kee okt13 ipapic 3

Upload: royclhor

Post on 06-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 KEE Okt13 IPapic 3

    1/38

    1

    Course

    Power Quality - 3

    Ljubljana, Slovenia

    2013/14

    Prof. dr. Igor Papič

    [email protected]

    Harmonics - design of power

    factor correction devices

    Content

      1st day 2nd day 3rd day 4th day 5th day

    Session 1

    Introduction toPower Quality

    •  what is PQ•  economic value•  responsibilities

    Harmonics –definitions

    •  calculations•  non-linear loads•  harmonic

    sequences

    Harmonics - designof power factorcorrection devices

    •  resonance points•  filter design

    Flicker case study

    •  calculation offlicker spreadingin radial network

    •  variation ofnetworkparameters

    Interruptions

    •  definitions•  reliability indices•  improving

    reliability

    Session 2

    Basic terms and

    definitions

    •  voltage quality•  continuity of

    supply

    •  commercialquality

    Propagation ofharmonics

    •  sources•  consequences•  cancellation

    Flicker - basicterms

    •  voltage variation•  flicker frequency•  sources•  flickermeter

    Voltage sags –definitions

    •  characteristics•  types•  causes

    Consequences ofinadequate powerquality

    •  voltage quality•  interruptions•  costs

    Session 3

    PQ standards

    •  EN 50 160•  other standards•  limit values

    Harmonics -resonances innetwork

    •  parallelresonance

    •  series resonance

    Flicker spreading

    •  radial network•  mashed network•  simulation•  examples

    Propagation ofvoltage sags

    •  transformerconnections

    •  equipmentsensitivity

    •  mitigation

    Moderncompensationdevices

    •  active and hybridcompensators

    •  series and shuntcompensators

    Session 4

    PQ monitoring

    •  measurements•  PQ analyzers•  data analyses

    Harmonics casestudy

    •  calculation offrequencyimpedancecharacteristics

    Flicker mitigation

    •  system solutions – networkenforcement

    •  compensation

    Other voltagevariations

    •  unbalance•  voltage

    transients

    •  overvoltages

    Conclusions

    •  PQ improvementand costs

    •  definition ofoptimal solutions

    Power Quality, Ljubljana, 2013/143

  • 8/17/2019 KEE Okt13 IPapic 3

    2/38

    2

    Design of PFC devices

    • influence of impedance change – compensator impedance varies with the number of used

    compensation s tages (crossing of resonance points)

     – network impedance change has large influence onfrequency response

     – load impedance has minor influence on frequencyresponse

    • detuned filter  – series connection of inductor and capacitor 

     – resonance frequency is below the characteristic harmonic(141 Hz, 225 Hz)

     – good response under different operating conditions

    Power Quality, Ljubljana, 2013/144

    Influence of network impedance change

    • frequency impedance characteristics

     – data for calculation of one supply transformer 20/0,4 kV

    (two transformer in previous case)

     – short-circuit voltage

     – rated power 

     – rated voltage

     – ratio R / X 

    %13,4= scu

    kV4,0kV;20   ==   LV  MV    U U 

    4/1)/(   =TR X  R

    MVA63,0x1=nS 

    Power Quality, Ljubljana, 2013/145

    Influence of network impedance change

    • frequency impedance characteristics

     – calculation of parameters of one supply transformer 20/0,4 kV

    TRTRTR

    TR

    TR sc

    n

     NN TR

    TR

     sc

    n

     LV TR

     L f   j R f   j Z 

     X  R

     X  Ru

    U  R

     X  R

    u

    U  L

    π π 

    π 

    2)2(

    m54,2)/(1

    )/(

    100

    μH4,32)/(1

    1

    100100

    2

    2

    2

    2

    +=

    Ω=+

    =

    =+

    =

    Power Quality, Ljubljana, 2013/146

  • 8/17/2019 KEE Okt13 IPapic 3

    3/38

    3

    Influence of network impedance change

    • frequency impedance characteristics

     – harmonic sourceis on the network

    side

    • impedancecharacteristics

    as a functionof frequency

    • one supplytransformer 

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    10

    100

    Power Quality, Ljubljana, 2013/147

    Influence of network impedance change

    • frequency impedance characteristics

     – harmonic sourceis on the network

    side

    • impedancecharacteristics

    as a function

    of frequency

    • two supplytransformers(previous case)

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    10

    100

    Power Quality, Ljubljana, 2013/148

    Influence of network impedance change

    • frequency impedance characteristics

     – harmonic sourceis on the network

    side

    • impedancecharacteristics

    as a functionof number ofused

    compensationstages

    • one supplytransformer 

      0 0.2 0.4 0.6 0.8 10.01

    0.1

    1

    10

    Power Quality, Ljubljana, 2013/149

  • 8/17/2019 KEE Okt13 IPapic 3

    4/38

    4

    Influence of network impedance change

    • frequency impedance characteristics – harmonic source

    is on the networkside

    • impedancecharacteristicsas a functionof number ofusedcompensationstages

    • two supplytransformers(previous case)   0 0.2 0.4 0.6 0.8 10.01

    0.1

    1

    10

    Power Quality, Ljubljana, 2013/14 10

    Influence of network impedance change

    • frequency impedance characteristics

     – harmonic sourceis on the load

    side

    • impedancecharacteristics

    as a function

    of frequency

    • one supplytransformer 

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 11

    Influence of network impedance change

    • frequency impedance characteristics

     – harmonic sourceis on the load

    side

    • impedancecharacteristics

    as a functionof frequency

    • two supplytransformers(previous case)

