kendali - 1 - pendahuluan

Upload: astrini-pradyasti

Post on 07-Jan-2016

24 views

Category:

Documents


2 download

DESCRIPTION

Kendali

TRANSCRIPT

  • 1Pengendalian Proses Kimia

    Bambang Heru SusantoDepartemen Teknik Kimia

    FTUI

    Bab 1

    Pendahuluan

    Proses dalam kehidupan

    --Susah untuk di kontrol

    Operasi pemrosesan didalam industri kimia dan

    bio

    ---Kita dapat kontrol

    Pertanyaan

    Setelah lulus

    Apa yang menjadi rencana anda selanjutnya?

    Dimana anda akan melihat diri anda sendiri

    dalam 10 tahun kedepan?

  • 2Desain Proses v.s. Kontrol Proses

    Desain proses: estimasi ongkos kapital danoperasi; memperkenalkan desain danstrateginya.

    Mempertimbangkan dinamika proses danisu pengendalian sejak awal desain proses.

    Tujuan Perkuliahan

    Memperoleh dan menganalisa data dari proses dinamik.

    Membuat/mengembangkan model mekanistik dan empiris (data-based)

    untuk proses tertentu. Termasuk aplikasi dari persamaan kekekalan masa-

    energi untuk kondisi un-steady state.

    Desain sistem kontrol menggunakan teknik feedback, feedforward, dll.

    Evaluasi stabilitas dan karakteristik lainnya yang berhubungan dengan

    pengendalian proses.

    Pengendalian proses bio (ini baru nih !)

    Filosofi Pengendalian Proses

    Pemodelan Dinamik

    (Mekanistik)

    Analisis Perilaku

    Model Dinamik

    Pengendalian Proses

    Pemodelan Empirik

    Pengendalian Proses

    Penyetelen

    KontrolerAnalisis

    Stabilitas

    Mata Ajar

    SebelumnyaMata Ajar

    Sedang Berjalan

    SIMULASI

    (LAB. MAYA)

    MODUL

    INTERAKTIF

    Next

    VIDEO

    Lecture

    Notes

    Disain

    Pembelajaran SAP

    Metode

    WILMO

    Pengertian Dasar dan Keahlian yang

    Berhubungan dengan Industri

    Pengertian Dasar Laplace transforms dan transfer functions

    Block Diagram

    Perilaku sistem dinamik

    Analisis Frequency response

    Berkaitan dengan Industri Peralatan kontrol (Control hardware) dan troubleshooting

    Implementasi Pengendali dan tuning

    Sistem Kontrol

    Teknik PID

    Pengendalian MIMO

  • 3Penilaian :

    Penilaian : UTS 25 %

    UAS 25%

    Kuis 20 %

    PR 10 %

    Makalah 20 %

    Absensi 5%

    Total 105 %

    Makalah (Kelompok 3 orang)

    Baca artikel-artikel di jurnal (misal Journal of Process Control) ataupunsumber lainnya yang berkaitan dengan kasus pengendalian pada industrikimia (5 tahun terakhir).

    Jadikan dalam makalah 8 -10 halaman ( 1.5 spasi)

    Dikumpulkan dan Dipresentasikan (10 menit per kelompok) pada Jumat 15 Oktober 2010

    Outline: Judul, Pendahuluan, Tujuan, Studi literatur (review), Diskusi, Perhitungan, Kesimpulan, Daftar pustaka.

    Sistem kontrol didalam metabolisme selular (misal.

    feedback control)

    Permasalahan pengendalian pada industri bio tertentu

    Perbandingan anatara beberapa metode penyesuaian

    (tuning) pengendali

    Modeling/Simulasi/Software

    Reaktor didalam lab/novel (kontrol pH, Temp, oxigen,

    dll): terutama untuk micro-bioreactor

    Remediasi dan kontrol polusi

    Biologi sintetis untuk industri bahan bakar

    Topik (bisa beragam sesuai keinginan)

    Ajukan pada pertemuan tanggal 6 September 2010Karir di bidang Kontrol Proses

    Memerlukan engineer yang mampu menerapkan semua

    pelatihan rekayasa kimia dan bio process engineer

    Dapat menjadi seorang engineer Top Gun

    Memberikan peluang engineer untuk berkarya dalam suatu

    projek yang menghasilkan penghematan yang signifikan

    pada suatu perusahaan

    Menyediakan mobilitas profesional. Masih sangat kurang

    engineer berpengalaman yang memahami kontrol proses

    Gaji yang baik dan menjajikan (terutama di luar

    negeri/negara maju)

  • 4Tugas Control Engineer

    Tuning pengendali untuk

    mempertahankan/meningkatakan unjuk

    kerja dan kehandalan

    Menselksi model kontrol yang sesuai

    Memecahkan permasalahan pengendalian

    proses dan mendokumnetasikan

    perubahannya.

