introduction to lattice gauge theory and some applications · 2014. 4. 3. · rst discovered in...

47
Introduction to Lattice Gauge Theory and Some Applications Roman H¨ ollwieser Derar Altarawneh, Falk Bruckmann, Michael Engelhardt, Manfried Faber, Martin Gal, Jeff Greensite, Urs M. Heller, Andrei Ivanov, Thomas Layer, ˇ Stefan Olejnik, Mario Pitschmann, Hugo Reinhardt, Thomas Schweigler, Lorenz von Smekal, Wolfgang S¨ oldner, Mithat Unsal, Markus Wellenzohn

Upload: others

Post on 26-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Introduction to Lattice GaugeTheory and Some Applications

    Roman Höllwieser

    Derar Altarawneh, Falk Bruckmann, Michael Engelhardt, Manfried Faber,

    Martin Gal, Jeff Greensite, Urs M. Heller, Andrei Ivanov, Thomas Layer,

    Štefan Olejnik, Mario Pitschmann, Hugo Reinhardt, Thomas Schweigler,

    Lorenz von Smekal, Wolfgang Söldner, Mithat Unsal, Markus Wellenzohn

  • OutlookQuantum Chromo Dynamics

    Motivation & IntroductionFormalism (→ formulas ;-)Properties of QCD VacuumMethods to explore QCDExperiments & Successes

    Lattice QCD

    Path Integral FormalismEuclidean FormulationLattice DiscretizationQCD on the Lattice

    Center Vortices

    Vortex Picture of Quark ConfinementCenter Vortices and Chiral Symmetry BreakingApproaching full QCD from smeared Center VorticesRandom Center Vortices in 3D/4D Space-Time Continuum

    Electric Polarizabilities of the Neutron in Lattice QCD

  • Motivation & Introduction

    Dr. Heinrich Faust in Johann Wolfgang von Goethes Faust I:Dass ich erkenne, was die Welt, im Innersten zusammenhält.

    (So that I may perceive whatever holds,the world together in its inmost folds.)

    Theory of strong interactions between quarks and gluons.

  • The Eightfold Way

    Lowest Iπ =1

    2

    +

    -baryon-octet and lowest Iπ = 0−-meson-octet

    Y = S + C + B ′ + T + B = 2(Q − I3) . . .⇒ SU(3)-multipletts

  • Quarks and Antiquarks

    |u〉 ↔

    100

    , |d〉 ↔ 01

    0

    , |s〉 ↔ 00

    1

    quark-triplet anti-triplet

    Baryons → |qqq >, e.g. p = |uud >, n = |udd >Mesons → |qq >, e.g. π+ = |ud >

  • Problem: ∆++ = |uuu > with parallel spins and vanishing orbitalangular momentum → baryon wave function symmetric → Pauliexclusion principle → color charge

    colored quarks + gluons → colorless hadrons ⇒ Confinement

  • Fields

    Quarks: ψa(x)massive spin-1/2 fermions with color chargeDirac-fields in the fundamental representation 3 of SU(3)electric charge −1/3 or 2/3 and weak isospinbaryon number 1/3, hypercharge and flavor

    Gluons: Aµa (x)spin-1 bosons with color chargeadjoint representation 8 of gauge group SU(3)no electric charge, no weak interaction, no flavor

  • Dynamics

    Three basic interactions:1) quark emits (absorbs) gluon2) gluon emits (absorbs) gluon3) gluon interacts with gluon

    Feynman-diagrams:

  • Lagrangian...summarizes dynamics of the system (L=T-V)

    LQCD = LDirac + LGauge

    = ψ(iγµDµ −m)ψ −1

    4F aµνF

    µνa

    = ψ(iγµ(∂µ + igTaAaµ)−m)ψ −

    1

    4F aµνF

    µνa

    = ψ(iγµ∂µ −m)ψ − g(ψγµTaψ)Aaµ −1

    4F aµνF

    µνa

    = ψiγµ∂µψ − ψmψ − gψγµTaψAaµ −1

    4F aµνF

    µνa

    with the Gluon Field Strength Tensor

    F aµν = ∂µAaν − ∂νAaµ − gfabcAbµAcν

    γµ . . .Dirac matrices, m . . .fermion mass, g . . .coupling constant,Ta . . . generators of SU(3), fabc . . .structure constant

