present and future perspectives of relativistic heavy-ion collisions 고려대학교 홍 병 식

49
Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고고고고고 고 고 고

Upload: herbert-perkins

Post on 29-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

Present and Future Perspectives of Relativistic Heavy-Ion Collisions

Present and Future Perspectives of Relativistic Heavy-Ion Collisions

고려대학교 홍 병 식

Page 2: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 2

Motivation of HI Collisions

Investigating the QCD prediction of a deconfined (& chiral symmetry restored) high-energy-density phase of nuclear matter

QGP is thought to have existed ten millionths of second after the Big Bang; creating the primordial matter of universe in the laboratory.

High-energy nuclear collisions will compress and heat the heavy nuclei so much that their individual protons and neutrons overlap and lots of pions arise, creating the Quark-Gluon Plasma (QGP)

Page 3: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 3

Quark-Gluon Plasma Quark-Gluon Plasma

Big BangBig Bang

EW & QCD Separate EW & QCD Separate (GUT ) (GUT )

WI & QED SeparateWI & QED SeparateHe FormationHe Formation

Atom Formation Atom Formation

Galaxy & Star Formation Galaxy & Star Formation

First SupernovaeFirst Supernovae

Present Present

Page 4: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 4

Heavy-Ion Collisions

Some of the energy they had before is transformed into heat and new particles right here !

Approaching99.95% c

Collisions Passingthrough

Expansion

Page 5: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 5

Phases of Nuclear Matter

T(MeV)

Density(n0)

~150

~10

Early Universe(RHIC, LHC)

Color SuperconductorNeutron Star

Hadron Gas

Quark-Gluon Plasma

Phase Transition

Atomic Nuclein0=0.17/fm3

1 fm=10-15 m

1 MeV~1010 K

Page 6: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 6

Heavy-Ion Accelerators

Acceleratorc.m. Energy

(GeV)Status

SIS 18(GSI, Germany)

2A(A=mass number)

Running

AGS(BNL, USA)

5A Finished

SIS 200(GSI, Germany)

8AJust approved; Plan to run from ~2010

SPS(CERN, Switzerland)

20A Finish soon

RHIC(BNL, USA)

200A Running since 2000

LHC(CERN, Switzerland)

5500APlan to run from

~2007

Page 7: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 7

Relativistic Heavy Ion Collider

Brookhaven National Lab.Brookhaven National Lab. in New Yorkin New York

Circumference: 3.83 km First collision: 2000 100A GeV Au+Au(2X1026/cm2/s) 250 GeV p+p(2X1032/cm2/s)

Page 8: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 8

More

ab

ou

t the

More

ab

ou

t the P

HEN

IXP

HEN

IX

PHENIX= Pioneering High Energy Nuclear Interaction eXperiment

Page 9: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 9

PHENIXPHENIX the Reality the Reality May 2001

Page 10: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 10

Shopping ListShopping List

1. DeconfinementR() ~ 0.13 fm < R(J/) ~ 0.29 fm < R(’ ) ~ 0.56 fm (Electrons, Muons)

2. Chiral Symmetry RestorationMass, width, branching ratio of to e+e-, K+K- with M < 5 MeV (Electrons, Muons, Hadrons)Baryon susceptibility, color fluctuations, anti-baryon production (Hadrons)DCC’s, Isospin fluctuations (Photons, Charged Hadrons)

3. Thermal Radiation of Hot GasPrompt , Prompt * to e+e-, +- (Photons, Electrons, Muons)

4. Strangeness and Charm ProductionProduction of K+, K- mesons (Hadrons)Production of , J/, D mesons (Electrons, Muons)

5. Jet QuenchingHigh pT jet via leading particle spectra (Hadrons, Photons)

6. Space-Time EvolutionHBT Correlations of ± ±, K± K± (Hadrons)

Summary: Electrons, Muons, Photons, Hadrons

Page 11: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 11

12 nations 57 institutes 460 people

Page 12: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 12

Selected Results

• Global Features– Particle Multiplicity– Transverse Energy– Flow

• Identified Particles– Hadrons– Electrons

• Studied vs– Centrality– System Size – Beam Energy

All results presented here are for p+p & Au+Au

collisions at =130 and 200 GeVNNs

Page 13: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 13

Particle Multiplicity

• PHOBOS Compilation (PRL 88, 022302 (2002))• HI is producing more particles than elementary p-p or