    Industri Proses Kimia (CPI) Bahan bakar hidrokarbon

    Produk-produk kimia

    Produk pulp dan kertas

    Agrokimia

    Man-made fibers

    Industri Proses-Bio Menggunakan micro-organisms untuk menghasilkan

    produk yang bermanfaat

    Industri farmasi

    Etanol dari industri gandum/jagung/ketela

    Perbedaan CPI dan Proses Bio Proses bio kebanyakan tidak kontinyu

    Sistem bio mempertahankan kondisi steril selama proses

    berlangsung

    Daerah stagnan harus dikurangi dalam sistem bio untuk

    mencapai kemampuan membersihakan, steril dan

    mempertahankan lingkungan yang seragam untuk

    mikroorganisme

    Proses bio yang berkaitan dengan produk yang dikonsumsi

    manusia harus mendapatkan izin dari BPOM

    Kebanyakan siste bio memiliki unit prouski yang lebih

    kecil dari proses pad CPI

    Pemisahan bio berbeda dengan pemisahan pada CPI

    Pentingnya Kontrol Proses untuk CPI

    dan Proses-Bio

    KP secara langsung mempengaruhi

    keselamatan dan kehandalan dari sebuah

    proses

    KP menentukan kualitas produk yang

    dihasilkan oleh suatu proses.

    KP dapat mempengaruhi efesiensi sebuah

    proses.

    Bottom Line: KP memiliki dampak utama

    terhadap keuntungan sebuah perusahaan.

  • 5Keamanan dan Kehandalan

    Sistem kontrol harus menyediakan proses

    operasi yang aman

    Alarm, safety constraint control, start-up dan

    shutdown.

    Sistem kontrol harus dapat meng-absorb

    berbagai gangguan dan menjaga proses

    tetap dala rentang operasi yang baik. :

    Gangguan badai, perubahan komposisi umpan,

    kekurangan secara berkala utilitas (suplai

    steam), variasi operasi siang-malam dalam

    kondisi ambient

    Tujuh (7) Obyektif Pengendalian

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    CONTOH PROSES: FLASH SEPARATION

    19

    Feed

    Methane

    Ethane (LK)

    Propane

    Butane

    Pentane

    Vapor

    product

    Liquid

    productProcess fluid Steam

    F1

    F2 F3

    T1T2

    T3

    T5

    F4

    T6 P1

    L1

    A1

    L. Key

    Mari kita diskusikan

    proses ini

    P 1000 kPa

    T 298 K

    Tujuh Obyektif Pengendalian

    20

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Beri contoh

  • 6Tujuh Obyektif Pengendalian

    21

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 PC

    L1

    A1

    L. Key

    Tekanan tinggi

    di dalam drum

    adalah bahaya

    Tujuh Obyektif Pengendalian

    22

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Beri contoh1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    23

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Tidak pernah

    melepas hidrokarbon

    ke atmosfir

    To flare

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    24

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Beri contoh1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

  • 7Tujuh Obyektif Pengendalian

    25

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    LC

    A1

    L. Key

    Tidak ada aliran

    yang dapat

    merusak pompa

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    26

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Beri contohnya1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    27

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    FC

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Selalu menjaga

    kelancaran laju

    produksi

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    28

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Beri contoh1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

  • 8Tujuh Obyektif Pengendalian

    29

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    AC

    L. Key

    Mencapai L.Key

    dengan menyesuaikan

    pemanasan1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    30

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Beri contoh1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    31

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    AC

    L. Key

    Gunakan

    pemanasan

    semurah mungkin

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    32

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Beri contoh1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

  • 9Tujuh Obyektif Pengendalian

    33

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Hitung dan plot

    parameter kunci,

    misal, UA.

    waktu

    UA

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Tujuh Obyektif Pengendalian

    34

    Feed

    Vapor

    product

    Liquid

    productProcessfluid

    Steam

    F1

    F2 F3

    T1 T2

    T3

    T5

    T4

    T6 P1

    L1

    A1

    L. Key

    Ketujuh-tujuhnya harus dicapai. Gagal untuk

    melakukan yang demikian akan

    berakibat operasi yang tidak menguntungkan

    atau lebih buruk lagi, tidak selamat.