  • Lagrangian

    LQCD = ψ̄(i~cγµ∂µ −mc2)ψ

    − 14

    (∂µAνa − ∂νAµa )(∂µAν, a − ∂νAν, a)

    − ḡ cψ̄γµFaψAµa

    +ḡ

    ~fabc(∂µAν, a)A

    µb(x)A

    νc (x)

    − 14

    ḡ 2

    ~2fabcAµ, b(x)Aν, c(x)fadeA

    µd(x)A

    νe (x)

  • Properties

    Important Properties of QCD are

    Asymptotic Freedomin very high energy reactions (small distances),quarks and gluons interact very weakly

    Color Charge Gainanti screening of color charged gluons

    Quark-Gluon Plasmaphase of (almost) free moving quarks and gluons

    Confinementforce between quarks does not diminish as they are separated

    Chiral Symmetry Breakingleft- and right-handed quarks transform differently

  • Asymptotic Freedom

    in high-energy scattering quarks move within nucleons mostlyas free non-interacting particles (QGP)

    first discovered in SU(2) gauge theory as a mathematicalcuriosity

    Screening and Anti screening

    screening by virtual charged particle-antiparticle pairs (vacuumpolarization)anti screening by virtual gluons carrying color charge andanti-color magnetic moment

    beta-function describing the variation of theory’s coupling

    β(α) =α2

    π

    (−11N

    6+

    nf3

    )negative beta-function ⇒ Asymptotic Freedom

  • Color Confinement

    hadrons are colorless

    color charged particles (quarks)cannot be isolated

    color flux lines are compressed to aflux tube (string)

    linear rising quark-antiquarkpotential

    V (r) ≈ σr − π12r

    + c

    with string tension σ(√σ ≈ 0.44GeV)

    color electric flux-tube

    quark-antiquark pair production

  • MethodsPerturbative QCD

    asymptotic freedom allows perturbation theoryaccurately in experiments performed at very high energiesmost precise tests of QCD to date

    Lattice QCD

    discrete set of space-time points (lattice)solve path integrals on discrete space-timeinsight into parts of theory, inaccessible by other means

    1/N expansion

    starts from the premise that the number of colors is infiniteseries of corrections to account for the fact that it is notmodern variants include the AdS/CFT approach

    Effective theories (special theories for specific problems)

    chiral perturbation th. (expansion around light quark masses)heavy quark eff. theory (expansion around heavy quark masses)soft-colinear eff. th. (exp. around large ratios of energy scales)Nambu-Jona-Lasinio model, Effective Infrared Vortex Models

  • Experimentsfirst evidence for quarks in deep inelastic scattering at SLAC(Standford Linear Accelerator)

    first evidence of gluons in three jet events at PETRA(Positron-Electron Tandem Ring Accelerator)

    good quantitative tests of perturbative QCD

    running of coupling as deduced from many observationsscaling violation in un-/polarized deep inelastic scatteringvector boson production at collidersjet cross section in collidersevent shape observables at the LEPheavy-quark production in colliders

    best quantitative test of non-perturbative regime is therunning of the coupling as probed through lattice calculations

  • Lattice QCD

  • Path Integral in quantum mechanicsclassical mechanics: exact path of particle

    quantum mechanics: quantum amplitude 〈q′t′|qt〉between initial |qt〉 and final |q′t′〉 statetime development of states described by Hamiltonian H

    |q′t′〉 = e iH(t−t′)|qt〉

    ⇒ 〈q′t′|qt〉 = 〈q′t′|e−iH(t′−t)|qt〉

    take n time-steps ∆t ⇒ insert n − 1 eigen-states

    〈qtn |qt〉 =∫. . .

