introduction to relativistic heavy ion collision physics

39
Introduction to Relativistic Heavy Ion Collision Physics Huan Z. Huang 黄黄黄 Department of Physics and Astronomy University of California, Los Angeles Oct 2006 @Tsinghua http://hep.tsinghua.edu.cn/talks/Huang/

Upload: lucas

Post on 09-Jan-2016

90 views

Category:

Documents


0 download

DESCRIPTION

Introduction to Relativistic Heavy Ion Collision Physics. Huan Z. Huang 黄焕中 Department of Physics and Astronomy University of California, Los Angeles Oct 2006 @Tsinghua. http://hep.tsinghua.edu.cn/talks/Huang/. Two Puzzles of Modern Physics. -- T.D.Lee. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction to Relativistic Heavy Ion Collision Physics

Introduction to Relativistic Heavy Ion Collision Physics

Huan Z. Huang

黄焕中Department of Physics and Astronomy

University of California, Los Angeles

Oct 2006 @Tsinghua

http://hep.tsinghua.edu.cn/talks/Huang/

Page 2: Introduction to Relativistic Heavy Ion Collision Physics

Two Puzzles of Modern Physics

• Missing Symmetry – all present theories are based on symmetry, but most symmetry quantum numbers are NOT conserved.

• Unseen Quarks – all hadrons are made of quarks, yet NO individual quark has been observed.

-- T.D.Lee

Page 3: Introduction to Relativistic Heavy Ion Collision Physics

Vacuum As A Condensate

• Vacuum is everything but empty! • The complex structure of the vacuum and the

response of the vacuum to the physical world breaks the symmetry.

• Vacuum can be excited!

We do not understand vacuum at all !

Page 4: Introduction to Relativistic Heavy Ion Collision Physics

A Pictorial View of Micro-Bangs at RHIC

Thin PancakesLorentz =100

Nuclei pass thru each other

< 1 fm/c

Huge StretchTransverse ExpansionHigh Temperature (?!)

The Last Epoch:Final Freezeout--

Large Volume

Au+Au Head-on Collisions 40x1012 eV ~ 6 micro-Joule

Human Ear Sensitivity ~ 10-11 erg = 10-18 Joule

A very loud Bang, indeed, if E Sound……

Vacuum Engineering !

Page 5: Introduction to Relativistic Heavy Ion Collision Physics

initial state

pre-equilibrium

QGP andhydrodynamic expansion

hadronization

hadronic phaseand freeze-out

High Energy Nucleus-Nucleus Collisions

Physics: 1) Parton distributions in nuclei 2) Initial conditions of the collision 3) a new state of matter – Quark-Gluon Plasma and its properties 4) hadronization

Page 6: Introduction to Relativistic Heavy Ion Collision Physics

Rapidity:

Pseudo-rapidity:

Transverse Momentum:

Transverse Mass:

Kinematic Variables

)ln(2

1

Z

Z

PE

PEy

)2

ln(tan)ln(2

1

Z

Z

PP

PP

22YXT ppp

20

2 mpm TT

Page 7: Introduction to Relativistic Heavy Ion Collision Physics

Useful Expressions

Edydp

y

ymp

ymE

z

z

TZ

T

tanh

sinh

cosh

2

*

*max

*

S

LLF

p

p

px

M

Qx

EE

qQppqfi

fi

2

)(

;)(

2

2222

Feymann xF:

Bjorken x:

Light-cone x+:beamz

z

pE

pEx

)(

)(

Page 8: Introduction to Relativistic Heavy Ion Collision Physics

Cross Sections

Total = Number of Reactions

Number of Beam Particles X Scattering Center / Area

Dimension [L2]

Total = inel + el

inel= SD + ND

SD: Singly Diffractive ND: Non-Diffractive

Differential Cross Section:

dddppdpdpdppd

pd

d

zyx sin23

3

3

Question: differential cross section vs total cross section?

