hspice mosfet

Upload: prashantvlsi

Post on 10-Feb-2018

245 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 Hspice Mosfet

    1/629

    HSPICEMOSFET Models Manual

    Version X-2005.09, September 2005

  • 7/22/2019 Hspice Mosfet

    2/629

    ii HSPICEMOSFET Models ManualX-2005.09

    Copyright Notice and Proprietary InformationCopyright 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietaryinformation that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement andmay be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation maybe reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, withoutprior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

    Right to Copy DocumentationThe license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee mustassign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

    This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of__________________________________________ and its employees. This is copy number __________.

    Destination Control StatementAll technical data contained in this publication is subject to the export control laws of the United States of America.Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility todetermine the applicable regulations and to comply with them.

    DisclaimerSYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITHREGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

    Registered Trademarks ()Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync,Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill,PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, Testify, TetraMAX, TimeMill,TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

    Trademarks ()Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora,AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia,Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DCExpert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI,Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ,Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express,Frame Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II,Hierarchical Optimization Technology, High Performance Option, HotPlace, HSIMplus, HSPICE-Link, iN-Tandem,Integrator, Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme,

    Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture,Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova ProductFamily, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View,Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate,ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer,Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access,SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC,Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT,Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL SystemSimulator, VirSim, and VMC are trademarks of Synopsys, Inc.

    Service Marks (SM)MAP-in, SVP Caf, and TAP-in are service marks of Synopsys, Inc.

    SystemC is a trademark of the Open SystemC Initiative and is used under license.ARM and AMBA are registered trademarks of ARM Limited.

    All other product or company names may be trademarks of their respective owners.Printed in the U.S.A.

    HSPICEMOSFET Models Manual, X-2005.09

  • 7/22/2019 Hspice Mosfet

    3/629

    HSPICEMOSFET Models Manual iiiX-2005.09

    Contents

    Inside This Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

    The HSPICE Documentation Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

    Searching Across the HSPICE Documentation Set. . . . . . . . . . . . . . . . . . . . . xv

    Other Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

    Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

    Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

    1. Overview of MOSFET Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    Overview of MOSFET Model Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Selecting Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Selecting MOSFET Model LEVELs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Selecting MOSFET Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Selecting MOS Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Searching Models as Function of W, L. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Setting MOSFET Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Scaling Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Scaling for LEVEL 25 and 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Bypassing Latent Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    General MOSFET Model Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    MOSFET Output Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    2. Technical Summary of MOSFET Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Nonplanar and Planar Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Nonplanar techonology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Planar techonology: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    Field Effect Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    MOSFET Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

  • 7/22/2019 Hspice Mosfet

    4/629

    iv HSPICEMOSFET Models ManualX-2005.09

    Contents

    Equation Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Using the MOSFET Current Convention . . . . . . . . . . . . . . . . . . . . . 34Using MOSFET Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 35

    MOSFET Diode Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Selecting MOSFET Diode Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Enhancing Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    MOSFET Diode Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    Using an ACM=0 MOS Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Calculating Effective Areas and Peripheries . . . . . . . . . . . . . . . . . . 45Calculating Effective Saturation Current. . . . . . . . . . . . . . . . . . . . . . 45Calculating Effective Drain and Source Resistances . . . . . . . . . . . . 45

    Using an ACM=1 MOS Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Calculating Effective Areas and Peripheries . . . . . . . . . . . . . . . . . . 47Calculating Effective Saturation Current. . . . . . . . . . . . . . . . . . . . . . 48

    Calculating Effective Drain and Source Resistances . . . . . . . . . . . . 48Using an ACM=2 MOS Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Calculating Effective Areas and Peripheries . . . . . . . . . . . . . . . . . . 51Calculating Effective Saturation Currents. . . . . . . . . . . . . . . . . . . . . 51Calculating Effective Drain and Source Resistances . . . . . . . . . . . . 52

    Using an ACM=3 MOS Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Calculating Effective Areas and Peripheries . . . . . . . . . . . . . . . . . . 53Effective Saturation Current Calculations. . . . . . . . . . . . . . . . . . . . . 54Effective Drain and Source Resistances . . . . . . . . . . . . . . . . . . . . . 54

    MOS Diode Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    DC Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Using MOS Diode Capacitance Equations . . . . . . . . . . . . . . . . . . . . . . . 55Common Threshold Voltage Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Common Threshold Voltage Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Calculating PHI, GAMMA, and VTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    MOSFET Impact Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Calculating the Impact Ionization Equations . . . . . . . . . . . . . . . . . . . . . . 61

    Calculating Effective Output Conductance. . . . . . . . . . . . . . . . . . . . . . . . 62

    Cascoding Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    Cascode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    MOS Gate Capacitance Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    Selecting Capacitor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    Transcapacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    Operating Point Capacitance Printout . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    Element Template Printout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

  • 7/22/2019 Hspice Mosfet

    5/629

    HSPICEMOSFET Models Manual vX-2005.09

    Contents

    Calculating Gate Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Input File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    Plotting Gate Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Capacitance Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    MOS Gate Capacitance Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 74

    Specifying XQC and XPART for CAPOP=4, 9, 11, 12, 13 . . . . . . . . . . . . 77

    Overlap Capacitance Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    CAPOP=0 SPICE Meyer Gate Capacitances . . . . . . . . . . . . . . . . . . . 78Gate-Bulk Capacitance (cgb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Gate-Source Capacitance (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Gate-Drain Capacitance (cgd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    CAPOP=1 Modified Meyer Gate Capacitances. . . . . . . . . . . . . . . . . . 80

    Gate-Bulk Capacitance (cgb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Gate-Source Capacitance (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Gate-Drain Capacitance (cgd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    CAPOP=2Parameterized Modified Meyer Capacitance . . . . . . . . . . . . 83Gate-Bulk Capacitance (cgb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Gate-Source Capacitance (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Gate-Drain Capacitance (cgd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    CAPOP=3 Gate Capacitances (Simpson Integration). . . . . . . . . . . . . 86

    CAPOP=4 Charge Conservation Capacitance Model . . . . . . . . . . . . . 88

    CAPOP=5 No Gate Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    CAPOP=6 AMI Gate Capacitance Model . . . . . . . . . . . . . . . . . . . . . . 93

    CAPOP=11 Ward-Dutton model specialized (LEVEL 2) . . . . . . . . . . . 95CAPOP=12 Ward-Dutton model specialized (LEVEL 3) . . . . . . . . . . . 95

    CAPOP=13 BSIM1-based Charge-Conserving Gate Capacitance Model 95

    CAPOP=39 BSIM2 Charge-Conserving Gate Capacitance Model . . . 95

    Calculating Effective Length and Width for AC Gate Capacitance. . . . . . 95

    Noise Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    Temperature Parameters and Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    Temperature Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98MOS Temperature Coefficient Sensitivity Parameters . . . . . . . . . . . 100