    ∫dqt1 . . . dqtn−1

    〈qtn |e−iH∆t |qtn−1〉 . . . 〈qt1 |e−iH∆t |qt0〉

    integration over all possible paths

    limn→∞

    ∫. . .

    ∫dqt1 . . . dqtn . . .→

    ∫Dx

  • Path Integral in quantum mechanics

    〈qtn |qt0〉 =∫

    Dxe iS

  • Eucliden Continuation

    imaginary exponent e iS ⇒ non-converging integralsextend real time t to imaginary

    t → −iτ (τ > 0)

    〈q′|e−iHt |q〉 → 〈q′|e−Hτ |q〉 =∫

    Dxe−SE

    every path contributes to quantum amplitude with e−SE

    paths with high action are suppressed ⇒ classical mechanicsMinkovski-metric

    ds2 = −dt2 + dx21 + dx22 + dx23

    changes to Euclidean-metric

    ds2 = dτ2 + dx21 + dx22 + dx

    23

  • Discretization on the lattice

    path integral: time discretization and lim∆t→0

    field theory: space-time discretization ⇒ lattice

    xµ = anµ, a . . . lattice constant, nµ ∈ Z, µ = 0, 1, 2, 3

    discrete derivatives and integrals (sums)

    ∂µφ(x) → ∆µφ(x) =1

    a[φ(x + aµ̂)− φ(x)]∫

    d4x → a4∑x

    continuum limit: lattice spacing a→ 0 and volume →∞

  • QCD on the Lattice

    matter field ψ(x) defined only on lattice sites xµ

    gauge field Aµ(x) (gluons) defined on “links” (edges)

    Uµ(x) = eiagAµ(x)

    with lattice spacing a and renormalized coupling g

    → parallel transporter

  • Lattice Gauge Action

    gauge invariant terms → closed loops of linkssimplest form is the “plaquette”

    Uµν(x) = U†ν(x)U

    †µ(x + aν̂)Uν(x + aµ̂)Uµ(x)

  • Lattice Gauge Action

    plaquette loop with the link elements

    Uµν(x) =

    exp {iag [(Aν(x + aµ̂)− Aν(x))− (Aµ(x + aν̂)− (Aµ(x))]}

    discretization of the field strength

    Fµν(x) = ∂µAν(x)− ∂νAµ(x) ⇐⇒

    Fµν(x) =1

    a[(Aν(x + aµ̂)− Aν(x))− (Aµ(x + aν̂)− (Aµ(x))]

    in the continuum limit one identifies

    Uµν(x) = eia2gFµν(x)

  • Lattice Gauge Action

    possible and very common choice:

    Wilson’s pure gauge action

    SW = β∑x ,µ

  • Lattice Fermion Action

    naive discretization of the Dirac operator

    Kogut-Susskind term

    ψ̄DKSψ =1

    2aψ̄(x)

    ∑µ

    γµ[Uµ(x)ψ(x + µ̂)−U†µ(x− µ̂)ψ(x− µ̂)]

    higher terms may be included (asqtad improvement)

    fermionic action:

    ψ̄DKSψ + . . .+ mq∑x

    ψ̄(x)ψ(x)

  • Simulation

    Monte-Carlo method determines sequence of configurations Ci

    representative set of states → expectation value of observable

    〈O〉 ≈ 1N

    N∑i=1

    O(Ci )

    “Markov-chain” Ci , i = 1,N → “Markov process”start with random (hot) or ordered (cold) configuration

    different update algorithms to reach balance, p.ex.:

    Metropolis algorithm:e−[S(Cnew )−S(Cold )] < ρ, random number ρ ∈ [0, 1]Heat bath algorithm:

    acceptance probability P(Cnew ) =e−∆S

    e−∆S+e+∆S

    finite-size effects: a

  • Wilson loop

    closed loops around rectangular (R × T ), planar contour C

    W (R,T ) = 〈∏x∈C

    Uµ(x)〉 → e−σRT

    quark-antiquark “test-pair”

    heavy quark potential in limit T →∞

    V (R) = limT→∞1

    Tln〈W (R,T )〉 → −σR

    perimeter/area law → ConfinementCreutz ratio → σ . . .string tension

    χ =W (R + 1,T + 1)W (R,T )

    W (R + 1,T )W (R,T + 1)→ e−σ ⇒ σ = −ln(χ)

  • Confinement due to Magnetic Monopoles

    type II superconductor dual superconductor

    magnetic fluxoid quantization electric fluxoid quantization

  • Center Vortices

  • Center Vortices

    35 years of vortices

    Ü ’t Hooft 1979, Nielsen, Ambjorn, Olesen, Cornwall, 1979Mack, 1980; Feynman, 1981

    QCD vacuum is a condensate of closed magnetic flux-lines,they have topology of tubes (3D) or surfaces (4D),

    magnetic flux corresponds to the center of the group,

    Vortex model may explain ...

    Confinement → piercing of Wilson loop ≡ crossing of staticelectric flux tube and moving closed magnetic fluxTopological charge: vortices carry topological charge atintersection points and writhing points + color structureSpontaneous chiral symmetry breaking: alsocenter-projected configurations show χSB

  • Center Projection and Vortex Removal

    A plaquette is pierced by a P-vortex, if the product of its centerprojected links gives -1.

  • Structure of P-Vortices

    In 4D they form closed 2D-surfaces in Dual Space,Random Structure

    3-dimensional cut through the dual of a 124-lattice.

  • Area law for center projected loops

    denote f the probability that a plaquette has the value -1

    〈W (A)〉 = [f · (−1) + (1− f ) · 1]A = exp[ln(1− 2f )︸ ︷︷ ︸−σ

    A],=

    = exp[−σR × T ], σ ≡ − ln(1− 2f ) ≈ 2f

  • Center Dominance

    Creutz ratios: χ(I , J) = W (I ,J) W (I−1,J−1)W (I−1,J) W (I ,J−1) → σ

  • Continuous 3D Center Vortex Line Model

  • String Tension

  • OutlookExtend the Continuous Vortex Model to 4D...

  • Approaching full QCD by Vortex Smearing

  • Topological Susceptibility

  • Neutron Electric Polarizabilities

  • Interaction with weak electromagnetic field:

    LQM = ψ(x , t)[∂

    ∂t+ (−i ~∇− q~A)2 − µ~σ · ~B + 1

    2αE ~E

    2 − 12β~B2

    − i2γE1~σ · ~E × ~̇E −

    i

    2γM1~σ · ~B × ~̇B + . . .]ψ(x , t)

    ~E = −∂~A

    ∂t− ~∇A4, ~B = ~∇× ~A, ~̇E =

    ∂~E

    ∂t, ~̇B =

    ∂~B

    ∂t

    Lattice → Energy/Mass shift:

    ∆m = m(~E )−m(0) = −12αE ~E

    2 − 12γE1~σ ·(~E× ~̇E ) −

    1

    2αEν ~̇E

    2 +. . .

  • Thank you for your attention!

    Questions?

  • Thank You &

    Derar Altarawneh, Falk Bruckmann, Michael Engelhardt, Manfried Faber,

    Martin Gal, Jeff Greensite, Urs M. Heller, Andrei Ivanov, Thomas Layer,

    Štefan Olejnik, Mario Pitschmann, Hugo Reinhardt, Thomas Schweigler,

    Lorenz von Smekal, Wolfgang Söldner, Mithat Unsal, Markus Wellenzohn

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: 0.12: 0.13: 0.14: 0.15: 0.16: 0.17: 0.18: 0.19: 0.20: 0.21: 0.22: 0.23: 0.24: 0.25: 0.26: 0.27: 0.28: 0.29: 0.30: 0.31: 0.32: 0.33: anm0: