), HPM



/



x
a 2a x, y
33 2ax =
a y
y x
x a
y x
y = 32xy a= y
(2)
F. van Schooten (1615-1660)
HPM
AB BE B
BE D BDAB D
L E
D L E

E
θ
(a) A LK x E
A E(x, y)ABBD=a DE=b BE
θ E
x
y
A
B
D
E
(b) abθ BDE (c) (c) E E (d) van Schooten
(3)


3 van SchootenVan Maanen “Alluvial Deposits, Conic Sections, and Improper Glasses, or History of Mathematics Applied in the Classroom”, Learn From The Masters!
HPM
A. Quetelet G. Dandelin 19

F1 S2EF2S1
k1k2E1E2 PF1PE1S1 PF1PE1 PF2PE2S2PF2PE2
PF1PF2PE1+PE2E1E2
E1E2S1S2
(Conics)
(Apollonius of Perga, 262 B. C. ~ 190 B. C.)
(diameters)
111213



K KL HF, FL
K y KLx
H
L
K
GF
y
x
p
HPM
LF pHF (parameter)
(latus rectum) parabola
2y p= x
FX FL FN
OLPX F
HF x FXxMNy
FLpHFd HFFLOLLP
dpxLP LP p x d

= +
p=FL hyperbola
x
p
xd
y
O
XP
L
L LM MO
MO EM EH ON
E ED x EMx LMy EH
pEDdEDEHOXOH dpx
OH OH

2 py px x d
= − ⋅ x 2 py px x d
= − 2 pEH
ellipse
parabola., hyperbola, ellipse


(fall short) (exceed) (fit) elleipsis, “defect”hyperbole, “excess”parabole, “a placing beside” parameter
11 FH 12 FL 13 EH “the straight lines drawn ordinatewise to the diameter are applied in square”

upright side latus rectum
HPM
a : b :: c: d
:: analogia M. Fried

(figure) “upright side”
2
= ±


(the straight line cut off by it on the diameter beginning from the section’s vertex)

(another straight line which has the ratio to the straight line between the angle of the cone and the vertex of the section that the square on the base of the axial triangle has to the rectangle contained by the remaining two sides of the triangle.)
(And let such a section be called a parabola.) ABC
ABC [I. 3]DE
ACFFHFG
BC : BA, AC:: FH : FA
K K KL DE KL HF, FL
HPM

(applied to)
(the straight line added along the diameter of the section and subtending the exterior angle of the triangle)

(the parameter) 2
(And let such a section be call an hyperbola) ABC
ABC [I. 3]DE
HAKAFGBCKFFG
FL KA : BK, KC : : FH : FL M M MN DE N NOX FL HL X LOXP FN MN FX (applied to) FL FN LX HF, FL 13
(subcontrariwise)


(the parameter)
(And let such a section be call an ellipse)
HPM

(subcontrariwise)DE
FGBCED [I. 7 and Def. 4]E
EHEDAAKED AKBK, KC : : DEEH L L LM FG LM (applied to) EH EM
DE, EH

Apollonius (1952). Conics (tr. R. C. Taliaferro), in Great Books of the Western World, Encyclopaedia Britannica.
The Philosophical Works of Descartes, translated by E. S. Haldane and G. R. T. Ross (1968). London: Cambridge at The University Press.
Bunt, L. N. H. et al (1988). The Historical Roots of Elementary Mathematics. New York: Dover. Eves, H. (1976). An Introduction to the History of Mathematics, New York: Holt, Rinehart and
Winston.
Fauvel, J and J. Gray ed.( 1987). The History of Mathematics: A Reader. London: The Open University.
Fried, M. (2003). “The Use of Analogy in Book VII of Apollonius’ Conica”, Science in Context 16(3).
Katz, Victor. J., (1993). A History of Mathematics: An Introduction. New York: HarperCollins College Publishers.
Grattan-Guinness, Ivor, (1997). The Fontana History of the Mathematical Sciences. London:HarperCollins College Publishers.
Lui, K.W. (2003). Study of Conic Sections and Prime Numbers in China: Cultural Influence on The Development, Application and Transmission of Mathematical Ideas, The University of Hong Kong.
Van Maanen, Jan A (1995). “Alluvial Deposits, Conic Sections, and Improper Glasses, or History of Mathematics Applied in the Classroom”, in F. Swetz et al eds., Learn From The Masters!. Washington, DC: The Mathematical Association of America.
Kline, M. (1983). —
(2000). (1995).
HPM


1623 6 19 (Clermont-Ferrand)1662 8 19
(Etienne Pascal, 1588-1651)
(Mersenne)


(Torricelli Evangelista,1608-1647)
(Pierre de Fermat, 1601-1665)










(Euclid) (The Elements)
1654 11



HPM

(Christian Huygens,1629 - 1695)



(Chevalier De Mere, 1607-1684)

< )……

n (x+y)
(Traite du triangle arithmetique) 1665

(Omar Khayyam, 1048-1131)
n
1654
(Isaac Newton, 1643-1727)

n ( )nx+1 x

(Pappus)
A” B” C” 2.
1646 1651 1654
1654

1658 (Traite General de la Roulette) 1655
(Pensees)


1. PDF e-mail [email protected]
2. 3. e-mail
[email protected] 4. http://math.ntnu.edu.tw/horng/letter/hpmletter.htm 5.
HPM ( Boston Consulting Group)
()
()

()

()



1910 11 12 1985 6 12 4

50
1900
1952




189319691896197319001979
Jacques Hadamard, 18651963Norbert Wiener, 18941964
1933
1935 1936





19112004
19101970 1939 1941
20
1946 2 5 9 1926
1924
HPM
1947 1950 3 16
(189219781952 7
19301927
1950193319961927

1983 10
California Institute of Technology
1984 4
1985 6 3 6 12 4


F.Shiratori

HPM
Critical path method, CPMProgram evaluation and review Technique, PERT
1964 18931976
3 18

——





……






HPM

2008
8 1999






30

2001




HPM


20





Jean-Claude Martzloff Owen Gingerich
Benno van Dalen
Karine Chemla
Bernd Zimmermann
211




[email protected]