p-pbar at the same beam energy

Npart = # of participant nucleons

Page 14: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 14

Event Charaterization

• Use the combination of– Zero Degree Calorimeters (energy of unbound spect

ator neutrons)– Beam-Beam Counters (cha

rged multiplicity)– to define centrality classes

• Use – Glauber Modeling– to extract the number of participants

0-5%5-10%

10-15%etc.

Centrality Collisions Participants

0-5% 945 15% 347 15%

5-15% 673 15% 271 15%

15-30% 383 15% 178 15%

30-60% 123 15% 76 15%

60-80% 19 60% 19 60%

80-92% 3.7 60% 5 60%

Page 15: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 15

Global Variables

28.088.0 A12.034.0 B19.038.0/ AB

)(24.080.0 GeVA )(09.023.0 GeVB

18.029.0/ AB

Yields grow significantly faster than Npart

Evidence for the hard scattering (Nbin) term

ch binpart0dN d A N B N

Phys. Rev. Lett. 86, 3500 (2001)

First PHENIX paper

Page 16: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 16

Gluon Saturation?

r/ggg

Eskola, Kajantie, and Tuominen: hep-ph/0009246Kharzeev, Nandi: nucl-th/0012025

Gluon begins to fuse with high enough gluon density; limit the particle production

Gluon Saturation does not set in for peripheral collisions: need to look for the central collisions

Page 17: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 17

Initial Energy Density Bjorken’s 1-D hydrodynamic model

dy

dE

RdyR

dE

dzR

dE

V

E T

TT

T

T

T

222

1~~ ~4.6 - 23 GeV/fm3

2%

26T39

y 0

dE578 GeV 1.19 0.01

dy

PRL87, 52301 (2001)

Time to thermalize the system(~1.0 - 0.2 fm/c?)

Energy deposition is certainly large enough to reach the QGP

Latticec

Bj~ 4.6 GeV/fm3

J. Nagle

Bj~ 23.0 GeV/fm3

Page 18: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 18

QGP Probes

• Expectation– quarks and quarkonium states may respond differently to a pl

asma compared to ordinary nuclear matter

• Hard Probes– Formed in initial collisions with high Q2

– Calculable in pQCD given • Parton strunture function• Hard scattering rate• Fragmentation function

q

q

Hadron jet

Hadronjet

Page 19: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 19

Partonic Energy Loss in QGP

q

q

Baier, Dokshitzer, Mueller, Schiff, hep-ph/9907267Gyulassy, Levai, Vitev, hep-pl/9907461Wang, nucl-th/9812021and many more…..

Partons are expected to loose energy via gluon radiation in traversing a QGP(jet quenching)

Hadrons above pT > 2 GeV expected to be from jet fragmentationLook for a suppression of leading hadrons in that pT region

Page 20: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 20

Other Nuclear Effects

Au

pAu

1=

pAuppA

R

Prediction for RHIC

They enhance the high pT hadrons

soft/hardtransition?

Cronin Effect +Shadowing

Page 21: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 21

Hadron Spectra at 130A GeV

Central

Scaled pp

Peripheral

Peripheral

Central

Scaled pp

Page 22: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 22

Suppression Observed• ratio of pT-spectra

– AA central / pp

RAA d 2N AA dydpT

d 2N pp dydpT NcollAA

• RAA =1 for scaling with number of binary collisions

• RAA < 1 for central reactions at 130A GeV– observed in neutral

pions and charged hadrons (PHENIX and STAR)

Phys. Rev. Lett. 88, 022301 (2002)

Page 23: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 23

Comparison with SPS Data• RAA > 1 for reactions

at SPS and ISR

WA98, Eur.Phys.J.C 23, 225-236 (2002)