    Temperature Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Energy Gap Temperature Equations . . . . . . . . . . . . . . . . . . . . . . . . 101Saturation Current Temperature Equations . . . . . . . . . . . . . . . . . . . 102MOS Diode Capacitance Temperature Equations . . . . . . . . . . . . . . 102Surface Potential Temperature Equations . . . . . . . . . . . . . . . . . . . . 104Threshold Voltage Temperature Equations . . . . . . . . . . . . . . . . . . . 105

  • 7/22/2019 Hspice Mosfet

    6/629

    vi HSPICEMOSFET Models ManualX-2005.09

    Contents

    Mobility Temperature Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Channel Length Modulation Temperature Equation . . . . . . . . . . . . . 105Calculating Diode Resistance Temperature Equations . . . . . . . . . . 106

    3. Common MOSFET Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    Basic MOSFET Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    4. Standard MOSFET Models: Level 1 to 40 . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    LEVEL 1 IDS: Schichman-Hodges Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    LEVEL 1 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    LEVEL 1 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 129

    LEVEL 2 IDS: Grove-Frohman Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    LEVEL 2 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    LEVEL 2 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 131Threshold Voltage, vth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    Saturation Voltage, vdsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Mobility Reduction, ueff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Subthreshold Current, Ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    LEVEL 3 IDS: Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136LEVEL 3 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    LEVEL 3 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 137Threshold Voltage, vth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    Saturation Voltage, vdsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Effective Mobility, ueff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Subthreshold Current, Ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    Compatibility Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Synopsys Device Model versus SPICE3 . . . . . . . . . . . . . . . . . . . . . 141

    Temperature Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Simulation results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    LEVEL 4 IDS: MOS Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

  • 7/22/2019 Hspice Mosfet

    7/629

    HSPICEMOSFET Models Manual viiX-2005.09

    Contents

    LEVEL 5 IDS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    LEVEL 5 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 146Threshold Voltage, vth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Saturation Voltage, vdsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Mobility Reduction, UBeff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Subthreshold Current, Ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Depletion Mode DC Model ZENH=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    IDS Equations, Depletion Model LEVEL 5 . . . . . . . . . . . . . . . . . . . . . . . . 150Threshold Voltage, vth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    Saturation Voltage, vdsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Mobility Reduction, UBeff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Subthreshold Current, Ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    LEVEL 6/LEVEL 7 IDS: MOSFET Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    LEVEL 6 and LEVEL 7 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . 155

    UPDATE Parameter for LEVEL 6 and LEVEL 7 . . . . . . . . . . . . . . . . . . . . 156

    LEVEL 6 Model Equations, UPDATE=0,2 . . . . . . . . . . . . . . . . . . . . . . . . 159IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 159Threshold Voltage, vth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Single-Gamma, VBO=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160Effective Built-in Voltage, vbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    Multi-Level Gamma, VBO>0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Effective Built-in Voltage, vbi for VBO>0. . . . . . . . . . . . . . . . . . . . . . 163Saturation Voltage, vdsat (UPDATE=0,2) . . . . . . . . . . . . . . . . . . . . . 163Saturation Voltage, vsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    LEVEL 6 IDS Equations, UPDATE=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Alternate DC Model (ISPICE model) . . . . . . . . . . . . . . . . . . . . . . . . 168Subthreshold Current, ids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Effective Mobility, ueff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    ASPEC Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    LEVEL 7 IDS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    LEVEL 8 IDS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    LEVEL 8 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    LEVEL 8 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 183

  • 7/22/2019 Hspice Mosfet

    8/629

    viii HSPICEMOSFET Models ManualX-2005.09

    Contents

    Effective Substrate Doping, nsub . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Threshold Voltage, vth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184Saturation Voltage vdsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184Effective Mobility, ueff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Subthreshold Current Ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    LEVEL 27 SOSFET Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    LEVEL 27 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Non-Fully Depleted SOI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Model Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    Obtaining Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    Fully Depleted SOI Model Considerations . . . . . . . . . . . . . . . . . . . . . . . . 194

    LEVEL 38 IDS: Cypress Depletion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    LEVEL 38 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    LEVEL 38 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Threshold Voltage, vth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Saturation Voltage, vdsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Mobility Reduction, UBeff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Channel Length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202Subthreshold Current, ids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    Example Model File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Body Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    LEVEL 40 HP a-Si TFT Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204Using the HP a-Si TFT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    Effect of SCALE and SCALM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206DELVTO Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206Device Model and Element Statement Example . . . . . . . . . . . . . . . 206

    LEVEL 40 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206Cutoff Region (NFS = 0, vgs von) . . . . . . . . . . . . . . . . . . . . . . . . . 208Noncutoff Region (NFS 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Cgd, Cgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    LEVEL 40 Model Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    5. Standard MOSFET Models: Levels 50 to 64 . . . . . . . . . . . . . . . . . . . . . . . . 213

    Level 50 Philips MOS9 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

  • 7/22/2019 Hspice Mosfet

    9/629

    HSPICEMOSFET Models Manual ixX-2005.09

    Contents

    JUNCAP Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

    Using the Philips MOS9 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

    Model Statement Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

    Level 55 EPFL-EKV MOSFET Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224Single Equation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

    Effects Modeled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

    Coherence of Static and Dynamic Models. . . . . . . . . . . . . . . . . . . . . . . . 225

    Bulk Reference and Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

    EKV Intrinsic Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

    Static Intrinsic Model Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Basic Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Parameter Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Bulk Referenced Intrinsic Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . 233Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 234

    Short Distance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234Reverse Short-channel Effect (RSCE) . . . . . . . . . . . . . . . . . . . . . . . 234Effective Gate Voltage Including RSCE . . . . . . . . . . . . . . . . . . . . . . 234Effective substrate factor including charge-sharing for short and narrow

    channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Pinch-off Voltage Including Short-Channel and Narrow-Channel Effects235Slope Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236Large Signal Interpolation Function . . . . . . . . . . . . . . . . . . . . . . . . . 236Forward Normalized Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236Velocity Saturation Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Drain-to-source Saturation Voltage for Reverse Normalized Current 237Channel-length Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

    Equivalent Channel Length Including Channel-length Modulation andVelocity Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

    Reverse Normalized Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Transconductance Factor and Mobility Reduction Due to Vertical Field 238Specific Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Drain-to-source Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Transconductances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240Impact Ionization Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    Quasi-static Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241Dynamic Model for the Intrinsic Node Charges . . . . . . . . . . . . . . . . 241Intrinsic Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

    Intrinsic Noise Model Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Flicker Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

    Operating Point Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Numerical values of model internal variables. . . . . . . . . . . . . . . . . . 243Transconductance efficiency factor . . . . . . . . . . . . . . . . . . . . . . . . . 244