    1. Kesalamatan (safety)

    2. Proteksi lingkungan

    3. Proteksi peralatan

    4. Operasi yang lancar

    5. Kualitas produk

    6. Profit

    7. Memonitor dan mendiagnosis

    Contoh: stirred tank heater

    Tc

    To, Fo, Xo

    X, F, T

    Thermocouple

    Controller

    Set-point

    Sistem Kontrol Komponen Sistem

    Operator dials in a set-

    point (desired

    temperature)

    Thermocouple measures

    temperature in tank

    Measured temperature is

    compared to set-point

    Controller manipulates

    steam valve based on

    difference between set-

    point and measurement

    Tc

    To, Fo, Xo

    X, F, TTc

    To, Fo, Xo

    X, F, T

    Thermocouple

    Controller

    Set-point

  • 10

    Example: stirred tank heater

    Tc

    To, Fo, Xo

    X, F, T

    Thermocouple

    Controller

    Control Systems System components

    Operator develops model of system

    Thermocouple measures temperature in inlet stream

    Measured temperature is input to process model

    Controller manipulates steam valve based on model prediction

    Tc

    To, Fo, Xo

    X, F, TTc

    To, Fo, Xo

    X, F, T

    Thermocouple

    Controller

    ProcessManipulated

    variablesControlled

    variables

    Disturbance

    variables

    General representation of a control problemDriving a Car: An Everyday Example of Process

    Control

    Control Objective (Setpoint): Maintain car in proper lane

    Controlled variable: Location on the road

    Manipulated variable: Orientation of the front wheels

    Actuator: Drivers steering wheel

    Sensor:

    Drivers eyes

    Controller: Driver

    Disturbance:

    Curve in road

  • 11

    Schematic of Feedback Loop

    Car example

    Driving

    a car

    Drivers

    eyes

    Current

    location on

    road

    Curve in road

    Steering

    wheel

    Drivers

    brain+

    -

    Where the

    driver

    wants to go

    Signal from

    eyes to

    brain

    Schematic of Feedback Loop

    General diagram

    Actuator

    Sensor

    Process

    Controlled

    Variable

    Disturbance

    uController

    cSetpoint+

    -

    e

    Manipulated

    variable

    Controlled

    variable

    Error

    Heat Exchanger Control:

    ChE Control Example

    TT

    TC

    Condensate

    Steam

    Feed

    Product

    Stream

    ISA standard (Instrument Society of America)

    The first letter defines the measured or initiating variables:

    Analysis (A), Flow (F), Temperature (T), Level (L), Pressure (P), Quantity (Q),

    Weight/Force (W).

    Succeeding letters define readout, passive, or output functions:

    Alarm (A), Control (C), Indicator (I), Record (R), Transmit (T), Actuator/Driver

    (Z)

    Pneumatic signal (solid line) and electronic signal (dash line)

    Example: Sensor-Transmitter (AT); Feedback control

    (AC); Current-to-pressure transducer (I/P)

  • 12

    Heat Exchanger Control

    Controlled variable

    Outlet temperature of product stream

    Manipulated variable

    Steam flow

    Actuator

    Control valve on steam line

    Sensor

    Thermocouple on product stream

    Disturbance

    Changes in the inlet feed temperature

    Selection of controlled, manipulated, and

    measured variables

    Controlled variables

    Control non-self-regulating variables

    (unbounded response)

    Within equipment and operating constraints

    Direct measurable/interact with other controlled

    variables

    Favorable dynamic characteristics (no long

    time delays)

    Selection of controlled, manipulated, and

    measured variables

    Manipulated variables

    Large effect on controlled variable

    Rapid and direct effect

    Avoid recycling of disturbances

    Measured variables

    Reliable and accurate

    Sensitive (avoid dead zone and time delays, e.g., dead zone in batch)

    Keuntungan dari Peningkatan

    Sistem Kontrol

    Time

    Impuri

    ty

    Conce

    ntr

    ati

    on

    Limit

    Time

    Impuri

    ty

    Con

    centr

    ati

    on

    Limit

    Old Controller New Controller

  • 13

    Kotrol Yang Lebih Baik Berarti Memperbaiki

    Produk dengan Mengurangi Variabilitas

    Untuk beberapa kasus, mengurangi

    variabilitas produk adalah merupakan

    tuntutan dan memiliki nilai tambah tinggi

    (contoh bahan baku untuk polimer)

    Prosedur sertifikasi produk (yaitu ISO

    9000) digunakan untuk menjamin kualitas

    produk dan menempatkan banyak

    penekanan pada kontrol proses.