Page 24: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 24

Data vs Theory

Shadowing+ Cronin

Energy Loss

Scaled pp

Peripheral data

Central data

Energy Loss

Shadowing+ Cronin

Scaled pp

<dE/dx>=7.3 GeV/fm 15x higher than incold nuclear matter (HERMES)X.N. Wang PRC 61, 064910 (2000) E. Wang & X.N. Wang, hep-ph/0202105

Central data

Page 25: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 25

New Results at 200A GeV

pp and AA measured in the same detector

Page 26: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 26

Suppression

• strong suppression in 0:– decreasing with pT

– factor 6 at pT = 6-8 GeV/c

• similar suppression in charged hadrons– RAA slightly higher at

intermediate pT?

• discrepancies in charged RAA between experiments– Glauber calculations?– NN-reference?

• better consistency between STAR and PHENIX

for central/peripheral!

PHENIX, PRL 91, 072301 (2003)

Page 27: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 27

Jet Correlation at RHIC• Establish near-side

(trigger-jet) and far-side (counter-jet) correlation in pp

• Ansatz: correlation in AA as superposition of pp data and elliptic flow– pp signal from pp data– elliptic flow from reaction

plane analysis

• quantify deviations from pp by integrals around = 0 and

• back-to-back correlation disappears in central AuAu

C2(Au Au ) C2(p p) A * (1 2v22 cos(2))

PRL 90, 082302(03’), STAR Collaboration

Page 28: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 28

d+Au Control Experiment

• Collisions of small with large nuclei were always foreseen as necessary to quantify cold nuclear matter effects.

• Recent theoretical work on the “Color Glass Condensate” model provides alternative explanation of data:– Jets are not quenched, but are a priori made in fewer numbers.– Color Glass Condensate hep-ph/0212316 by Kharzeev, Levin, & Nardi

• Small + Large distinguishes all initial and final state effects.

Nucleus-nucleuscollision

Proton/deuteron-nucleus collision

VS.

Page 29: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 29

d+Au Spectra

• Final spectra for charged hadrons and identified pions.• Data span 7 orders of magnitude.

Page 30: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 30

RAA vs. RdA for Identified 0

d+Au

Au+Au

Initial State Effects Only

Initial + Final

State Effects

d-Au results rule out CGC as the explanation for Jet Sud-Au results rule out CGC as the explanation for Jet Suppression at Central Rapidity and high pppression at Central Rapidity and high pTT

Page 31: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 31

Charged Hadron Results• Striking difference of d+Au and Au

+Au results.• Charged Hadrons higher than neutr

al pions.

Cronin Effect:

Multiple Collisions broaden high PT

spectrum

Page 32: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 32

Centrality Dependence

• Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au control one.

• Jet Suppression is clearly a final state effect.

“PHENIX Preliminary” results, consistent with PHOBOS data in

submitted paper

Au + Au Experiment d + Au Control Experiment

Preliminary DataFinal Data

Page 33: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 33

Summary at Present1. RHIC collisions produce more particles and energy th

an ever produced.2. There is an evidence that the dense matter behaves c

ollectively.3. Fireball is close to the condition for early universe in t

he energy density estimate and antiproton/proton ratio ( > 0.6).

4. Jet quenching is observed with high pt single hadrons and jet correlations (Cronin in d+Au).

5. First spectra for electron and implications for charm production.

Page 34: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 34

Future • Establish that the QGP is formed via

– Blackbody radiation from hot QGP – Presence of color Debye screening of QGP

• Explore the energy and system size dependences• Spin structure function of antiquarks and gluons by po

larized proton collisions

• Future Project– CBM/SIS200/GSI heavy-ion collisions

• Explore the highest baryon density nuclear matter– CMS/LHC/CERN heavy-ion collisions

• b production via muon detection and jet production

Page 35: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 35

Exploring Nuclear Matterat the highest-density

B. Friman et al.,Eur. Phys. J. A3, 165(1998)

Page 36: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 36

Motivation-Strangeness

When this enhancement of hyperons starts?

QGP already at 30A GeV?

Unique maximum in AA

Page 37: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 37

Motivation-e+e- pair

Page 38: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 38

Motivation-Charm

SIS18: strangeness production near threshold (1-3 n0)SIS200: charm production near threshold (5-10 n0)In-medium effects

Page 39: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 39

More Motivations

• Indications for deconfinement at high baryon density– Anomalous charmonium suppression

• Temperature of Hot Nuclear Matter– Virtual photons decaying into e+e- pairs

• Equation-of-State– Flow measurement (direct, v2, radial, etc.)

• Critical Point– Event-by-Event fluctuations

• Color Superconductivity– Precursor effects at T > TC

Page 40: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 40

How?

• Accelerator Side– Require high intensity for rare particle measurements: ~109 i

ons/sec (cf. ~107 ions/sec at the SPS)– High spill fraction: 0.8 (cf. 0.25 at the SPS)

• Detector Side– Identification of hadrons at high momentum with high track d

ensity environment (~1000 for 25A GeV Au+Au)– Identification of electrons with pion suppression by 104 – 105

(need two electron detectors)– Reconstruction of particle vertices with high resolution– Large acceptance

Page 41: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 41

2nd Generation Fixed Target Exp.

• Magnetic field: 1-2 T• Silicon Pixel/Strip: hyp

erons and D’s• RICH: electrons, high

momentum pions & kaons

• TRD: electrons from the J/Psi decay

• TOF– Start: diamond pixel– Stop: RPC

CBM Detector Concept

Page 42: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 42

Future Facility at GSI

HADES at 2-8A GeV

CBMat 8-40A GeV

Page 43: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 43

What is LHC?

• 100 m underground• 9 km diameter• 27 km circumference• Use the already existed

LEP tunnel • Run p-p collisions from 2

007• Run Pb-Pb collisions fro

m about 2007

Page 44: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 44

CMS (Compact Muon Solenoid)

Page 45: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 45

Korea in CMS

KoreaItaly

FRPC Total Area 1,400 m2

Page 46: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 46

Korean RPC: Beam Test at CERN

2001 Test Setup

Page 47: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 47

Korean RPC: Performance Summary

Characteristics

CMS Requirement

sTest Results

Time Resolution < 3 nsec < 1.5 nsec

Efficiency > 95 % > 95 %

Rate Capability > 1 kHz/cm2 > 1 kHz/cm2

Noise Rate < 15 Hz/cm2 < 15 Hz/cm2

Plateau Region > 300 V > 400 V

Page 48: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 48

More Details• Beam test results of a large forward resistive plate chamber for the CMS/LHC, N

ucl. Instum. Methods A443, 31 (2000)• Temperature and humidity dependence of bulk resistivity of bakelite for resistive

plate chambers in CMS, Nucl. Instrum. Methods A451, 582 (2000)• Study on the operational conditions of a double gap resistive plate chamber for t

he CMS, Nucl. Instrum. Methods A456, 29 (2000)• Beam test results of a large real size RPC for the CMS/LHC experiment, Nucl. Ins

trum. Methods A456, 23 (2000)• Aspects of operational conditions of a double gap prototype RPC for the CMS/LH

C experiment, Nucl. Instrum. Methods A465, 447 (2001)• Performance of a large forward resistive plate chamber for the CMS/LHC under hi

gh radiation environment, Nucl. Instrum. Methods A469, 323 (2001)• Threshold dependence of strip clusters for the forward region resistive plate cha

mber of the CMS/LHC experiment, Nucl. Instrum. Methods A (2002) in print.• More in preparation.

Page 49: Present and Future Perspectives of Relativistic Heavy-Ion Collisions 고려대학교 홍 병 식

2003년 10월 8일 서울대학교 콜로퀴움 49

Conclusions

• Since HI experiments started at the AGS and SPS in 1986, relativistic heavy-ion collision has been one of the most exciting fields in nuclear physics.

• Lots of data have been accumulated, e.g.,– Hadrons: freeze-out status– Hyperons: enhancement of multi-strange baryons– Leptons: in-medium effect, J/Psi suppression

• We need a systematic approach as a function of beam energy and system size.

• Active research is and will be required at least for the next two decades with LHC and SIS200.