  • 7/22/2019 Hspice Mosfet

    10/629

    x HSPICEMOSFET Models ManualX-2005.09

    Contents

    Early voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244Overdrive voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244SPICE-like threshold voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244Saturation voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

    Saturation / non-saturation flag: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244Estimation and Limits of Static Intrinsic Model Parameters . . . . . . . . . . . 245

    Model Updates Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246Revision I, September 1997. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247Revision II, July 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247Corrections from EPFL R11, March, 1999 . . . . . . . . . . . . . . . . . . . . 248Corrections from EPFL R12, July 30, 1999 . . . . . . . . . . . . . . . . . . . 248

    Level 58 University of Florida SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    Level 58 FD/SOI MOSFET Model Parameters. . . . . . . . . . . . . . . . . . . . . 250

    Level 58 NFD/SOI MOSFET Model Parameters . . . . . . . . . . . . . . . . . . . 254Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

    Level 58 Template Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

    Level 61 RPI a-Si TFT Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

    Model Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

    Using Level 61 with Synopsys Simulators . . . . . . . . . . . . . . . . . . . . . . . . 260

    Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

    Level 62 RPI Poli-Si TFT Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265Model Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

    Using Level 62 with Synopsys Simulators . . . . . . . . . . . . . . . . . . . . . . . . 266

    Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

    Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Threshold Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Geometry Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Self Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    Level 63 Philips MOS11 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

    Using the Philips MOS11 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

    Description of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

    Level 64: STARC HiSIM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

  • 7/22/2019 Hspice Mosfet

    11/629

    HSPICEMOSFET Models Manual xiX-2005.09

    Contents

    6. BSIM MOSFET Models: Levels 13 to 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

    LEVEL 13 BSIM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    BSIM Model Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    LEVEL 13 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    Sensitivity Factors of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 330

    .MODEL VERSION Changes to BSIM Models . . . . . . . . . . . . . . . . . . . . 331

    LEVEL 13 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 332IDS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333Threshold Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334Saturation Voltage (vdsat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335ids Subthreshold Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335Resistors and Capacitors Generated with Interconnects . . . . . . . . . 335Temperature Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

    Charge-Based Capacitance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336Regions Charge Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

    Preventing Negative Output Conductance . . . . . . . . . . . . . . . . . . . . . . . . 339

    Calculations Using LEVEL 13 Equations . . . . . . . . . . . . . . . . . . . . . . . . . 339

    Compatibility Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Model Parameter Naming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341SPICE/Synopsys Model Parameter Differences . . . . . . . . . . . . . . . 341Parasitics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344Temperature Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344UPDATE Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346IDS and VGS Curves for PMOS and NMOS . . . . . . . . . . . . . . . . . . 347

    LEVEL 28 Modified BSIM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347LEVEL 28 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

    LEVEL 28 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352Sensitivity Factors of Model Parameters . . . . . . . . . . . . . . . . . . . . . 353

    LEVEL 28 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354Effective Channel Length and Width . . . . . . . . . . . . . . . . . . . . . . . . 354Threshold Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355Effective Mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355Saturation Voltage (vdsat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356Transition Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

    Strong Inversion Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Weak Inversion Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

    LEVEL 39 BSIM2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

    LEVEL 39 Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358Other Device Model Parameters that Affect BSIM2 . . . . . . . . . . . . . 362

  • 7/22/2019 Hspice Mosfet

    12/629

    xii HSPICEMOSFET Models ManualX-2005.09

    Contents

    LEVEL 39 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362Effective Length and Width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

    Geometry and Bias of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . 365

    Compatibility Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366SPICE3 Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366Parasitics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367Selecting Gate Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367Unused Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368.MODEL VERSION Changes to BSIM2 Models. . . . . . . . . . . . . . . . 368

    Preventing Negative Output Conductance . . . . . . . . . . . . . . . . . . . . . . . . 369

    Charge-based Gate Capacitance Model (CAPOP=39) . . . . . . . . . . . . . . 369

    Synopsys Device Model Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . 371Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371Alternate Gate Capacitance Model . . . . . . . . . . . . . . . . . . . . . . . . . 372

    Impact Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372Parasitic Diode for Proper LDD Modeling. . . . . . . . . . . . . . . . . . . . . 372Skewing of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373HSPICE Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373Modeling Guidelines, Removing Mathematical Anomalies. . . . . . . . 373

    Modeling Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

    Typical BSIM2 Model Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377Common SPICE Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378Synopsys Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

    References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

    7. BSIM MOSFET Models: Levels 47 to 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

    Level 47 BSIM3 Version 2 MOS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382Using the BSIM3 Version 2 MOS Model . . . . . . . . . . . . . . . . . . . . . 386Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

    Leff and Weff Equations for BSIM3 Version 2.0. . . . . . . . . . . . . . . . . . . . 389

    Level 47 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390Threshold Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390Mobility of Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391Drain Saturation Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391Linear Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

    Saturation Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394Subthreshold Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394Transition Region (for subthMod = 2 only) . . . . . . . . . . . . . . . . . . . . 395Temperature Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

  • 7/22/2019 Hspice Mosfet

    13/629

    HSPICEMOSFET Models Manual xiiiX-2005.09

    Contents

    PMOS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

    Level 49 and 53 BSIM3v3 MOS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

    Selecting Model Versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

    Recommended BSIM3v3 Version . . . . . . . . . . . . . . . . . . . . . . . . . . 398Version 3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

    Nonquasi-Static (NQS) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

    HSPICE Junction Diode Model and Area Calculation Method. . . . . . . . . 402

    TSMC Diode Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

    BSIM3v3 STI/LOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404Parameter Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407Performance Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407Reduced Parameter Set BSIM3v3 Model (BSIM3-lite). . . . . . . . . . . 407Parameter Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

    Charge Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411VFBFLAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

    Printback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

    Mobility Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

    Using BSIM3v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

    Level 49, 53 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

    Parameter Range Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

    Level 49, 53 Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

    .MODEL CARDS NMOS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

    PMOS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

    Level 54 BSIM4 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

    General Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

    Improvements Over BSIM3v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

    TSMC Diode Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

    BSIM4 STI/LOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438LMLT and WMLT in BSIM4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

    HSPICE Junction Diode Model and ACM . . . . . . . . . . . . . . . . . . . . . . . . 442

    Level 54 BSIM4 Template Output List . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

    Level 57 UC Berkeley BSIM3-SOI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

    General Syntax for BSIM3/SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464Level 57 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

    Level 57 Template Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

    Level 57 Updates to BSIM3-SOI PD versions 2.2, 2.21, and 2.22. . . . . . 477

  • 7/22/2019 Hspice Mosfet

    14/629

    xiv HSPICEMOSFET Models ManualX-2005.09

    Contents

    Using BSIM3-SOI PD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

    UCB BSIMSOI3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479Ideal Full-Depletion (FD) Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . 479Gate Resistance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