    Keuntungan dari Peningkatan

    Sistem Kontrol

    Time

    Impuri

    ty

    Conce

    ntr

    ati

    on

    Limit

    Time

    Impuri

    ty

    Con

    centr

    ati

    on

    Limit

    Time

    Impuri

    ty

    Conce

    ntr

    ati

    on

    Limit

    Old Controller New Controller

    Improved Performance

    Maximizing the Profit of a Plant

    Many times involves controlling against

    constraints.

    The closer that you are able to operate to

    these constraints, the more profit you can

    make. For example, maximizing the

    product production rate usually involving

    controlling the process against one or more

    process constraints.

    Constraint Control Example

    Consider a reactor temperature control

    example for which at excessively high

    temperatures the reactor will experience a

    temperature runaway and explode.

    But the higher the temperature the greater

    the product yield.

    Therefore, better reactor temperature

    control allows safe operation at a higher

    reactor temperature and thus more profit.

  • 14

    Importance of Process Control for the

    Bio-Process Industries

    Improved product quality.

    Faster and less expensive process validation.

    Increased production rates.

    Driving a Car: An Everyday

    Example of Process Control

    Control Objective (Setpoint): Maintain car in

    proper lane.

    Controlled variable- Location on the road

    Manipulated variable- Orientation of the front

    wheels

    Actuator- Drivers arms/steering wheel

    Sensor- Drivers eyes

    Controller- Driver

    Disturbance- Curve in road

    Logic Flow Diagram for a

    Feedback Control Loop

    Temperature Control for a Heat

    Exchanger: ChE Control Example

  • 15

    Heat Exchanger Control

    Controlled variable- Outlet temperature of

    product stream

    Manipulated variable- Steam flow

    Actuator- Control valve on steam line

    Sensor- Thermocouple on product stream

    Disturbance- Changes in the inlet feed

    temperature

    DO Control in a Bio-Reactor

    DO Control

    Controlled variable- the measured dissolved O2 concentration

    Manipulated variable- air flow rate to the bio-reactor

    Actuator- variable speed air compressor

    Sensor- ion-specific electrode in contact with the broth in the bio-reactor

    Disturbance- Changes in the metabolism of the microorganisms in the bio-reactor

    Logic Flow Diagram for a

    Feedback Control Loop

  • 16

    Comparison of Driving a Car and

    Control of a Heat Exchanger

    Actuator: Drivers arm and steering wheel

    vs. Control valve

    Controller: the driver vs. an electronic

    controller

    Sensor: the drivers eyes vs. thermocouple

    Controlled variable: cars position on the

    road vs. temperature of outlet stream

    The key feature of all feedback control

    loops is that the measured value of the

    controlled variable is compared with

    the setpoint and this difference is used

    to determine the control action taken.

    In-Class Exercise

    Consider a person skiing down a mountain.

    Identify the controller, the actuator, the

    process, the sensor and the controlled

    variable. Also, indicate the setpoint and

    potential disturbances. Remember that the

    process is affected by the actuator to change

    the value of the controlled variable.

    Types of Feedback Controllers

    On-Off Control- e.g., room thermostat

    Manual Control- Used by operators and based on

    more or less open loop responses

    PID control- Most commonly used controller.

    Control action based on error from setpoint

    (Chaps 6-8).

    Advanced PID- Enhancements of PID: ratio,

    cascade, feedforward (Chaps 9-11).

    Model-based Control- Uses model of the process

    directly for control (Chap 13).

  • 17

    Duties of a Control Engineer

    Tuning controllers for performance and

    reliability (Chap 7)

    Selecting the proper PID mode and/or

    advanced PID options (Chap 6, 10-12)

    Control loop troubleshooting (Chap 2 & 8)

    Multi-unit controller design (Chap 14)

    Documentation of process control changes

    Characteristics of Effective

    Process Control Engineers

    Use their knowledge of the process to guide

    their process control applications. They are

    process control engineers.

    Have a fundamentally sound picture of

    process dynamics and feedback control.

    Work effectively with the operators.

    Operator Acceptance

    A good relationship with the operators is a

    NECESSARY condition for the success of a

    control engineer.

    Build a relationship with the operators

    based on mutual respect.

    Operators are a valuable source of plant

    experience.

    A successful control project should make

    the operators job easier, not harder.

    Process Control and

    Optimization

    Control and optimization are terms that are

    many times erroneously interchanged.

    Control has to do with adjusting flow rates

    to maintain the controlled variables of the

    process at specified setpoints.

    Optimization chooses the values for key

    setpoints such that the process operates at

    the best economic conditions.

  • 18

    Optimization and Control of a CSTROptimization Example

    balances.

    molefromcalculatedareandLikewise,

    ]/exp[1

    forSolving

    ]/exp[

    :AonbalanceMole

    11

    0

    110

    CB

    r

    AA

    A

    rAAA

    CC

    Q

    VRTEk

    CC

    C

    VCRTEkCQCQ

    CBA

    +

    =

    Economic Objective Function

    AFACCBBAA VCQVCQVCQVCQ 0++=

    VB > VC, VA, or VAF

    At low T, little formation of B

    At high T, too much of B reacts to form C

    Therefore, the exits an optimum reactor

    temperature, T*

    Optimization Algorithm

    1. Select initial guess for reactor

    temperature

    2. Evaluate CA, CB, and CC

    3. Evaluate

    4. Choose new reactor temperature and

    return to 2 until T* identified.

  • 19

    Graphical Solution of Optimum

    Reactor Temperature, T*

    -0.5

    0

    0.5

    1

    1.5

    2

    250 275 300 325 350

    Reactor Temperature (K)

    Eco

    no

    mic

    Obje

    ctiv

    e

    Fu

    nct

    ion

    ,

    T *

    Process Optimization

    Typical optimization objective function, :

    = Product values-Feed costs-Utility costs

    The steady-state solution of process models

    is usually used to determine process

    operating conditions which yields flow rates

    of products, feed, and utilities.

    Unit costs of feed and sale price of products

    are combined with flows to yield

    Optimization variables are adjusted until

    is maximized (optimization solution).

    Generalized Optimization

    Procedure

    Aumerical

    Optimization

    Algorithm

    Process

    Model

    Economic

    Parameters

    Economic

    Function

    Evaluation

    Optimization

    Variables

    Economic

    Function

    Value

    Model

    Results

    Initial Estimate

    of Optimization

    Variables

    Optimum

    Operating

    Conditions

    Optimization and Control of a CSTR

  • 20

    In-Class Exercise

    Identify an example for which you use

    optimization in your everyday life. List the

    degrees of freedom (the things that you are

    free to choose) and clearly define the

    process and how you determine the

    objective function.

    Overview of Course Material

    Control loop hardware (Chap 2)

    Dynamic modeling (Chap 3)

    Transfer functions and idealized dynamic

    behavior (Chap 4-6)

    PID controls (Chap 7-10)

    Advanced PID controls (Chap 12-14)

    Control of MIMO processes (Chap 15-18)

    Fundamental Understanding and

    Industrially Relevant Skills

    Fundamental Understanding-

    Laplace tranforms and transfer functions (Ch 4-5)

    Idealized dynamic behavior (Ch 6)

    Frequency response analysis (Ch 11)

    Industrially Relevant Skills-

    Control hardware and troubleshooting (Ch 2&10)

    Controller Implementation and tuning (Ch 7-9)

    Advanced PID techniques (Ch 12-14)

    MIMO control (Ch 15-18)

    Process Control Terminology

    Important to be able to communicate with

    operators, peers, and boss.

    New terminology appears in bold in the text

    New terminology is summarized at the end

    of each chapter.

    Review the terminology regularly in order

    to keep up with it.

  • 21

    Overall Course Objectives

    Develop the skills necessary to function as

    an industrial process control engineer.

    Skills

    Tuning loops

    Control loop design

    Control loop troubleshooting

    Command of the terminology

    Fundamental understanding

    Process dynamics

    Feedback control

    Overview

    All feedback control loops have a

    controller, an actuator, a process, and a

    sensor where the controller chooses control

    action based upon the error from setpoint.

    Control has to do with adjusting flow rates

    to maintain controlled variables at their

    setpoints while for optimization the

    setpoints for certain controllers are adjusted

    to optimize the economic performance of

    the plant.