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 12

  • 8/17/2019 KEE Okt13 IPapic 3

    5/38

    5

    Influence of network impedance change

    • frequency impedance characteristics

     – harmonic sourceis on the load

    side

    • impedancecharacteristics

    as a functionof number ofusedcompensationstages

    • one supplytransformer 

      0 0.2 0.4 0.6 0.8 10.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 13

    Influence of network impedance change

    • frequency impedance characteristics – harmonic source

    is on the loadside

    • impedancecharacteristicsas a functionof number ofusedcompensationstages

    • two supplytransformers(previous case)   0 0.2 0.4 0.6 0.8 10.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 14

    Detuned filter 

    • frequency impedance characteristics

     – equivalent circuit with detuned filter 

    Power Quality, Ljubljana, 2013/14 15

  • 8/17/2019 KEE Okt13 IPapic 3

    6/38

  • 8/17/2019 KEE Okt13 IPapic 3

    7/38

    7

    Detuned filter 

    • frequency impedance characteristics

     – calculation of parameters of detuned filter 

    • detuned filter 

     f  

     f   f   f  

     f   f  

     fL f   fC 

     f  

     f  

    C  f   j L f   j R f   j Z 

     R R

     X  RC  X  RC 

     R

    π π π 

    π π 

    2

    12)2(

    m10)Hz225( ;m15)Hz141(

    )/(502)/(502

    1

    ++=

    Ω=Ω=

    ⋅⋅⋅+⋅⋅⋅

    =

    Power Quality, Ljubljana, 2013/14 19

    Detuned filter 

    • frequency impedance characteristics

     – voltage harmonic source is on the network side

    Power Quality, Ljubljana, 2013/14 20

    Detuned filter 

    • frequency impedance characteristics

     – harmonic source is on the network side

    • impedance from the network side

    • series resonance

    )2(Z)(Zvalueabsolute

    )(Z

    1

    )(Z

    1

    1)(Z)(Z)(Z

    11

    1

     f  j j

     j j

     j j j

     f  L

    TRSC 

    π ω 

    ω ω 

    ω ω ω 

    =→

    +

    ++=

    Power Quality, Ljubljana, 2013/14 21

  • 8/17/2019 KEE Okt13 IPapic 3

    8/38

    8

    Detuned filter – frequency response

    • frequency impedance characteristics

     – harmonic sourceis on the network

    side

    • impedancecharacteristics

    as a functionof frequency

    • filter resonancefrequency is141 Hz

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    10

    100

    Power Quality, Ljubljana, 2013/14 22

    Detuned filter – frequency response

    • frequency impedance characteristics

     – harmonic sourceis on the network

    side

    • impedancecharacteristics

    as a function

    of frequency

    • filter resonancefrequency is225Hz

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    10

    100

    Power Quality, Ljubljana, 2013/14 23

    Detuned filter – frequency response

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    10

    100

    • frequency impedance characteristics – harmonic source

    is on the networkside

    • impedancecharacteristicsas a functionof frequency

    • filter resonancefrequency is225 Hz

    • one supplytransformer 

    Power Quality, Ljubljana, 2013/14 24

  • 8/17/2019 KEE Okt13 IPapic 3

    9/38

    9

    Detuned filter – frequency response

    • frequency impedance characteristics

     – harmonic sourceis on the network

    side

    • impedancecharacteristics

    as a functionof frequency

    • comparison withclassicalcompensator 

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    10

    100

    Power Quality, Ljubljana, 2013/14 25

    Detuned filter 

    • frequency impedance characteristics

     – current harmonic source is on the load side

    Power Quality, Ljubljana, 2013/14 26

    Detuned filter 

    • frequency impedance characteristics

     – harmonic source is on the load side

    • impedance from the load side

    • parallel resonance

    )2(Z)(Zvalueabsolute

    )(Z)(Z

    1

    )(Z

    1

    )(Z

    1

    1)(Z

    22

    2

     f  j j

     j j j j

     j

    TRSC  f  L

    π ω 

    ω ω ω ω 

    ω 

    =→

    +

    ++

    =

    Power Quality, Ljubljana, 2013/14 27

  • 8/17/2019 KEE Okt13 IPapic 3

    10/38

    10

    Detuned filter – frequency response

    • frequency impedance characteristics

     – harmonic sourceis on the load

    side

    • impedancecharacteristics

    as a functionof frequency

    • filter resonancefrequency is141 Hz

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 28

    Detuned filter – frequency response

    • frequency impedance characteristics

     – harmonic sourceis on the load

    side

    • impedancecharacteristics

    as a function

    of frequency

    • filter resonancefrequency is225Hz