Page 9: Introduction to Relativistic Heavy Ion Collision Physics

Invariant Multiplicity Density:

E d3n/d3p

Invariant Cross Sections

dydmm

d

dydpp

d

TT

TT

2

22

2Invariant Differential Cross Section:

E d3/d3p

dydmmN

Nd

dydppN

Nd

TTev

TTev

2

22

2

Experimental Considerations: Efficiency, Acceptance, Decay Correction, Target-out Correction.

Page 10: Introduction to Relativistic Heavy Ion Collision Physics

Order of Magnitude

Geometrical CS: pp r2 = (1fm)2 = 32 mb

Au+Au Collisions: Rau = 1.2 A1/3 = 6.98 fm bmax=(2R)2 = 6 barn

1 barn = 10-24 cm2

Regge Theory: total=XS0.0808 + YS-0.4525

p-pbar 21.70 98.39 mbp-p 21.70 56.08 mb

Pomeron f,a,….

HIJING: minijet production

Page 11: Introduction to Relativistic Heavy Ion Collision Physics

Luminosity at Collider

L = NB

2 B v / UA

B Number of bunches per beamNB Number of particles per bunchv velocity of particlesU circumference of the ringA beam cross section at the collision

Relativistic Heavy Ion Collider:

*

2

2

3

N

Brev

NBfL

N Invariant Transverse 95% Emittance the beta function

Page 12: Introduction to Relativistic Heavy Ion Collision Physics

RHIC Numbers

RHIC Design:Au Beam proton Beam

B 57 NB 109 1011

L 2x1026 1x1031 cm-2s-1

200 GeV 500 GeVNNs

Collision Rate: L x Hz 0.7 MHz

Page 13: Introduction to Relativistic Heavy Ion Collision Physics

RHIC Complex

Page 14: Introduction to Relativistic Heavy Ion Collision Physics

STAR

Relativistic Heavy Ion Collider --- RHIC

Au+Au 200 GeV N-N CM energyPolarized p+p up to 500 GeV CM energy

Page 15: Introduction to Relativistic Heavy Ion Collision Physics

Building Blocks of Hadron World

Proton Neutron

(uud) (udd)

Mesons

(q-q)

Exotics

(qqqq-q,…)

Molecules

Atoms

Electrons

Strong interaction is due to color charges and mediated by gluons. Gluons carry color charges too.

Baryon Density: = baryon number/volumenormal nucleus 0 ~ 0.15 /fm3 ~ 0.25x1015 g/cm3

Temperature, MeV ~ 1.16 x 1010 K10-6 second after the Big Bang T~200 MeV

Nucleus

Hyperons

(s…)

Page 16: Introduction to Relativistic Heavy Ion Collision Physics

Energy Scale and Phase Transition

Entity Energy Dimension Physics Bulk Property P/T

Atom 10’s eV 10-10 m Ionization e/Ion Plasma No

Nucleus 8 MeV 10-14 m Multifrag. Liquid-Gas Y(?)

QCD 200 MeV 10-15 m Deconfine. QGP Y(?)

EW 100 GeV 10-18 m P/CP Baryon Asymmetry Y(?)

GUT 1015-16 GeV Supersymmetry

TOE 1019 GeV Superstring

Page 17: Introduction to Relativistic Heavy Ion Collision Physics

Salient Feature of Strong Interaction

Asymptotic Freedom: Quark Confinement:

庄子天下篇 ~ 300 B.C. 一尺之棰,日取其半,万世不竭

Take half from a foot long stick each day,You will never exhaust it in million years.

QCD q q

q qq q

Quark pairs can be produced from vacuumNo free quark can be observedMomentum Transfer

Co

up

lin

g S

tren

gth

Shorter distance

(GeV)

Page 18: Introduction to Relativistic Heavy Ion Collision Physics

QCD on Lattice

Transition from quarks to hadrons – DOF !QGP – not an ideal Boltzmann gas !

Page 19: Introduction to Relativistic Heavy Ion Collision Physics

Lattice: current statusLattice: current status• technical progress: finer mesh size, physical quark masses, improved

fermion actions phase-transition: smooth, rapid cross-over EoS at finite μB: in reach, but with large systematic uncertainties

critical temperature: TC180 MeV

Rajagopal & Wilczek, hep-ph/0011333

Fodor & Katz, hep-lat/0110102

Page 20: Introduction to Relativistic Heavy Ion Collision Physics

Quark-Hadron Phase Transition

Page 21: Introduction to Relativistic Heavy Ion Collision Physics
Page 22: Introduction to Relativistic Heavy Ion Collision Physics

QGP – micro-second after the Big Bang

Page 23: Introduction to Relativistic Heavy Ion Collision Physics

The Melting of Quarks and Gluons-- Quark-Gluon Plasma --

Matter Compression: Vacuum Heating:

High Baryon Density-- low energy heavy ion collisions-- neutron starquark star

High Temperature Vacuum -- high energy heavy ion collisions -- the Big Bang

Deconfinement

Page 24: Introduction to Relativistic Heavy Ion Collision Physics

QCD Phase Transition

Baryonic Potential B [MeV]

Chem

ical Tem

pera

ture

Tch

[M

eV

]

0

200

250

150

100

50

0 200 400 600 800 1000 1200

AGS

SIS

SPS

RHIC quark-gluon plasma

hadron gas

neutron stars

early universe

thermal freeze-out

deconfinementchiral restoration

Lattice QCD

atomic nuclei

What do experimental data points indicate and how were these points obtained ?

Page 25: Introduction to Relativistic Heavy Ion Collision Physics

Nuclear Collision Geometry

Number of Participants

Impact Parameter

Particle Production is assumed to be directlyrelated to the impact parameter or number of

participant nucleons.

Page 26: Introduction to Relativistic Heavy Ion Collision Physics

a) Geometrical Interpretation of Observables A monotonic relation between the observable and collision centrality is assumed

b) Estimate from direct measurement missing energy from Zero-degree calorimeter from dn/dy of protons….

Number of Participant Nucleons

Page 27: Introduction to Relativistic Heavy Ion Collision Physics

Directly Determining NPART

Best approach (for fixed target!):– Directly measure in a “zero degree calorimeter”– (for A+A collisions)

– Strongly (anti)-correlated with produced transverse energy:

PerNucleon

ZDCPART E

EAN 2

ET

ET

EZDC

NA50

Page 28: Introduction to Relativistic Heavy Ion Collision Physics

Number of Participant Nucleonsc) Dynamical Model Tune to fit experimental measurement From model to convert measurement to impact parameter and number of participant nucleons ++ Fluctuations are included - - Physical picture is biased to begin with

Page 29: Introduction to Relativistic Heavy Ion Collision Physics

mT spectrum: d2n/(2mT)dmTdy vs (mT-m0)pT spectrum: d2n/(2pT)dpTdy vs pT

Spectrum Fit

Boltzmann mT Fit:d2n/(2mT)dmTdy ~ mT exp(-mT/slp)

slp Slope Parameter

Why is this Boltzmann?d3n/d3p ~ exp(-E/T)

Invariant Multiplicity Density:Ed3n/d3p ~ E exp(-E/T)E = mTcosh(y-ycm)d2n/(2mT)dmTdy ~ mT cosh(y-ycm) exp(-mT cosh(y-ycm)/T)

Slp depends on rapidity for an isotropic thermal fireballslp = T/cosh(y-ycm)

dn/dy =

2

2

2

)(2

2)2

( y

cmyy

TTTT

edmmdydmm

nd

y ~ 0.7-0.8

Page 30: Introduction to Relativistic Heavy Ion Collision Physics

Naïve Expectations• Thermal Isotropic Source mT Scaling

, K and proton have the same slope parameter e-E/T

T = 190 MeV

T = 300 MeV

Tp = 565 MeV

mid-rapidity

Data show a large difference among these particles Expansion

Page 31: Introduction to Relativistic Heavy Ion Collision Physics

Naïve Expectation 2

Slope parameter TemperatureRapidity density dn/dy entropy or energy density

First Order Phase Transition:

dn/dy

<pT>

hadron

QGP

Mixed

Collision dynamics much more complicated !!

Page 32: Introduction to Relativistic Heavy Ion Collision Physics

Collision Dynamics

Page 33: Introduction to Relativistic Heavy Ion Collision Physics

Bjorken Scaling

Bjorken Ansatz: “…… at sufficient high energy there is a‘central-plateau’ structure for the particle production as a function of the rapidity variable.”

y

dn/dy

Physics must be invariant under Lorentz-boost:

1) Local thermodynamic quantity must be a function of

proper time only.

2) Longitudinal velocity

vz = z/t or y = 0.5 ln ((t+z)/(t-z))

22 zt

Page 34: Introduction to Relativistic Heavy Ion Collision Physics

Bjorken Energy Density

Energy density = E x N

A x z

E average energy per particleA transverse area of the collision volumez longitudinal intervalN number of particles in z interval

vz = z/t = tanh y; z = sinh yz = cosh y yE = mT cosh y

= mT cosh y N

A cosh y ymT

Adn/dy

Page 35: Introduction to Relativistic Heavy Ion Collision Physics

Initial Energy Density EstimatePRL 85, 3100 (00); 91, 052303 (03); 88, 22302 (02), 91, 052303 (03)

PHOBOS

hminus:Central Au+Au <pT>=0.508GeV/cpp: 0.390GeV/c

Pseudo-rapidityWithin ||<0.5 the total transverse momentum created is 1.5x650x0.508 ~ 500 GeV from an initial transverse overlap area of R2 ~ 153 fm2 !

Energy density ~ 5-30 0 at early time =0.2-1 fm/c !

19.6 GeV

130 GeV200 GeV

Page 36: Introduction to Relativistic Heavy Ion Collision Physics

Ideas for QGP Signatures

Strangeness Production: (J.Rafelski and B. Muller PRL 48, 1066 (1982))

s-s quark pair production from gluon fusions in QGP leads to strangeness equilibration in QGP most prominent in strange hyperon production (and anti-particles).

Parton Energy Loss in a QCD Color Medium:(J.D. Bjorken Fermilab-pub-82-059 (1982) X.N. Wang and M. Gyulassy, PRL 68, 1480 (1992))

Quark/gluon

Quark/gluon dE/dx in color medium is large!

Page 37: Introduction to Relativistic Heavy Ion Collision Physics

Ideas for QGP Signatures

Chiral Symmetry Restoration: T = 0, m(u,d,s) > 0 – Spontaneous symmetry breaking T> 150 MeV, m=0 – Chiral symmetry restored Mass, width and decay branching ratios of resonances may be different in dense medium .

QCD Color Screening: (T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986))

A color charge in a color medium is screened similar to Debye screening in QED the melting of J/.

c c Charm quarks c-c may not bindInto J/ in high T QCD medium

The J/ yield may be increased due to charm quark coalescence at the final stage of hadronization (e.g., R.L. Thews, hep-ph/0302050)

Page 38: Introduction to Relativistic Heavy Ion Collision Physics

Models of Neutron StarsF. Weber J.Phys. G27 (2001) 465

“Strangeness" of dense matter ?In-medium properties of hadrons ?Compressibility of nuclear matter ? Deconfinement at high baryon densities ?

Page 39: Introduction to Relativistic Heavy Ion Collision Physics

1st year detectors

Silicon Vertex Tracker

Central Trigger Barrel

FTPCs

Time Projection Chamber

Barrel EM Calorimeter

Vertex Position Detectors

Endcap Calorimeter

Magnet

Coils

TPC Endcap & MWPC

RICH+ TOF

Silicon Strip Detector

ZDC

2nd year detectors installation in 2002 installation in 2003

ZDC

The STAR Detector