intercomparison of secondary organic aerosol models based on soa/o x ratio yu morino, kiyoshi...

18
Intercomparison of secondary organic aerosol models based on SOA/O x ratio , Kiyoshi Tanabe, Kei Sato, and The 12th Annual CMAS Conference, October 29, 2013 ー Contents ー 1. Introduction SOA modelling in Tokyo 2. Methodology Box model settings 3. Results Model evaluation / Source contributions 4. Summary ー Acknowledgement ー Funds Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (23710024) Environment Research and Technology Development Fund (C- 1001) Obs. data Prof. Y. Kondo and Prof. N. Takegawa (Univ.

Upload: roman-bloise

Post on 14-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

Intercomparison of secondary organic aerosol

models based on SOA/Ox ratio

Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute for Environmental Studies, Japan

The 12th Annual CMAS Conference, October 29, 2013

ー Contents ー 1. Introduction - SOA modelling in Tokyo

 2. Methodology - Box model settings

 3. Results - Model evaluation / Source

contributions

 4. Summary ー Acknowledgement ーFunds : Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (23710024) Environment Research and Technology Development Fund (C-1001)

Obs. data :  Prof. Y. Kondo and Prof. N. Takegawa (Univ. Tokyo)

Page 2: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

Urban (N=12)Rural (N=5)Roadside (N=16)

PM2.5 in Japan (2001-2010, annual average)

Ministry of Environment [2012]

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

PM2.5 environmental standard in Japan (Sept. 2009 ‒)

Annual mean: 15 μg m-3

Daily mean: 35 μg m-3

 1. Introduction

Page 3: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

0

1000

2000

3000

4000

5000

6000

7000

8000

0

5

10

15

20

25

30

35

40

2010

/04

2010

/05

2010

/06

2010

/07

2010

/08

2010

/09

2010

/10

2010

/11

2010

/12

2011

/01

2011

/02

2011

/03

2011

/04

2011

/05

2011

/06

2011

/07

2011

/08

2011

/09

2011

/10

2011

/11

2011

/12

2012

/01

2012

/02

2012

/03

2012

/04

2012

/05

2012

/06

2012

/07

2012

/08

2012

/09

2012

/10

2012

/11

2012

/12

2013

/01

2013

/02

2013

/03

2013

/04

2013

/05

2013

/06

2013

/07

2013

/08

2013

/09

35超過率%

70超過局日

平均濃度

有効局日数

0

1000

2000

3000

4000

5000

6000

7000

8000

0

5

10

15

20

25

30

35

40

2010

/04

2010

/05

2010

/06

2010

/07

2010

/08

2010

/09

2010

/10

2010

/11

2010

/12

2011

/01

2011

/02

2011

/03

2011

/04

2011

/05

2011

/06

2011

/07

2011

/08

2011

/09

2011

/10

2011

/11

2011

/12

2012

/01

2012

/02

2012

/03

2012

/04

2012

/05

2012

/06

2012

/07

2012

/08

2012

/09

2012

/10

2012

/11

2012

/12

2013

/01

2013

/02

2013

/03

2013

/04

2013

/05

2013

/06

2013

/07

2013

/08

2013

/09

35超過率%

70超過局日

平均濃度

有効局日数

①Average PM2.5 was higher than 15 μgm-3 in western Japan

Western Japan

Eastern Japan(including Tokyo Metropolitan Area)

% daily PM2.5

> 35 μgm-3

# daily PM2.5

> 70 μgm-3

Monthly average PM2.5 (μgm-3)

# Stations×day

2010 2011 2012 2013

 1. IntroductionPM2.5 in Japan (2010-2013, monthly average)

Ministry of Environment [2013]

②Daily PM2.5 exceeds environmental standard in all the seasons.

②Sp

ring

④Au

tum

n

①W

inte

r

②Sp

ring

④Au

tum

n

②Sp

ring

②Sp

ring

②Sp

ring

③Su

mm

er

①W

inte

r

Page 4: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

K

SOA modelling in Tokyo Metropolican Area (Case study in summer 2007)

Model intercomparison of PM2.5 species (Morino et al., JSAE, 2010)(CMAQ v4.7.1 and CMAQ 4.6 were used.)

All models significantly underestimated OA.