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 29

    Detuned filter – frequency response

    • frequency impedance characteristics – harmonic source

    is on the loadside

    • impedancecharacteristicsas a functionof frequency

    • filter resonancefrequency is225 Hz

    • one supplytransformer 

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 30

  • 8/17/2019 KEE Okt13 IPapic 3

    11/38

    11

    Detuned filter – frequency response

    • frequency impedance characteristics

     – harmonic sourceis on the load

    side

    • impedancecharacteristics

    as a functionof frequency

    • comparison withclassicalcompensator 

    0 1 00 200 300 400 500 600 7 00 800 900 100 01 .10

     3

    0.01

    0.1

    1

    Power Quality, Ljubljana, 2013/14 31

    Flicker - basic terms

    Content

      1st day 2nd day 3rd day 4th day 5th day

    Session 1

    Introduction toPower Quality

    •  what is PQ•  economic value•  responsibilities

    Harmonics –definitions

    •  calculations•  non-linear loads•  harmonic

    sequences

    Harmonics - designof power factorcorrection devices

    •  resonance points•  filter design

    Flicker case study

    •  calculation offlicker spreadingin radial network

    •  variation ofnetworkparameters

    Interruptions

    •  definitions•  reliability indices•  improving

    reliability

    Session 2

    Basic terms and

    definitions

    •  voltage quality•  continuity of

    supply

    •  commercialquality

    Propagation ofharmonics

    •  sources•  consequences•  cancellation

    Flicker - basicterms

    •  voltage variation•  flicker frequency•  sources•  flickermeter

    Voltage sags –definitions

    •  characteristics•  types•  causes

    Consequences ofinadequate powerquality

    •  voltage quality•  interruptions•  costs

    Session 3

    PQ standards

    •  EN 50 160•  other standards•  limit values

    Harmonics -resonances innetwork

    •  parallelresonance

    •  series resonance

    Flicker spreading

    •  radial network•  mashed network•  simulation•  examples

    Propagation ofvoltage sags

    •  transformerconnections

    •  equipmentsensitivity

    •  mitigation

    Moderncompensationdevices

    •  active and hybridcompensators

    •  series and shuntcompensators

    Session 4

    PQ monitoring

    •  measurements•  PQ analyzers•  data analyses

    Harmonics casestudy

    •  calculation offrequencyimpedancecharacteristics

    Flicker mitigation

    •  system solutions – networkenforcement

    •  compensation

    Other voltagevariations

    •  unbalance•  voltage

    transients

    •  overvoltages

    Conclusions

    •  PQ improvementand costs

    •  definition ofoptimal solutions

    Power Quality, Ljubljana, 2013/14 33

  • 8/17/2019 KEE Okt13 IPapic 3

    12/38

  • 8/17/2019 KEE Okt13 IPapic 3

    13/38

    13

    What is flicker?

    Power Quality, Ljubljana, 2013/14 37

    Flicker frequency – case 1

    • What is the frequency of flicker?

     – assume sinusoidal modulation

     – what signal does represent flicker with frequency 3 Hz

    Power Quality, Ljubljana, 2013/14 38

    Flicker frequency – case 2

     – or 

    Power Quality, Ljubljana, 2013/14 39

  • 8/17/2019 KEE Okt13 IPapic 3

    14/38

    14

    What is the frequency of flicker 

     – case 1

     – case 2

    t mt V t v  f  ω ω  coscos)( 0   += Hz3 Hz500   ==   f   f   f  

    t t mV t v  f   0cos)cos1()(   ω ω +=

    ⎥⎦

    ⎤⎢⎣

    ⎡−+++=   t 

    mt 

    mt V t v  f   f   )cos(

    2)cos(

    2cos)( 000   ω ω ω ω ω 

    Hz47 Hz53 Hz50 000   =−=+=   f   f     f   f   f   f   f  

    Power Quality, Ljubljana, 2013/14 40

    Causes of flicker 

     – loads drawing

    large and highly

    variable currents

     – arc furnaces

    installations

    • voltage 20 kV

    time (s)

    Power Quality, Ljubljana, 2013/14 41

    Causes of flicker 

     – steel rolling mils

     – induction motors

    starting

       V  o   l   t  a  g  e   (   %   )

    Power Quality, Ljubljana, 2013/14 42

  • 8/17/2019 KEE Okt13 IPapic 3

    15/38

    15

    Causes of flicker 

     – welding machines

     – motor drives with cycloconverters

    • simulation results (interharmonics)

    time

    Power Quality, Ljubljana, 2013/14 43

    Causes of flicker 

     – wind farms in distributed production

     – switching of capacitor banks

     – households

    • pumps, refrigerators, air conditioning, washing

    machines, drills

    • devices with heavy-start motors

     – …

    Power Quality, Ljubljana, 2013/14 44

    Flicker evaluation

    • flicker meter 

     – IEC 61000-4-15: Electromagnetic compatibility (EMC) -Part 4: Testing and measurements techniques - Section