    Gate Resistance Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 480Enhanced Binning Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482Bug Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

    Level 59 UC Berkeley BSIM3-SOI FD Model. . . . . . . . . . . . . . . . . . . . . . . . . . 482

    Level 59 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

    Level 59 Template Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

    Level 60 UC Berkeley BSIM3-SOI DD Model . . . . . . . . . . . . . . . . . . . . . . . . . 492

    Model Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

    Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

    Level 60 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

    Level 65 SSIMSOI Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

    Model Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

    Using Level 65 with Synopsys Simulators . . . . . . . . . . . . . . . . . . . . . . . . 506

    General Syntax for SSIMSOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

    8. Customer Common Model Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

    Overview of Customer CMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

    Directory Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

    Running Simulations Using Customer CMI Models. . . . . . . . . . . . . . . . . . . . . 521Adding Proprietary MOS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

    MOS Models on Unix Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522Creating the Directory Environment . . . . . . . . . . . . . . . . . . . . . . . . . 522Preparing Model Routine Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523Compiling the Shared Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524Choosing a Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524Runtime Shared Library Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

    MOS Models on PC Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

    Testing Customer CMI Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

    Model Interface Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

    Interface Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

    pModel, pInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

    CMI_ResetModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

  • 7/22/2019 Hspice Mosfet

    15/629

    HSPICEMOSFET Models Manual xvX-2005.09

    Contents

    CMI_ResetInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

    CMI_AssignModelParm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

    CMI_AssignInstanceParm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

    CMI_SetupModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539CMI_SetupInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

    CMI_Evaluate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

    CMI_DiodeEval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

    CMI_Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

    CMI_PrintModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

    CMI_FreeModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

    CMI_FreeInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

    CMI_WriteError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

    CMI_Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

    CMI_Conclude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

    Customer CMI Function Calling Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 548

    Internal Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

    Extended Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

    Enhancemnets for Customer CMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553Gate Direct Tunneling Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553Additional Instance Parameter support . . . . . . . . . . . . . . . . . . . . . . 555An Extension to Support BSIM4 Topology . . . . . . . . . . . . . . . . . . . . 556Activating These Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

    Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

    Bias Polarity, for N- and P-channel Devices. . . . . . . . . . . . . . . . . . . . . . . 563

    Source-Drain Reversal Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

    Thread-Safe Model Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

    A. Finding Device Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

    B. Comparing MOS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

    History and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

    Synopsys Device Model Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . 571

    LEVEL 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

    LEVEL 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

    LEVEL 13 (BSIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

    LEVEL 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

    LEVEL 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

  • 7/22/2019 Hspice Mosfet

    16/629

    xvi HSPICEMOSFET Models ManualX-2005.09

    Contents

    Future for Model Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

    Model Equation Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

    Potential for Good Fit to Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

    Measure: Number of Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574Measure: Minimal Number of Parameters . . . . . . . . . . . . . . . . . . . . . . . . 575

    Ease of Fit to Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

    Measure: Physical Percentage of Parameters . . . . . . . . . . . . . . . . . . . . . 575

    Robustness and Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

    Continuous Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

    Positive GDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

    Monotonic GM/IDS in weak inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

    Behavior Follows Devices in All Circuit Conditions . . . . . . . . . . . . . . . . . . . . . 577

    Ability to Simulate Process Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578Gate Capacitance Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

    Outline of Optimization Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

    Examples of Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

    LEVEL 28, 2, 3Ids Model vs. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

    LEVEL 13, 28, 39 - Ids Model vs. Data . . . . . . . . . . . . . . . . . . . . . . . . . . 582

    LEVEL 2, 3, 28Gds Model vs. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

    LEVEL 13, 28, 39Gds Model versus Data . . . . . . . . . . . . . . . . . . . . . . 585

    LEVEL 2, 3, 28 Ids Model versus Data. . . . . . . . . . . . . . . . . . . . . . . . . 586

    LEVEL 13, 28, 39Ids Model versus Data . . . . . . . . . . . . . . . . . . . . . . . 588

    LEVEL 2, 3, 28Gm/Ids Model versus Data. . . . . . . . . . . . . . . . . . . . . . 589

    LEVEL 13, 28, 39Gm/Ids Model versus Data. . . . . . . . . . . . . . . . . . . . 591

    Gds versus Vds at Vgs=4, Vbs=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

    Gm/Ids vs. Vgs at Vds=0.1, Vbs=0, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

    Gm/Ids versus Vgs at Vds=0.1, Vbs=0 . . . . . . . . . . . . . . . . . . . . . . . . . . 596

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

  • 7/22/2019 Hspice Mosfet

    17/629

    HSPICEMOSFET Models Manual xiiiX-2005.09

    About This Manual

    This manual describes standard MOSFET models that you can use whensimulating your circuit designs in HSPICE or HSPICE RF.

    Inside This Manual

    This manual contains the chapters described below. For descriptions of theother manuals in the HSPICE documentation set, see the next section, TheHSPICE Documentation Set.

    Chapter Description

    Chapter 1, Overview of

    MOSFET Models

    Provides an overview of MOSFET model types

    and general information on using and selectingMOSFET models.

    Chapter 2, TechnicalSummary of MOSFETModels

    Describes the technology used in all HSPICEMOSFET models.

    Chapter 3, CommonMOSFET ModelParameters

    Lists and describes parameters that are commonto several or all MOSFET model levels.

    Chapter 4, Standard

    MOSFET Models: Level 1 to40

    Lists and describes standard MOSFET models

    (Levels 1 to 40).

  • 7/22/2019 Hspice Mosfet

    18/629

    xiv HSPICEMOSFET Models ManualX-2005.09

    About This Manual

    The HSPICE Documentation Set

    The HSPICE Documentation SetThis manual is a part of the HSPICE documentation set, which includes thefollowing manuals:

    Chapter 5, Standard

    MOSFET Models: Levels 50to 64

    Lists and describes standard MOSFET models

    (Levels 50 to 64).

    Chapter 6, BSIM MOSFETModels: Levels 13 to 39

    Lists and describes three of the earliestBSIM-type MOSFET models supported byHSPICE.

    Chapter 7, BSIM MOSFETModels: Levels 47 to 65

    Lists and describes seven of the newestBSIM-type MOSFET models supported byHSPICE.

    Chapter 8, Customer

    Common Model Interface

    Describes a Synopsys program interface you can

    use to add your own proprietary MOSFET modelsinto the HSPICE or HSPICE RF simulator.

    Appendix A, Finding DeviceLibraries

    Describes how to use the HSPICE automaticmodel selector to find the proper model for eachtransistor size.

    Appendix B, ComparingMOS Models

    Compares and reviews the most commonly usedMOSFET models.

    Manual Description

    HSPICE Simulation andAnalysis User Guide

    Describes how to use HSPICE to simulate andanalyze your circuit designs. This is the mainHSPICE user guide.