-1.0

-0.5

0.0

0.5

1.0

r (

(PM

2.5))

4321S1 S2 S3 S4

r ((PM2.5))

30

20

10

0

PM

2.5 (g

m-3

)

4321S1 S2 S3 S4

Mean (PM2.5)

Obs (TEOM)

-1.0

-0.5

0.0

0.5

1.0r

(NO

3- )

4321S1 S2 S3 S4

r (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (S

O42-

)

4321S1 S2 S3 S4

r (SO42-

)

-1.0

-0.5

0.0

0.5

1.0

r (O

A)

4321S1 S2 S3 S4

r (OA)

8

6

4

2

0

OA

(g

m-3

)

4321S1 S2 S3 S4

Mean (OA)

6

4

2

0

SO

42- (g

m-3

)

4321S1 S2 S3 S4

Mean (SO42-

)

Obs M1 M2 M3 M4

10

8

6

4

2

0

NO

3- (

g m

-3)

4321S1 S2 S3 S4

Mean (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (

(PM

2.5))

4321S1 S2 S3 S4

r ((PM2.5))

30

20

10

0

PM

2.5 (g

m-3

)

4321S1 S2 S3 S4

Mean (PM2.5)

Obs (TEOM)

-1.0

-0.5

0.0

0.5

1.0

r (N

O3- )

4321S1 S2 S3 S4

r (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (S

O42-

)

4321S1 S2 S3 S4

r (SO42-

)

-1.0

-0.5

0.0

0.5

1.0

r (O

A)

4321S1 S2 S3 S4

r (OA)

8

6

4

2

0

OA

(g

m-3

)

4321S1 S2 S3 S4

Mean (OA)

6

4

2

0

SO

42- (g

m-3

)

4321S1 S2 S3 S4

Mean (SO42-

)

Obs M1 M2 M3 M4

10

8

6

4

2

0

NO

3- (

g m

-3)

4321S1 S2 S3 S4

Mean (NO3-)

S1: Komae, S2: Kisai, S3: Maebashi, S4: Tsukuba

 1. Introduction

Org

anic

aer

osol

Fossil-SOA: Underestimation by a factor of 6-8

Model evaluation of fossil- and biogenic SOA (Morino et al., ES&T, 2010)(CMAQ –MADRID was used.)

Biogenic-SOA: Underestimation by a factor of 1.5 - 2

Page 5: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

Merit 1 :

Merit 2 :

SOA (V)

POA

VOC

Emission sources

SVOC1cond./evapo.

oxidation

VBS model

Yield model

emis.

emis.

SOA (I/S)

agingagingSVOC1

SVOC2

SVOC3

cond./evapo. cond./

evapo.

emis.SVOC3

aging

SVOC2

aging

cond./evapo.

Merit 1

Merit 2

Simulate primary emissions and oxidation (aging) of SVOC/IVOC (semi-/intermediate- VOC)

Simulate aging processes of oxidation products from VOCs

SOA model development – Volatility basis-set (VBS) model 1. Introduction

Page 6: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

ARO1 + OH = 0.224*HO2 + 0.765*RO2_R + 0.011*RO2_N + 0.055*PROD2 +0.118*GLY + 0.119*MGLY + 0.017*PHEN + 0.207*CRES + 0.059*BALD + 0.491*DCB1 + 0.108*DCB2 + 0.051*DCB3+0.071*TOLAER1 + 0.138*TOLAER2

Yield model(SAPRC99-AERO4)

UR24UR25UR26etc.

CACM (caltech chemical mechanism)

MCM (master chemical mechanism)

Near-explicit model –Explicitly simulate multi-generation reactions

SOA model development – Chemical modules 1. Introduction

Page 7: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

• Intercomparison of five SOA models (of different frameworks) to evaluate their characteristics and performance

• Preliminary evaluation of volatility basis-set (VBS) model on OA simulation in Tokyo Metropolitan Area

Characteristics of this study• Intercomparison

of SOA models A few previous studies of SOA model intercomparison

(particularly including both MCM and VBS models)

• Box model simulation

Many sensitivity simulations can be made (advantage for MCM calculations)

• Evaluation using

SOA/O x ratio

Model evaluation less affected by uncertainties of meteorological fields

• Comparison for Tokyo data

OA was accurately measured by AMS/sunset-TOT Good correlation between O x and SOA Behaviors of VOC and O3 are well understood

Objectives 1. Introduction

Page 8: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

SOA models

# Gas # reaction # SVOC # primary VOCs Aerosol model References

MCM v3.2 5731 16933 1902#2 105 , Pankow Jenkin et al., 2003;Saunders et al., 2003

CACM-MADRID2 366 366 43 17 , MADRID2 Griffin et al., 2002; Pun et al., 2002

SAPRC99-AERO4 79 214 10 24 , AERO4 Binkowski and Roselle, 2003

SAPRC99-AERO5 88 224 12 24 , AERO5 Carlton et al., 2010

SAPRC99-VBS 92 214#3 9 33 , VBS Tsimpidi et al., 2010

#1: estimate of this study 、 #2: C* ≤ 100 mgm3 、 #3: exclude aging reactions

Five SOA models simulated in this study

MCM, CACM-MADRID: explicitly simulate multi-generation oxidation.

- Vapor pressures used in the MCM model was calculated by EPI-Suite (Stein and Brown method). Kp was multiplied by a actor of 500 (Johnson et al., 2006).

AERO4, AERO5: Yield model

VBS: Grouping of SVOC and IVOC based on volatility (~vapor pressure).- Speciation of emitted SVOC/IVOC and aging reaction rates was the same with Tsimpidi et al. (2010).

from CMAQ-MADRID

CMAQ v4.6 CMAQ v4.7.1

2. Methodology

Page 9: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

Processes One box model (domain: 30 x 30 km2, Fig.) including chemical, aerosol, emission, and air mass exchange.

Target period July 22 – August 12, 2004

Other conditions

Meteo. param. (T, RH, WS, BLH): observational dataBackground: 20 ppbv for O3, NMHC is from Morino et al. (2011)

Box model framework

37

36

35

Latit

ude

(°N

)

141140139138

Longitude (°E)

10

8

6

4

2

0

NO

x em

ission

(mo

le g

rid-1)

𝑑𝑋𝑑𝑡

= 𝑑𝑋𝑑𝑡 |

h𝑐 𝑒𝑚

+ 𝑑𝑋𝑑𝑡 |

𝑎𝑒𝑟𝑜

+𝐸𝑚𝑖𝑠−𝑘𝑒𝑥𝑐 (𝑋−𝑋𝑏𝑔 )

Domain

Emissions EAGrid2000 (Kannari et al., 2007)

Speciation of VOC

Vehicles : JATOP (2012)

Evaporative : Ministry of Env. (2003)# VOC emission data are firstly classified for MCM. Then, SAPRC/CACM data are prepared.

Observetion Period: July 24 – Aug 14, 2004Site: RCAST, Tokyo Univ# OA and OOA were measured by AMS (Takegawa et al., 2006).

2. Methodology

Obs. site

Page 10: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000

M0 (g m-3

)

Obs Ng et al. Odum et al.Model AERO5 VBS AERO4(VBS: ver1 ver2)

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000

M0 (g m-3

)

Comparison of experimental data and model simulation—high NOx condition

m-xylene toluene

Obs.

VBS

AERO5

AERO4

Yi: SOA production yield Kom,i : Partitioning coefficient

M0: OA concentration ai: stoichiometric coefficient

○Standard×No aging

Model simulation of chamber experiment (aromatics VOC + NOx + HONO) Aging process enhanced SOA production yield was enhanced by a factor of 1.3 ~ 1.5.

3. Results

Page 11: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000

M0 (g m-3

)

Obs Ng et al. Odum et al.Model AERO5 VBS AERO4(VBS: ver1 ver2 ver3)

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000

M0 (g m-3

)

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000

M0 (g m-3

)

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000

M0 (g m-3

)

m-xylene toluene

Obs.

VBS

AERO5

AERO4

○Standard×No aging■reduced Yi

Model simulation of chamber experiment (aromatics VOC + NOx + HONO) Aging process enhanced SOA production yield was enhanced by a factor of 1.3 ~ 1.5.→   Yi should be reduced by 30-50% to avoid double counting.

Yi: SOA production yield Kom,i : Partitioning coefficient

M0: OA concentration ai: stoichiometric coefficient

3. Results

Comparison of experimental data and model simulation—high NOx condition

Page 12: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

80

60

40

20

0

O3

(pp

bv)

20151050

Time of day (JST)

Obs AERO4 AERO5 CACM VBS MCM

10x106

8

6

4

2

0

OH

(m

ole

c. c

m-3

)

20151050

Time of day (JST)

300x106

250

200

150

100

50

0

HO

2 (m

ole

c. c

m-3

)

20151050

Time of day (JST)

20

15

10

5

0

NO

(p

pb

v)

20151050

Time of day (JST)

40

30

20

10

0

NO

2 (p

pb

v)

20151050

Time of day (JST)

12

8

4

0

HN

O3

(p

pb

v)

20151050

Time of day (JST)

O3 and NOx were well reproduced.