    15: Flickermeter - Functional and design specifications

     – flicker severity – intensity of flicker annoyance defined

    by the UIE-IEC flicker measuring method and evaluated

    by short and long term severity

    Power Quality, Ljubljana, 2013/14 45

  • 8/17/2019 KEE Okt13 IPapic 3

    16/38

    16

    Flicker evaluation

    • flicker meter 

     – short term severity Pst  – measured over a period of 10minutes

     – long term severity Plt  – calculated from a sequence of

    12 P st values over a two hour interval, according to the

    following expression:

    3

    12

    1

    3

    st

    lt12

    ∑==   i

    i P 

     P 

    Power Quality, Ljubljana, 2013/14 46

    Flicker evaluation

     – comparison between P lt and P st 

    Power Quality, Ljubljana, 2013/14 47

    Scheme of a flicker meter  

    inputvoltageadaptor

    demodulator

    weighting filter

    BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

    squaringand

    smoothing

    dB

    35

    0

    0,05

    -3

    -60

    Hz

    rangeselector

     ∆U  / U  ( % ) 

     X   

    P   P st and P lt

    calculationof 

    P st and

    P lt

    statisticalevaluation

     voltage

    mesurement 

    simulation of lamp-eye-brain response

    Hz8,8

    1

    0

    Power Quality, Ljubljana, 2013/14 48

  • 8/17/2019 KEE Okt13 IPapic 3

    17/38

    17

    Scheme of a flicker meter 

    • Block 1 – Input voltage adaptor and calibration checkingcircuit

     – signal generator for calibration and checking

     – voltage adapting circuit that scales the input signal to areference per-unit level

    • Block 2 – Square law demodulator 

     – the input to the flicker meter is the relative voltage variation

     – the modulated wave must be extracted from carrier (50 or 69Hz)

     – quadratic demodulator simulates the behavior of a lamp

    Power Quality, Ljubljana, 2013/14 49

    Scheme of a flickermeter 

    • Block 3 and 4 – Weighting filters, squaring and smoothing

     – block 3 is composed of a cascade of two filters and a measuringrange selector 

     – first filter eliminates the dc and double mains frequency ripplecomponents of the demodulator 

     – second filter is weighting filter block that simulates thefrequency response of a coiled filament gas-filled lamp (60 W ,

    230 V) combined with a human visual system – block 4 is composed of a squaring multiplier and a first order

    low-pass filter 

     – the human flicker sensation via lamp, eye and brain issimulated by the combined non-linear response of blocks

    2, 3 and 4

    Power Quality, Ljubljana, 2013/14 50

    Scheme of a flickermeter 

    • Block 5 – On-line statistical analysis

     – the statistical classifier models human irritability in the presenceof flicker stimulation

     – it provides the statistical information required to calculate short-term flicker severity Pst (observation period is 10 minutes)

     – smoothed percentil values

     – i.e. P 0.1 – the level exceeded by only 0.1 % of the observationperiod (10 minutes)

    s50s10s3s11,0st  08,028,00657,00525,00314,0   P  P  P  P  P  P    ⋅+⋅+⋅+⋅+⋅=

    Power Quality, Ljubljana, 2013/14 51

  • 8/17/2019 KEE Okt13 IPapic 3

    18/38

    18

    Flicker value

    • required magnitude of voltage fluctuation for sinusoidal andrectangular modulation to get the flicker vale P = 1

    • the response function

    is based on perceptibility

    threshold found at each

    frequency by 50 % ofthe persons tested

    Power Quality, Ljubljana, 2013/14 52

    Flicker value

    • multiple fluctuating loads may be impacting the same

    network

    • aggregateP st value calculation from N loads

     – m = 4 coordinated loads to avoid coincident fluctuations

     – m = 3 likelihood of coincident fluctuations is small

     – m = 2 likelihood of coincident stochastic noise is likely

     – m = 1 likelihood of coincident fluctuations is small

    m

     N 

    i

    m

    i P  P  ∑=

    =1

    stst

    Power Quality, Ljubljana, 2013/14 53

    Compatibility and planning levels

    • graphical representation of flicker levels

     – planning level is usualy less than planning level

     – compatibility level may be exceed 5% of the evaluation

    period

    Power Quality, Ljubljana, 2013/14 54

  • 8/17/2019 KEE Okt13 IPapic 3

    19/38

    19

    Compatibility and planning levels

     – compatibility levels

     – EN 50160 gives

    higher value for P lt

    (1.0, 95 % value)

     – planning levels

    quantity

    compatibility levels for

    MV and LV networks(IEC/TR3 61000-3-7)

    P st 1.0

    P lt 0.8

    quantity

    planning levels

    (IEC/TR3 61000-3-7)

    MV HV

    P st 0.9 0.8

    P lt 0.7 0.6

    Power Quality, Ljubljana, 2013/14 55

    Compatibility and planning levels

    • required short-circuit power in the point of

    common coupling PCC

     – primarily depends on nominal power of a supply

    transformer of disturbing load

     –  S sc = (90÷160)·S tr [MVA]