    HSPICE Signal Integrity

    Guide

    Describes how to use HSPICE to maintain signal

    integrity in your chip design.

    HSPICE ApplicationsManual

    Provides application examples and additionalHSPICE user information.

    Chapter Description

    http://hspice_simanal.pdf/http://hspice_simanal.pdf/http://hspice_si.pdf/http://hspice_si.pdf/http://hspice_appl.pdf/http://hspice_appl.pdf/http://hspice_appl.pdf/http://hspice_si.pdf/http://hspice_simanal.pdf/
  • 7/22/2019 Hspice Mosfet

    19/629

    HSPICEMOSFET Models Manual xvX-2005.09

    About This Manual

    Searching Across the HSPICE Documentation Set

    Searching Across the HSPICE Documentation Set

    Synopsys includes an index with your HSPICE documentation that lets yousearch the entire HSPICE documentation set for a particular topic or keyword.In a single operation, you can instantly generate a list of hits that are

    hyperlinked to the occurrences of your search term. For information on how toperform searches across multiple PDF documents, see the HSPICE releasenotes (available on SolvNet at http://solvnet.synopsys.com) or the AdobeReader online help.

    HSPICE Command

    Reference

    Provides reference information for HSPICE

    commands.HPSPICE Elements andDevice Models Manual

    Describes standard models you can use whensimulating your circuit designs in HSPICE,including passive devices, diodes, JFET andMESFET devices, and BJT devices.

    HPSPICE MOSFET ModelsManual

    Describes standard MOSFET models you canuse when simulating your circuit designs inHSPICE.

    HSPICE RF Manual Describes a special set of analysis and design

    capabilities added to HSPICE to support RF andhigh-speed circuit design.

    AvanWaves User Guide Describes the AvanWaves tool, which you canuse to display waveforms generated duringHSPICE circuit design simulation.

    HSPICE Quick ReferenceGuide

    Provides key reference information for usingHSPICE, including syntax and descriptions forcommands, options, parameters, elements, andmore.

    HSPICE Device ModelsQuick Reference Guide Provides key reference information for usingHSPICE device models, including passivedevices, diodes, JFET and MESFET devices,and BJT devices.

    Manual Description

    http://solvnet.synopsys.com/http://hspice_cmdref.pdf/http://hspice_cmdref.pdf/http://hspice_devmod.pdf/http://hspice_devmod.pdf/http://hspice_mosfet.pdf/http://hspice_mosfet.pdf/http://hspice_rf.pdf/http://avanwaves.pdf/http://hspice_qr.pdf/http://hspice_qr.pdf/http://hspice_mosmod_qr.pdf/http://hspice_mosmod_qr.pdf/http://hspice_mosmod_qr.pdf/http://hspice_qr.pdf/http://avanwaves.pdf/http://hspice_rf.pdf/http://hspice_mosfet.pdf/http://hspice_devmod.pdf/http://hspice_cmdref.pdf/http://solvnet.synopsys.com/
  • 7/22/2019 Hspice Mosfet

    20/629

    xvi HSPICEMOSFET Models ManualX-2005.09

    About This Manual

    Other Related Publications

    Note: To use this feature, the HSPICE documentation files, the Index directory,and the index.pdx file must reside in the same directory. (This is the defaultinstallation for Synopsys documentation.) Also, Adobe Acrobat must beinvoked as a standalone application rather than as a plug-in to your webbrowser.

    Other Related Publications

    For additional information about HSPICE, see: The HSPICE release notes, available on SolvNet (see Accessing SolvNet

    on page xvii) Documentation on the Web, which provides PDF documents and is

    available through SolvNet at http://solvnet.synopsys.com The Synopsys MediaDocs Shop, from which you can order printed copies

    of Synopsys documents, at http://mediadocs.synopsys.com

    You might also want to refer to the documentation for the following relatedSynopsys products: CosmosScope Aurora Raphael VCS

    Conventions

    The following conventions are used in Synopsys documentation:

    Convention Description

    Courier Indicates command syntax.

    Italic Indicates a user-defined value, such as object_name.

    Bold Indicates user inputtext you type verbatimin syntax andexamples.

    http://solvnet.synopsys.com/http://mediadocs.synopsys.com/http://mediadocs.synopsys.com/http://solvnet.synopsys.com/
  • 7/22/2019 Hspice Mosfet

    21/629

    HSPICEMOSFET Models Manual xviiX-2005.09

    About This Manual

    Customer Support

    Customer Support

    Customer support is available through SolvNet online customer support and

    through contacting the Synopsys Technical Support Center.

    Accessing SolvNet

    SolvNet includes an electronic knowledge base of technical articles andanswers to frequently asked questions about Synopsys tools. SolvNet alsogives you access to a wide range of Synopsys online services, which includedownloading software, viewing Documentation on the Web, and entering a callto the Support Center.

    [ ] Denotes optional parameters, such as

    write_file [-f filename]

    ... Indicates that a parameter can be repeated as many timesas necessary:

    pin1 [pin2 ... pinN]

    | Indicates a choice among alternatives, such as

    low | medium | high

    \ Indicates a continuation of a command line.

    / Indicates levels of directory structure.

    Edit > Copy Indicates a path to a menu command, such as opening theEdit menu and choosing Copy.

    Control-c Indicates a keyboard combination, such as holding downthe Control key and pressing c.

    Convention Description

  • 7/22/2019 Hspice Mosfet

    22/629

    xviii HSPICEMOSFET Models ManualX-2005.09

    About This Manual

    Customer Support

    To access SolvNet:

    1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

    2. If prompted, enter your user name and password. (If you do not have aSynopsys user name and password, follow the instructions to register withSolvNet.)

    If you need help using SolvNet, click SolvNet Help in the Support Resourcessection.

    Contacting the Synopsys Technical Support Center

    If you have problems, questions, or suggestions, you can contact the SynopsysTechnical Support Center in the following ways: Open a call to your local support center from the Web by going to

    http://solvnet.synopsys.com (Synopsys user name and password required),then clicking Enter a Call to the Support Center.

    Send an e-mail message to your local support center.

    E-mail [email protected] from within North America.

    Find other local support center e-mail addresses athttp://www.synopsys.com/support/support_ctr.

    Telephone your local support center.

    Call (800) 245-8005 from within the continental United States. Call (650) 584-4200 from Canada.

    Find other local support center telephone numbers athttp://www.synopsys.com/support/support_ctr.

    http://solvnet.synopsys.com/http://solvnet.synopsys.com/http://www.synopsys.com/support/support_ctrhttp://www.synopsys.com/support/support_ctrhttp://www.synopsys.com/support/support_ctrhttp://www.synopsys.com/support/support_ctrhttp://www.synopsys.com/support/support_ctrhttp://www.synopsys.com/support/support_ctrhttp://solvnet.synopsys.com/http://solvnet.synopsys.com/
  • 7/22/2019 Hspice Mosfet

    23/629

    HSPICEMOSFET Models Manual 1X-2005.09

    11Overview of MOSFET Models

    Provides an overview of MOSFET model types and generalinformation on using and selecting MOSFET models.

    A circuit netlist describes the basic functionality of an electronic circuit that youare designing. In HSPICE format, a netlist consists of a series of elements thatdefine the individual components of the overall circuit. You can use yourHSPICE-format netlist to help you verify, analyze, and debug your circuit

    design, before you turn that design into actual electronic circuitry.Synopsys provides a series of standard models. Each model is like a templatethat defines various versions of each supported element type used in anHSPICE-format netlist. Individual elements in your netlist can refer to thesestandard models for their basic definitions. When you use these models, youcan quickly and efficiently create a netlist and simulate your circuit design.

    Referring to standard models in this way reduces the amount of time requiredto: Create the netlist.

    Simulate and debug your circuit design. Turn your circuit design into actual circuit hardware.

    Within your netlist, each element that refers to a model is known as an instanceof that model. When your netlist refers to predefined device models, you reduce

  • 7/22/2019 Hspice Mosfet

    24/629

    2 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    both the time required to create and simulate a netlist, and the risk of errors,compared to fully defining each element within your netlist.

    One type of model that you can use as a template to define an element in your

    netlist is a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)device. This manual describes the MOSFET models supplied for use withHSPICE.

    A MOSFET device is defined by the MOSFET model and element parameters,and two submodels selected by the CAPOP and ACM model parameters. The CAPOP model parameter specifies the model for the MOSFET gate

    capacitances. The ACM (Area Calculation Method) parameter selects the type of diode

    model to use for the MOSFET bulk diodes.

    Parameters in each submodel define the characteristics of the gatecapacitances and bulk diodes.

    MOSFET models are either p-channel or n-channel models; they are classifiedaccording to level, such as LEVEL 1 or LEVEL 50.

    This manual describes: Design model and simulation aspects of MOSFET models. Parameters of each model level, and associated equations. Parameters and equations for MOSFET diode and MOSFET capacitor

    models.

    Over the years, Synopsys has developed or adapted 64 different versions (orlevels) of MOSFET models for use with HSPICE. Currently, Synopsys fully andofficially supports 32 different MOSFET models.

    The MOSFET models described in this manual are the most currently-developed and widely-used models. Synopsys has introduced LEVELs that arecompatible with models developed by UC Berkeley, The University of Florida,Rensselaer Polytechnic Institute, and others.

    This chapter describes:

    Overview of MOSFET Model Types Selecting Models General MOSFET Model Statement MOSFET Output Templates

  • 7/22/2019 Hspice Mosfet

    25/629

    HSPICEMOSFET Models Manual 3X-2005.09

    1: Overview of MOSFET Models

    Overview of MOSFET Model Types

    Overview of MOSFET Model Types

    Before you can select the appropriate MOSFET model type to use in analysis,

    you need to know the electrical parameters that are critical to your application.LEVEL 1 models are most often used to simulate large digital circuits insituations where detailed analog models are not needed. LEVEL 1 models offerlow simulation time and a relatively high level of accuracy for timingcalculations. If you need more precision (such as for analog data acquisitioncircuitry), use the more detailed models, such as the LEVEL 6 IDS model orone of the BSIM models (LEVEL 13, 28, 39, 47, 49, 53, 54, 57, 59, and 60).

    For precision modeling of integrated circuits, the BSIM models consider thevariation of model parameters as a function of sensitivity of the geometricparameters. The BSIM models also reference a MOS charge conservationmodel for precision modeling of MOS capacitor effects. Use the SOSFET model (LEVEL 27) to model silicon-on-sapphire MOS

    devices. You can include photocurrent effects at this level. Use LEVEL 5 and LEVEL 38 for depletion MOS devices. LEVEL 2 models consider bulk charge effects on current. LEVEL 3 models require less simulation time, provides as much accuracy

    as LEVEL 2, and have a greater tendency to converge. LEVEL 6 models are compatible with models originally developed using

    ASPEC. Use LEVEL 6 models to model ion-implanted devices.

    Selecting Models

    To describe a MOS transistor in your netlist, use both an element statementand a .MODEL statement.

    The element statement defines the connectivity of the transistor andreferences the .MODEL statement. The .MODEL statement specifies either ann- or p-channel device, the level of the model, and several user-selectablemodel parameters.

  • 7/22/2019 Hspice Mosfet

    26/629

    4 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    Example

    The following example specifies a PMOS MOSFET. PCH is a model referencename. The transistor is modeled using the LEVEL 13 BSIM model. Select the

    parameters from the MOSFET model parameter lists in this chapter.M3 3 2 1 0 PCH

    .MODEL PCH PMOS LEVEL=13

    Selecting MOSFET Model LEVELs

    MOSFET models consist of private client and public models that you selectusing the LEVEL parameter in the .MODEL statement. Synopsys frequentlyadds new models to the MOSFET device models.

    Not all MOSFET models are available in the PC version. Table 1 shows what is

    available for PC users. The third column indicates models supported on allplatforms, including PC. The last column lists models supported on allplatforms except the PC.

    Table 1 MOSFET Model Descriptions

    Level MOSFET Model DescriptionAll Platformsincluding PC

    All Platformsexcept PC

    1 Schichman-Hodges model X

    2 MOS2 Grove-Frohman model (SPICE 2G) X

    3 MOS3 empirical model (SPICE 2G) X

    4 Grove-Frohman: LEVEL 2 model derivedfrom SPICE 2E.3

    X

    5 AMI-ASPEC depletion and enhancement(Taylor-Huang)

    X

    6 Lattin-Jenkins-Grove (ASPEC styleparasitics)

    X

    7 Lattin-Jenkins-Grove (SPICE styleparasitics)

    X

    8 advanced LEVEL 2 model X

  • 7/22/2019 Hspice Mosfet

    27/629

    HSPICEMOSFET Models Manual 5X-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    9 ** AMD X

    10 ** AMD X

    11 Fluke-Mosaid model X

    12 ** CASMOS model (GTE style) X

    13 BSIM model X

    14 ** Siemens LEVEL=4 X

    15 user-defined model based on LEVEL 3 X

    16 not used

    17 Cypress model X

    18 ** Sierra 1 X

    19 *** Dallas Semiconductor model X

    20 ** GE-CRD FRANZ X

    21 ** STC-ITT X

    22 ** CASMOS (GEC style) X

    23 Siliconix X

    24 ** GE-Intersil advanced X

    25 ** CASMOS (Rutherford) X

    26 ** Sierra 2 X

    27 SOSFET X

    28 BSIM derivative; Synopsys proprietarymodel

    X

    Table 1 MOSFET Model Descriptions (Continued)