OH were reproduced, while HO2 were underestimated.

→ should be examined in future studies. HNO3 were overestimated. (dry deposition)

Model evaluation in ambient condition – gaseous species

3. Results

OH HO2

NO2 HNO3

80

60

40

20

0

O3

(pp

bv)

20151050

Time of day (JST)

Obs AERO4 AERO5 CACM VBS MCM

10x106

8

6

4

2

0

OH

(m

ole

c. c

m-3

)20151050

Time of day (JST)

300x106

250

200

150

100

50

0

HO

2 (m

ole

c. c

m-3

)

20151050

Time of day (JST)

20

15

10

5

0

NO

(p

pb

v)

20151050

Time of day (JST)

40

30

20

10

0

NO

2 (p

pb

v)

20151050

Time of day (JST)

12

8

4

0

HN

O3

(p

pb

v)

20151050

Time of day (JST)

O3

NO

Page 13: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

• Under VOC limited condition (e.g., urban area), VOCs+OH reactions are rate-limiting for

Ox(=O3+NO2) and SOA production.

• Ox production rate:

• SOA production rate :

• Ratio of SOA and Ox production rate

Ki : VOC+OH reaction rateΑi : # of HO2,RO2 generated from VOC+OH reactionFi : Fraction of RO2 which produce NO2

Yi : SOA production yield

20

15

10

5

0

SO

A (g

m-3

)

12080400Ox (ppbv)

Obs AERO4 CACM VBS AERO5 MCM

Obs.S=0.155 mgm-3/ppbv

VBSS=0.108

CACMS=0.046

AERO5AERO4MCMS=0.004

20

15

10

5

0

SO

A (g

m-3

)

12080400Ox (ppbv)

VBS —StandardS=0.108

VBS —Reduced yieldS=0.084

VBS —No agingS=0.005

AERO5 S=0.016AERO4 S=0.010

Obs.S=0.155 mgm-3/ppbv

=SOA formation potential of VOCOx formation potential of VOC

Model evaluation using SOA/Ox ratio3. Results

Page 14: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

1.0

0.8

0.6

0.4

0.2

0.0

SO

A /

(SO

A +

SV

OC

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

VBS CACM AERO5 MCM (std. Kp) MCM (Kp x 500)

10-6

10-4

10-2

100

102

SV

OC

(g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

10-6

10-4

10-2

100

102

SO

A +

SV

OC

(g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

10-6

10-4

10-2

100

102

SO

A (g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

VBS CACM AERO5 MCM (std. Kp) MCM (Kp x 500)

1.0

0.8

0.6

0.4

0.2

0.0

SO

A /

(SO

A +

SV

OC

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

VBS CACM AERO5 MCM (std. Kp) MCM (Kp x 500)

10-6

10-4

10-2

100

102

SV

OC

(g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

10-6

10-4

10-2

100

102

SO

A +

SV

OC

(g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

10-6

10-4

10-2

100

102

SO

A (g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

VBS CACM AERO5 MCM (std. Kp) MCM (Kp x 500)

Intercomparison of volatility (C*) distributions3. Results

Saturation concentration Saturation concentration

SOA(aerosol)

SVOC(gas)

SOA+SVOC(total)

SOASOA+SVOC

Continuous C* distributions in VBS and MCM.MCM simulated very small [SOA+SVOC] with C*<10 μgm-3.

1.0

0.8

0.6

0.4

0.2

0.0

SO

A /

(SO

A +

SV

OC

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

VBS CACM AERO5 MCM (std. Kp) MCM (Kp x 500)

10-6

10-4

10-2

100

102

SV

OC

(g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

10-6

10-4

10-2

100

102

SO

A +

SV

OC

(g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

10-6

10-4

10-2

100

102

SO

A (g

m-3

)

10-2

10-1

100

101

102

103

104

105

C* (g m-3

)

VBS CACM AERO5 MCM (std. Kp) MCM (Kp x 500)

(aerosol/total)

Page 15: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

Contributions of precursors/sources to Ox and SOAContributions of precursor VOCs were estimate from sensitivity simulations (20% recuction of each VOC).

40

30

20

10

0

Ox

(pp

bv)

MC

M

CA

CM

AE

RO

4

AE

RO

5

VB

S

3

2

1

0

SO

A (g

m-3

)

MC

M

CA

CM

AE

RO

4

AE

RO

5

VB

S

ALK ARO BIO OLE others S/IVOC

OLE

SVOC

ARO

Contributions of each precursor VOC

ARO

OLE

others

ALK

40

30

20

10

0

Ox

(pp

bv)

MC

M

CA

CM

AE

RO

4

AE

RO

5

VB

S

3

2

1

0S

OA

(g

m-3

)

MC

M

CA

CM

AE

RO

4

AE

RO

5

VB

S

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Contributions of emission sources

Vehicles

Paint

Fugitive Paint

Vehicles

Print

3. Results

Page 16: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

Summary

• Five organic aerosol models (MCM, CACM SAPRC99-AERO4,

SAPRC99-AERO5, SAPRC99-VBS) were compared using a box

model.

• Aging reactions enhanced SOA production yield by a factor of 1.3 ~

1.5 under conditions of chamber experiments. SOA production

yield should be reduced by 30-50% to avoid double counting.

• SOA/Ox ratio was well reproduced by the VBS model, while other

models significantly underestimated the observed ratio.

• Source contributions to ambient SOA concentration largely differed

among the five models. Choice of SOA model is critical in the

source apportionment of SOA.

4. Summay

Page 17: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute
Page 18: Intercomparison of secondary organic aerosol models based on SOA/O x ratio Yu Morino, Kiyoshi Tanabe, Kei Sato, and Toshimasa Ohara National Institute

1.0

0.8

0.6

0.4

0.2

0.0

C3

H6

(p

pb

v)

2015105

0.5

0.4

0.3

0.2

0.1

0.0

X1

_C

4H

8 (

pp

bv)

2015105

0.5

0.4

0.3

0.2

0.1

0.0

cis_

2_

C4

H8

(p

pb

v)

2015105

5

4

3

2

1

0

AR

O1

(p

pb

v)

2015105

20

15

10

5

0

AL

KL

(p

pb

v)

2015105

3.0

2.5

2.0

1.5

1.0

0.5

0.0

OL

E1

(p

pb

v)

2015105

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C2

H4

(p

pb

v)

2015105

1.0

0.8

0.6

0.4

0.2

0.0

C5

H8

(p

pb

v)

2015105

0.5

0.4

0.3

0.2

0.1

0.0

BE

NZ

EN

E (

pp

bv)

2015105

4

3

2

1

0

TO

LU

EN

E (

pp

bv)

2015105

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C2

H6

(p

pb

v)

2015105

4

3

2

1

0

C3

H8

(p

pb

v)

2015105

1.2

0.8

0.4

0.0

C2

H2

(p

pb

v)

2015105

3.0

2.5

2.0

1.5

1.0

0.5

0.0

i_C

4H

10

(p

pb

v)

2015105

4

3

2

1

0

n_

C4

H1

0 (

pp

bv)

2015105

4

3

2

1

0

i_C

5H

12

(p

pb

v)

2015105

2.0

1.5

1.0

0.5

0.0

n_

C5

H1

2 (

pp

bv)

2015105

1.0

0.8

0.6

0.4

0.2

0.0

n_

C6

H1

4 (

pp

bv)

2015105

2.0E-2

2.0E-1

2.0E+0

Obs MCM

モデルー観測データの比較 (VOC 成分 )

 3.結果 -ボックスモデル計算結果、寄与解析

上記の比較を基に、 VOC の排出量を補正。右図は補正後の VOC濃度。測定成分 (C5H8 を除いた 14 成

分 ) のみ補正した点に注意 MCM, CACM, SAPRC99 で芳香族

濃度が異なるのは、グルーピングが異なり、 OH との反応速度も異なるため

NMHC 濃度の観測値とモデル計算結果( 期間平均濃度、 ppbv)

80

60

40

20

0

O3

(pp

bv)

20151050

Time of day (JST)

Obs AERO4 AERO5 CACM VBS MCM

10x106

8

6

4

2

0

OH

(m

ole

c. c

m-3

)

20151050

Time of day (JST)

300x106

250

200

150

100

50

0

HO

2 (m

ole

c. c

m-3

)

20151050

Time of day (JST)

20

15

10

5

0

NO

(p

pb

v)

20151050

Time of day (JST)

40

30

20

10

0

NO

2 (p

pb

v)

20151050

Time of day (JST)

12

8

4

0

HN

O3

(p

pb

v)

20151050

Time of day (JST)

VOC 成分の日変動