     – empirical and statistical evaluation

    Power Quality, Ljubljana, 2013/14 56

    Flicker spreading

  • 8/17/2019 KEE Okt13 IPapic 3

    20/38

    20

    Content

      1st day 2nd day 3rd day 4th day 5th day

    Session 1

    Introduction toPower Quality

    •  what is PQ•  economic value•  responsibilities

    Harmonics –definitions

    •  calculations•  non-linear loads•  harmonic

    sequences

    Harmonics - designof power factorcorrection devices

    •  resonance points•  filter design

    Flicker case study

    •  calculation offlicker spreadingin radial network

    •  variation ofnetworkparameters

    Interruptions

    •  definitions•  reliability indices•  improving

    reliability

    Session 2

    Basic terms anddefinitions

    •  voltage quality•  continuity of

    supply

    •  commercialquality

    Propagation ofharmonics

    •  sources•  consequences•  cancellation

    Flicker - basicterms

    •  voltage variation•  flicker frequency•  sources•  flickermeter

    Voltage sags –definitions

    •  characteristics•  types•  causes

    Consequences ofinadequate powerquality

    •  voltage quality•  interruptions•  costs

    Session 3

    PQ standards

    •  EN 50 160•  other standards•  limit values

    Harmonics -resonances innetwork

    •  parallelresonance

    •  series resonance

    Flicker spreading

    •  radial network•  mashed network•  simulation•  examples

    Propagation ofvoltage sags

    •  transformerconnections

    •  equipmentsensitivity

    •  mitigation

    Moderncompensationdevices

    •  active and hybridcompensators

    •  series and shuntcompensators

    Session 4

    PQ monitoring

    •  measurements•  PQ analyzers•  data analyses

    Harmonics casestudy

    •  calculation offrequencyimpedancecharacteristics

    Flicker mitigation

    •  system solutions – networkenforcement

    •  compensation

    Other voltagevariations

    •  unbalance•  voltage

    transients

    •  overvoltages

    Conclusions

    •  PQ improvementand costs

    •  definition ofoptimal solutions

    Power Quality, Ljubljana, 2013/14 58

    Flicker spreading

    • calculation of voltage variation

     – dynamic load 

     X·I 

    φ 

    θ  

     R·I 

    U 1

    U 2

     I  

     I  

    U 1 U 2

     R, X  

     P, Q 

    ϕ ϕ    sincoscos 21   ⋅⋅+⋅⋅+=⋅   I  X  I  RU ΘU 

    ϕ ϕ    sincos21   ⋅⋅+⋅⋅=−   I  X  I  RU U 

    1cos   ≈Θ

    Power Quality, Ljubljana, 2013/14 59

    Flicker spreading

    • relative voltage variation

    2

    2

    22

    2

    21   sincos

     I U  X  I U  R

    U U    ϕ ϕ    ⋅⋅⋅+⋅⋅⋅=

    2

    nn  U 

    Q X  P  R

    U    ⋅+⋅=

    Δ

    sc

    2

    nn   S 

    Q

    Q X 

    U =

    ⋅≈

    Δ

    Power Quality, Ljubljana, 2013/14 60

  • 8/17/2019 KEE Okt13 IPapic 3

    21/38

    21

    Flicker spreading

    • relative voltage variation

     – active and reactive power variations of an arc furnace

    Power Quality, Ljubljana, 2013/14 61

    Flicker spreading

    • flicker level decreases in the direction from the

    disturbing load towards supply source

    • flicker level practically does not change in a radial

    direction from the disturbing load where are no

    supply sources

    • flicker reduction on transformers

    Power Quality, Ljubljana, 2013/14 62

    Flicker spreading

    • transfer coefficient of flicker in a radial network

    between point A and P (disturbing load)

    • calculation in a mashed network is more complex

     – use of simulation tools

    ( )( )PA

    st

    stAP

     P 

     P TC    =

      A P

    P

    Power Quality, Ljubljana, 2013/14 63

  • 8/17/2019 KEE Okt13 IPapic 3

    22/38

    22

    Flicker spreading

    • flicker spreading in a radial network

     – case A  A P

    P

    A P

    P

     Z A   Z AP 

    ( ) ( ) ( )APA

    A

    stAPstst  PPA

     Z  Z 

     Z  P TC  P  P 

    +⋅=⋅=

    Power Quality, Ljubljana, 2013/14 64

    Flicker spreading

    • flicker spreading in radial network

     – case B

      A P

    P

    B

    ( ) ( ) ( ) ( )P1PPB ststBPstst   P  P TC  P  P    =⋅=⋅=

    Power Quality, Ljubljana, 2013/14 65

    Flicker spreading

    • flicker spreading in radial network

     – case C

      A B

    P

    P

    ( ) ( ) ( )BPABA

    ABA

    stBPstst   PPB Z  Z  Z 

     Z  Z  P TC  P  P 

    ++

    +⋅=⋅=

    Power Quality, Ljubljana, 2013/14 66

  • 8/17/2019 KEE Okt13 IPapic 3

    23/38

    23

    Flicker spreading

    • flicker spreading in radial network

     – case D

      A P

    P B

    ( ) ( ) ( )