    Level MOSFET Model DescriptionAll Platformsincluding PC

    All Platformsexcept PC

  • 7/22/2019 Hspice Mosfet

    28/629

    6 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    29 *** not used

    30 *** VTI X

    31*** Motorola X

    32 *** AMD X

    33 *** National Semiconductor X

    34* (EPFL) not used X

    35 ** Siemens X

    36 *** Sharp X

    37 *** TI X

    38 IDS: Cypress depletion model X

    39 BSIM2 X

    41 TI Analog X

    46 *** SGS-Thomson MOS LEVEL 3 X

    47 BSIM3 Version 2.0 X

    49 BSIM3 Version 3 (Enhanced) X

    50 Philips MOS9 X

    53 BSIM3 Version 3 (Berkeley) X

    54 UC Berkeley BSIM4 Model X

    55 EPFL-EKV Model Ver 2.6, R 11 X

    57 UC Berkeley BSIM3-SOI MOSFET ModelVer 2.0.1

    X

    Table 1 MOSFET Model Descriptions (Continued)

    Level MOSFET Model DescriptionAll Platformsincluding PC

    All Platformsexcept PC

  • 7/22/2019 Hspice Mosfet

    29/629

    HSPICEMOSFET Models Manual 7X-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    Selecting MOSFET Capacitors

    CAPOP is the MOSFET capacitance model parameter. This parameterdetermines which capacitor models to use when modeling the MOS gate

    capacitance; that is, the gate-to-drain capacitance, the gate-to-sourcecapacitance, and the gate-to-bulk capacitance. CAPOP selects a specificversion of the Meyer and charge conservation model.

    Some capacitor models are tied to specific DC models; they are stated as such.Others are for general use by any DC model.

    58 University of Florida SOI Model Ver 4.5(Beta-98.4)

    X

    59 UC Berkeley BSIM3-501 FD Model X

    61 RPI a-Si TFT Model X

    62 RPI Poli-Si TFT Model X

    63 Philips MOS11 Model X

    64 STARC HiSIM Model X * not officially released** equations are proprietary documentation not provided*** requires a license and equations are proprietary documentation not provided

    Parameter Description

    CAPOP=0 SPICE original Meyer gate-capacitance model (general)

    CAPOP=1 Modified Meyer gate-capacitance model (general)

    CAPOP=2 Modified Meyer gate-capacitance model with parameters (generaldefault)

    Table 1 MOSFET Model Descriptions (Continued)

    Level MOSFET Model DescriptionAll Platformsincluding PC

    All Platformsexcept PC

  • 7/22/2019 Hspice Mosfet

    30/629

    8 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    CAPOP=4 selects the recommended charge-conserving model (from amongCAPOP=11, 12, or 13) for the specified DC model.

    LEVELs 49 and 53 use the Berkeley CAPMOD capacitance-model parameter.Proprietary models, and LEVELs 5, 17, 21, 22, 25, 27, 31, 33, 49, 53, 55, and58, use built-in capacitance routines.

    CAPOP=3 Modified Meyer gate-capacitance model with parameters and Simpson

    integration (general)CAPOP=4 Charge conservation capacitance model (analytic), LEVELs 2, 3, 6, 7,

    13, 28, and 39 only

    CAPOP=5 No capacitor model

    CAPOP=6 AMI capacitor model (LEVEL 5)

    CAPOP=9 Charge conservation model (LEVEL 3)

    CAPOP=11 Ward-Dutton model specialized (LEVEL 2)

    CAPOP=12 Ward-Dutton model specialized (LEVEL 3)

    CAPOP=13 Generic BSIM Charge-Conserving Gate Capacitance model (Defaultfor Levels 13, 28, and 39)

    CAPOP=39 BSIM2 Charge-Conserving Gate Capacitance Model (LEVEL 39)

    Table 2 CAPOP=4 Selections

    MOS Level Default CAPOP CAPOP=4 selects:

    2 2 11

    3 2 12

    13, 28, 39 13 13

    others 2 11

    Parameter Description

  • 7/22/2019 Hspice Mosfet

    31/629

    HSPICEMOSFET Models Manual 9X-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    Selecting MOS Diodes

    The ACM (Area Calculation Method) model parameter controls the geometry of

    the source and drain diffusions, and selects the modeling of the bulk-to-sourceand bulk-to-drain diodes of the MOSFET model. The diode model includes thediffusion resistance, capacitance, and DC currents to the substrate.

    For more about ACM, see MOSFET Diode Models on page 39.

    Searching Models as Function of W, L

    Model parameters are often the same for MOSFETs that have width and lengthdimensions within specific ranges. To take advantage of this, create aMOSFET model for a specific range of width and length. These modelparameters help the simulator to select the appropriate model for the specifiedwidth and length.

    The automatic model selection program searches a data file for a MOSFETmodel where the width and length are within the range specified in theMOSFET element statement. Simulation then uses this model statement.

    To search a data file for MOSFET models within a specified range of width andlength:

    1. Provide a root extension for the model reference name (in the .MODELstatement).

    2. Use the model geometric range parameters (LMIN, LMAX, WMIN, andWMAX).

    Parameter Description

    ACM=0 SPICE model. Element areas determine the parameters.

    ACM=1 ASPEC model. The element width determines the parameters.

    ACM=2 Synopsys model, combination of ACM=0,1 with provisions for lightly-

    doped drain technology.ACM=3 Extension of ACM=2 model that deals with stacked devices (shared

    source/drains) and source/drain periphery capacitance along the gateedge.

  • 7/22/2019 Hspice Mosfet

    32/629

    10 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    These model parameters define the range of physical length and widthdimensions to which the MOSFET model applies.

    Example 1

    If the model reference name in the element statement is NCH, the modelselection program examines the models with the same root model referencename (NCH), such as NCH.1, NCH.2 or NCH.A.

    The model selection program selects the first MOSFET model statementwhose geometric range parameters include the width and length specified inthe associated MOSFET element statement.

    Example 2

    The following example shows how to call the MOSFET model selectionprogram from a data file. The model selector program examines the .MODEL

    statements where the model reference names have the root extensionsNCHAN.2, NCHAN.3, NCHY.20, and NCHY.50.

    The netlist for this example is located in the following directory:

    $installdir/demo/hspice/mos/selector.sp

    Setting MOSFET Control Options

    Specific control options (set in the .OPTION statement) used for MOSFETmodels include the following. For flag options, 0 is unset (off) and 1 is set (on).

    Option Description

    ASPEC This option uses ASPEC MOSFET model defaults and set units.Default=0.

    BYPASS This option avoids recomputing nonlinear functions that do not changewith iterations. Default=1.

    MBYPAS BYPASS tolerance multiplier (BYTOL = MBYPASSxVNTOL). Default=1if DVDT=0, 1, 2, or as 3. Default=2 if DVDT=4.

    DEFAD Default drain diode area. Default=0.

    DEFAS Default source diode area. Default=0.

    DEFL Default channel length. Default=1e-4m.

  • 7/22/2019 Hspice Mosfet

    33/629

    HSPICEMOSFET Models Manual 11X-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    The AD element statement overrides the DEFAD default. The AS element statement overrides the DEFAS default.

    The L element statement overrides the DEFL default. The NRD element statement overrides the DEFNRD default. The NRS element statement overrides the DEFNRS default. The PD element statement overrides the DEFPD default. The PS element statement overrides the DEFPS default. The W element statement overrides the DEFW default.

    Scaling Units

    The SCALE and SCALM options control the units. SCALE scales element statement parameters. SCALM scales model statement parameters. It also affects the MOSFET

    gate capacitance and diode model parameters.

    DEFNRD Default number of squares for drain resistor. Default=0.

    DEFNRS Default number of squares for source resistor. Default=0.

    DEFPD Default drain diode perimeter. Default=0.

    DEFPS Default source diode perimeter. Default=0.

    DEFW Default channel width. Default=1e-4m.

    GMIN Pn junction parallel transient conductance. Default=1e-12mho.

    GMINDC Pn junction parallel DC conductance. Default=1e-12mho.

    SCALE Element scaling factor. Default=1.

    SCALM Model scaling factor. Default=1.

    WL Reverses order in VSIZE MOS element from the default order (length-width) to width-length. Default=0.

    Option Description

  • 7/22/2019 Hspice Mosfet

    34/629

    12 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    Selecting Models

    In this chapter, scaling applies only to parameters that you specify as scaled. Ifyou specify SCALM as a parameter in a .MODEL statement, it overrides theSCALM option. In this way, you can use models with different SCALM values inthe same simulation. MOSFET parameter scaling follows the same rules as forother model parameters, for example:

    To override global model size scaling for individual MOSFET, diode, and BJTmodels that use the .OPTION SCALM=statement, includeSCALM=in the .MODEL statement. .OPTION SCALM=appliesglobally for JFETs, resistors, transmission lines, and all models other thanMOSFET, diode, and BJT models. You cannot override SCALM in the model.

    Scaling for LEVEL 25 and 33When using the proprietary LEVEL 25 (Rutherford CASMOS) or LEVEL 33(National) models, the SCALE and SCALM options are automatically set to1e-6. However, if you use these models with other scalable models, you mustexplicitly set the SCALE=1e-6 and SCALM=1e-6 options.

    Bypassing Latent Devices

    Use the BYPASS (latency) option to decrease simulation time in large designs.To speed simulation time, this option does not recalculate currents,capacitances, and conductances, if the voltages at the terminal device nodes

    have not changed. The BYPASS option applies to MOSFETs, MESFETs,JFETs, BJTs, and diodes. Use .OPTION BYPASS to set BYPASS.

    BYPASS might reduce simulation accuracy for tightly-coupled circuits such asop-amps, high gain ring oscillators, and so on. Use .OPTION MBYPAS to setMBYPAS to a smaller value for more-accurate results.

    Table 3 Model Parameter Scaling

    Parameter Units Parameter Value

    meter multiplied by SCALM

    meter2 multiplied by SCALM2

    meter-1 divided by SCALM

    meter-2 divided by SCALM2

  • 7/22/2019 Hspice Mosfet

    35/629

    HSPICEMOSFET Models Manual 13X-2005.09

    1: Overview of MOSFET Models

    General MOSFET Model Statement

    General MOSFET Model Statement

    You can use the .MODEL statement to include a MOSFET model in your

    HSPICE netlist. For a general description of the .MODEL statement, see theHSPICE Command Reference.

    The following syntax is for all MOSFET model specifications. All relatedparameter levels are described in their respective sections.

    Syntax

    .MODELmname[PMOS | NMOS] + ( )+

    or

    .MODELmnameNMOS + ( )+ )

    Parameter Description

    mname Model name. Elements refer to the model by this name.

    PMOS Identifies a p-channel MOSFET model.

    NMOS Identifies an n-channel MOSFET model.

    ENCMODE Applicable to BSIM4 (level 54) and BSIM3v3 (level 49 and 53), use tosuppress warning messages originating in CMI code while insideencrypted code. Default is 0 (off). Set to off if this parameter is notpresent. This parameter cannot be overwritten through the instanceline.

    LEVEL Use the LEVEL parameter to select from several MOSFET modeltypes. Default=1.0.

    VERSION Specifies the version number of the model for LEVEL=13 BSIM andLEVEL=39 BSIM2 models only. See the .MODEL statement

    description for information about the effects of this parameter.

  • 7/22/2019 Hspice Mosfet

    36/629

    14 HSPICEMOSFET Models ManualX-2005.09

    1: Overview of MOSFET Models

    MOSFET Output Templates

    Example

    .MODEL MODP PMOS LEVEL=7 VTO=-3.25 GAMMA=1.0)

    .MODEL MODN NMOS LEVEL=2 VTO=1.85 TOX=735e-10)

    .MODEL MODN NMOS LEVEL=39 TOX=2.0e-02 TEMP=2.5e+01

    + VERSION=95.1

    MOSFET Output Templates

    Several MOSFET models produce an output template, consisting of a set ofparameters that specify the output of state variables, stored charges,capacitances, parasitic diode current, and capacitor currents. DifferentMOSFET model levels support different subsets of these output parameters.Table 4 on page 14 lists all parameters in the MOSFET output templates, andindicates which model levels support each parameter.

    Table 4 Parameters in MOSFET Output Templates

    Name Alias Description MOSFET Level

    L LV1 Channel Length (L)

    This is also the effectivechannel length forall MOSFET models except Level 54.

    All

    W LV2 Channel Width (W)

    This is also the effectivechannel width for

    all MOSFET models except Level 54.

    All

    AD LV3 Area of the drain diode (AD) All

    AS LV4 Area of the source diode (AS) All

    ICVDS LV5 Initial condition for the drain-sourcevoltage (VDS)

    All

    ICVGS LV6 Initial condition for the gate-sourcevoltage (VGS)

    All

    ICVBS LV7 Initial condition for the bulk-source voltage(VBS)

    All except 57,58, 59

    ICVES LV7 Initial condition for the substrate-sourcevoltage (VES)

    57, 58, 59

  • 7/22/2019 Hspice Mosfet

    37/62