    ( ) ( )  APstAPst

    BAAPstBPstst

    P1P

    PPB

    TC  P TC  P 

    TC TC  P TC  P  P 

    ⋅=⋅⋅=

    =⋅⋅=⋅=

    Power Quality, Ljubljana, 2013/14 67

    Simulation of flicker spreading

    • steady-state calculation – model of transmission system

     – switch on/off of the load – change of voltage magnitudes – injection of load current

    • dynamic simulations – model of transmission system

     – model of arc furnace

     – model of flicker meter  – Influence of generator voltage controllers – models of compensation devices

    • calibration of simulation model wit measurements results

    • calculation of flicker levels for all buses

    Power Quality, Ljubljana, 2013/14 68

    Flicker spreading

    • flicker spreading in mashed network

     – load flow method

     – two states of s disturbing load (0,1)

     – calculation of relative voltage drops

     – calculation of transfer coefficients

    2

    ,1,0

    ,1,0

     x x

     x x

     x

     x x

    V V 

    V V 

    V v

    +

    −=

    Δ=Δ

     j

    iij

    v

    vkv

    Δ

    Δ=

    Power Quality, Ljubljana, 2013/14 69

  • 8/17/2019 KEE Okt13 IPapic 3

    24/38

    24

    Flicker spreading

    • flicker spreading

    in mashed

    network

     – load flow method

     – comparison with

    measurements

     – variation of load

    Power Quality, Ljubljana, 2013/14 70

    Flicker spreading

    • flicker spreading in mashed network

     – current injection method

    11 1N 1

    2

    AAA A

     N-1

     N1 NN N

    Y . . . . . Y0

    . . . .

    . . . .0

    . Y .

    . . . .0

    . . . .

    Y . . . . . Y0

    V  I 

    ⎡ ⎤⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

    = ⋅ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

    ⎣ ⎦   ⎣ ⎦ ⎣ ⎦

    M

    M

    M

    M)(

    )(

     j

    iij

    V kv

    ℜ=

    IYV   1−=

    Power Quality, Ljubljana, 2013/14 71

    Flicker spreading

    • flicker spreading

    in mashed

    network

     – current injectionmethod

     – comparison withmeasurements

     – variation of

    injected current

    Power Quality, Ljubljana, 2013/14 72

  • 8/17/2019 KEE Okt13 IPapic 3

    25/38

    25

    Flicker spreading

    • flicker spreading through transformers

     – in a radial direction from the disturbing load towardslower voltage levels (first approximation is value 1)

     – transfer coefficient of flicker from EHV to HV level is

    approximately 0.8

     – transfer coefficient of flicker from HV to MV level is

    approximately 0.9 (worst case)

     – transfer coefficient of flicker from MV to LV level is

    approximately 1

    Power Quality, Ljubljana, 2013/14 73

    Example of flicker spreading analysis

    • measurement campaign in Slovenian transmissionnetwork – 31 locations

     – analysis of measurement results

    • simulation of flicker spreading – network model

     – calibration of the model wit measurement results – simulation of flicker spreading in all nodes

     – present situation

     – future situation (2020)

     – analysis of compensation measures

    Power Quality, Ljubljana, 2013/14 74

    Flicker measurement locations

    Power Quality, Ljubljana, 2013/14 75

  • 8/17/2019 KEE Okt13 IPapic 3

    26/38

    26

    Flicker measurement results (SIST EN 50160)

      flicker level (P lt)

    95 % values

    locationvoltagelevel (kV)

    L1 L2 L3

    RTP Jeklarna Jesenice 110 7,41 7,50 7,85RTP Železarna Ravne 110 2,87 2,80 2,68RTP Lipa 110 1,62 1,48 1,57RTP Okroglo 110 1,256 1,331 1,415RTP Zlato polje 110 1,25 1,33 1,41

    RTP Kleče 110 0,85 0,87 0,92RTP Beričevo 110 0,74 0,69 0,80

    RTP Lj Center 110 0,79 0,80 0,85

    RTP Šiška 110 0,92 0,95 1,02

    RTP Logatec 110 0,90 0,94 1,00

    RTP Slovenj Gradec 110 1,47 1,44 1,33RTP Podlog 110 0,82 0,76 0,79RTP Pekre 110 0,60 0,62 0,56

    RTP Maribor 110 0,50 0,51 0,48RTP Ljutomer 110 0,50 0,52 0,53

    Power Quality, Ljubljana, 2013/14 76

    Flicker measurement results (SIST EN 50160)

      flicker level (P lt)95 % values

    locationvoltagelevel (kV)

    L1 L2 L3

    RTP Ljutomer 110 0,50 0,52 0,53

    RTP Rače 110 0,60 0,52 0,51

    RTP Laško 110 0,81 0,75 0,78

    RTP Hudo 110 0,72 0,88 0,75

    RTP Kočevje 110 0,81 1,98 0,87

    RTP Divača 110 0,39 0,40 0,56

    RTP Vrtojba 110 0,30 0,31 0,44

    RTP Tolmin 110 0,40 0,37 0,41

    RTP Koper 110 0,63 0,61 0,65RTP Beričevo 220 0,56 0,58 0,60

    RTP Podlog 220 0,34 0,35 0,41RTP Kleče 220 0,56 0,58 0,60

    RTP Beričevo 400 0,59 0,59 0,60RTP Podlog 400 0,41 0,42 0,46RTP Okroglo 400 0,74 0,74 0,74

    RTP Krško 400 0,27 0,23 0,59

    Power Quality, Ljubljana, 2013/14 77

    Flicker measurement results (SIST EN 50160)

    • arc furnace 40 MVA

    • short and long term flicker level at 110 kV

    Power Quality, Ljubljana, 2013/14 78

  • 8/17/2019 KEE Okt13 IPapic 3

    27/38

    27

    Flicker measurement results (SIST EN 50160)

    • arc furnace 40 MVA

    • long term flicker level and current at 110 kV - correlation

    Power Quality, Ljubljana, 2013/14 79

    Flicker measurement results (SIST EN 50160)

    • network node – different configurations

    • cumulative flicker levels – determination of 95 % value

    Power Quality, Ljubljana, 2013/14 80

    Measurement results at 110 kV level

    voltage (kV) current (A)

    time (s)time (s)

    Power Quality, Ljubljana, 2013/14 81

  • 8/17/2019 KEE Okt13 IPapic 3

    28/38

    28

    Measurement results at 20 kV level

    voltage (kV) current (A)

    time (s) time (s)

    Power Quality, Ljubljana, 2013/14 82

    Measurement results

    • arc furnace 40

    MVA

    • voltage at 110 kV

    • voltage at 20 kV

    • current at 20 kV

    Power Quality, Ljubljana, 2013/14 83

    Measurement results

    • arc furnace 40MVA

    • voltage at 110 kV

    • voltage at 20 kV

    • current at 20 kV

    Power Quality, Ljubljana, 2013/14 84

  • 8/17/2019 KEE Okt13 IPapic 3

    29/38

    29

    Measurement results

    • arc furnace 40MVA

    • correlation between the flicker level at 110 kV and 20 kV

     

    0

    1

    2

    3

    4

    5

    6

    0 5 10 15 20 25

    Pst Jeklarna Ravne UHP 20 kV

       P  s   t   J  e   k   l  a  r  n  a   R  a  v  n  e   1   1   0   k   V

    Power Quality, Ljubljana, 2013/14 85

    Flicker spreading simulation

    • analysis of flicker spreading in the Slovenian

    power system (three arc furnaces)

     – present situation – summation law m = 2.7

    12%

    17%

    20%

    51%

    Plt>1,5 1

  • 8/17/2019 KEE Okt13 IPapic 3

    30/38

    30

    Flicker spreading simulation for the year

    2020

    • analysis of flicker spreading in the Slovenian

    power system (three arc furnaces)

     – results for the year 2020

    5%

    19%

    27%

    49%

    P lt >1 ,5 1

  • 8/17/2019 KEE Okt13 IPapic 3

    31/38

    31

    Content

      1st day 2nd day 3rd day 4th day 5th day

    Session 1

    Introduction toPower Quality

    •  what is PQ•  economic value•  responsibilities

    Harmonics –definitions

    •  calculations•  non-linear loads•  harmonic

    sequences

    Harmonics - designof power factorcorrection devices

    •  resonance points•  filter design

    Flicker case study

    •  calculation offlicker spreadingin radial network

    •  variation ofnetworkparameters

    Interruptions

    •  definitions•  reliability indices•  improving

    reliability

    Session 2

    Basic terms anddefinitions

    •  voltage quality•  continuity of

    supply

    •  commercialquality

    Propagation ofharmonics

    •  sources•  consequences•  cancellation

    Flicker - basicterms

    •  voltage variation•  flicker frequency•  sources•  flickermeter

    Voltage sags –definitions

    •  characteristics•  types•  causes

    Consequences ofinadequate powerquality

    •  voltage quality•  interruptions•  costs

    Session 3

    PQ standards

    •  EN 50 160•  other standards•  limit values

    Harmonics -resonances innetwork

    •  parallelresonance

    •  series resonance

    Flicker spreading

    •  radial network•  mashed network•  simulation•  examples

    Propagation ofvoltage sags

    •  transformerconnections

    •  equipmentsensitivity

    •  mitigation

    Moderncompensationdevices

    •  active and hybridcompensators

    •  series and shuntcompensators

    Session 4

    PQ monitoring

    •  measurements•  PQ analyzers•  data analyses

    Harmonics casestudy

    •  calculation offrequencyimpedancecharacteristics

    Flicker mitigation

    •  system solutions – networkenforcement

    •  compensation

    Other voltagevariations

    •  unbalance•  voltage

    transients

    •  overvoltages

    Conclusions

    •  PQ improvementand costs

    •  definition ofoptimal solutions

    Power Quality, Ljubljana, 2013/14 91

    Flicker mitigation

    • system enforcement – increased short-circuit power 

    • electrical separation of disturbing loads – disconnectedsubstation busbars

    • compensation measures – series reactor  – Static Var Compensator – SVC – Static Compensator - StatCom

    • elimination of flicker sources – power reduction of disturbing

    loads (if possible)• lighting technology

     – fluorescent lamps are considered to be less sensitive to voltageflicker than incandescent lamps

     – ban of incandescent lamps due to energy savings reasons

    Power Quality, Ljubljana, 2013/14 92

    System enforcement

    • increased short-circuit power will

    reduce flicker

    level

     – new parallellines

     – additionaltransformers

     – connection tothe highervoltage level

    line disconnection

    Power Quality, Ljubljana, 2013/14 93

  • 8/17/2019 KEE Okt13 IPapic 3

    32/38

    32

    Separation of disturbing loads

    • electrical separation of disturbing loads – disconnectedsubstation busbars

    P lt =3,03P lt =0,47

    P lt =0,71P lt =0,71

    TR 412400/110kV

    TR 411400/110kV

    Okroglo 110 kV »ostali «

    Okroglo110 kV

     »sunkovit «

    Okroglo 400 kV

    P lt =5,31

    TR412400/110 kV

    TR411400/110 kV

    Okroglo 110 kV

    Okroglo 400 kV

    P lt =1,13

    P lt = 3,44

    P lt =1,13

    P lt =0,52

    RTPJeklarnasunkovit odjem

    RTPJeklarnasunkovitodjem

    Power Quality, Ljubljana, 2013/14 94

    Separation of disturbing loads

    • electrical separation of

    disturbing loads

     – connected substation

    busbars

     – arc furnace is supplied

    by two transformers inparallel

    Power Quality, Ljubljana, 2013/14 95

    Separation of disturbing loads

    • electrical separation ofdisturbing loads

     – disconnected substation

    busbars

     – arc furnace is suppliedby one transformers

    Power Quality, Ljubljana, 2013/14 96

  • 8/17/2019 KEE Okt13 IPapic 3

    33/38

    33

    Compensation measures

    • series reactor 

     – for minor flicker level reductionin the point of common coupling

     – redistribution of flicker level

     – influences the operation of arc

    furnace

    arc

    series

    reactors

    Power Quality, Ljubljana, 2013/14 97

    Compensation measures

    • Static Var Compensator – SVC – flicker and reactive power

    compensation

     – controllable shunt connected reactance

     – TCR – Thyristor Controlled Reactor isthe main element

     – reactive compensation current is a

    function of voltage – flicker reduction factor is up to 2

     – reliable – good operationalexperiences

     – small operational losses

    Power Quality, Ljubljana, 2013/14 98

    Compensation measures

    • Static Var Compensator – SVC

     – single-line diagram

     – TCR

     – fixed capacitors andfilters

    Power Quality, Ljubljana, 2013/14 99

  • 8/17/2019 KEE Okt13 IPapic 3

    34/38

    34

    Compensation measures

    • Static Var Compensator – SVC

     – voltage profile improvement with SVC

    Power Quality, Ljubljana, 2013/14 100

    Compensation measures

    • Static Var Compensator – SVC

     – arc furnace performance improvement with SVC

    Power Quality, Ljubljana, 2013/14 101

    Compensation measures

    • Static Var Compensator SVC

     – practical applications

    Power Quality, Ljubljana, 2013/14 102

  • 8/17/2019 KEE Okt13 IPapic 3

    35/38

    35

    Compensation measures

    • Static Compensator - StatCom – flicker and reactive power

    compensation

     – controllable source of reactivecurrent

     – Voltage Sources Converter - VSCis the main element

     – employs GTO thyristors or IGBTs

     – flicker reduction factor is up to 5

     – not a lot of operationalexperiences

     – higher operational lossescompared to SVC

    Power Quality, Ljubljana, 2013/14 103

    Compensation measures

    • Static Compensator -

    StatCom

     – single-line diagram

     – VSC

     – fixed capacitors

    (tuned filters)

    Power Quality, Ljubljana, 2013/14 104

    Compensation measures

    • Static Compensator – StatCom

     – voltage profile improvement with StatCom

     – increased power of arc furnace

    Power Quality, Ljubljana, 2013/14 105

  • 8/17/2019 KEE Okt13 IPapic 3

    36/38

    36

    Compensation measures

    • Static Compensator – StatCom

     – substantial flicker level reduction

    Power Quality, Ljubljana, 2013/14 106

    Compensation measures

    • Static Compensator – StatCom

     – comparison of the arc furnace currents with thecompensated grid currents

    Power Quality, Ljubljana, 2013/14 107

    Compensation measures

    • Static Compensator – StatCom

     – first StatCom application for flicker mitigation – Hagfors,Sweden (ABB commercial name SVC Light)

    Power Quality, Ljubljana, 2013/14 108

  • 8/17/2019 KEE Okt13 IPapic 3

    37/38

    37

     Analysis of compensation measures

    • analysis of flicker spreading in the Slovenian

    power system (three arc furnaces)

     – present situation – no compensation measures

    12%

    17%

    20%

    51%

    Plt>1,5 1

  • 8/17/2019 KEE Okt13 IPapic 3

    38/38

     Analysis of compensation measures

    • analysis of flicker spreading in the Slovenian

    power system (three arc furnaces)

     – only arc furnace C is compensated (series reactor)12%

    14%

    21%

    53%

    Plt >1 ,5 1