kinesiology of the musculoskeletal system dr. michael p. gillespie

40
KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

Upload: herbert-hudson

Post on 16-Jan-2016

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEMDr. Michael P. Gillespie

Page 2: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

KINESIOLOGYKinesis – to move

Logy – to study

Page 3: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

VITRUVIAN MAN – LEONARDO DA VINCI

3

Dr. M

ichael P

. Gille

spie

Page 4: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

MUSCULORUM CORPORIS HUMANI - BERNHARD SIEGFREID ALBINUS

4

Dr. M

ichael P

. Gille

spie

Page 5: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

KINEMATICS

Kinematics describes the motion of a body without regard to the forces or torques that produce the motion.

In biomechanics the term body can describe the entire body or any of its parts. It can describe specific regions, segments, or bones.

5

Dr. M

ichael P

. Gille

spie

Page 6: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

TWO TYPES OF MOTION

Translation – a linear motion in which all parts of a rigid body move parallel to and in the same direction as every other part. Rectilinear – translation in a straight line. Curvilinear – translation in a curved line.

Rotation – a motion in which an assumed rigid body moves in a circular path around some pivot point.

6

Dr. M

ichael P

. Gille

spie

Page 7: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

TRANSLATION & ROTATION

Movement of the body as a whole is described as translation of the body’s center of mass (located just anterior to the sacrum).

The movement of the body is powered by muscles that rotate the limbs.

The phrases “rotation of a joint” and “rotation of a bone” are used interchangeably.

The pivot point for angular motion is called the axis of rotation.

7

Dr. M

ichael P

. Gille

spie

Page 8: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

TYPES OF MOVEMENT

Active movement – movement caused by stimulating a muscle.

Passive movement – movement caused by sources other than active muscle contraction. Push from another person Pull of gravity Tension in stretched connective tissues

8

Dr. M

ichael P

. Gille

spie

Page 9: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

VARIABLES AND UNITS OF MEASUREMENT RELATED TO KINEMATICS

Variables related to kinematics Position Velocity Acceleration

Units of measurement Translation – meters or feet Rotation – degrees or radians

9

Dr. M

ichael P

. Gille

spie

Page 10: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

INTERNATIONAL SYSTEM OF UNITS

This system is widely accepted in many journals related to kinesiology and rehabilitation.

It is abbreviated SI, for Systeme International d’Unites, the French name.

10

Dr. M

ichael P

. Gille

spie

Page 11: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

COMMON CONVERSIONS BETWEEN UNITS

SI Units English Units

1 meter (m) = 3.28 feet (ft) 1 ft = 0.305 m

1 m = 39.37 inches (in) 1 in = 0.0254 m

1 centimeter (cm) = 0.39 in 1 in = 2.54 cm

1 m = 1.09 yards (yd) 1 yd = 0.91 m

1 kilometer (km) = 0.62 miles (mi)

1 mi = 1.61 km

1 degree = 0.0174 radians (rad)

1 rad = 57.3 degrees

11

Dr. M

ichael P

. Gille

spie

Page 12: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

OSTEOKINEMATICS

Osteokinematics describes the motion of bones relative to the three cardinal (principal) planes of the body. Sagittal plane – runs parallel to the sagittal

suture of the skull and divides the body into right and left sections.

Frontal plane – runs parallel to the coronal suture of the skull and divides the body into anterior and posterior sections.

Horizontal plane (transverse) – runs parallel to the horizon and divides the body into upper and lower sections.

12

Dr. M

ichael P

. Gille

spie

Page 13: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

CARDINAL PLANES OF THE BODY

13

Dr. M

ichael P

. Gille

spie

Page 14: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

A SAMPLE OF COMMON OSTEOKINEMATIC TERMS

Plane Common Terms

Sagittal Plane Flexion and extensionDorsiflexion and plantar flexionForward and backward bending

Frontal Plane Abduction and adductionLateral flexionUlnar and radial deviationEversion and inversion

Horizontal Plane Internal (medial) and external (lateral) rotationAxial rotation

14

Dr. M

ichael P

. Gille

spie

Page 15: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

AXIS OF ROTATION

Bones rotate around a joint in a plane that is perpendicular to an axis of rotation.

The axis is typically located through the convex member of a joint.

The shoulder allows movement in all three planes and therefore has three axes of rotation.

The axes of rotation are depicted as stationary; however, in reality, each axis shifts slightly throughout the range of motion.

15

Dr. M

ichael P

. Gille

spie

Page 16: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

DEGREES OF FREEDOM Degrees of freedom are the number of independent

directions of movements allowed at a particular joint. A joint can have up to three degrees of angular freedom

which correspond to the three cardinal planes. For purposes of kinesiology, degrees of freedom indicates

the number of permitted planes of angular motion at a joint.

Strictly speaking, from an engineering perspective, degrees of freedom would also include translational (linear) as well as angular movement.

Natural laxity within the joint structure allows for some translation. This is referred to as accessory movement or joint “play”.

The amount of passive translation can be used clinically to asses the integrity of the joint. Excessive translation can indicate ligament injury or laxity.

Abnormal translation can affect active movements and lead to increased intra-articular stress and microtrauma.

16

Dr. M

ichael P

. Gille

spie

Page 17: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

OSTEOKINEMATICS

Movement of a joint can be considered from two perspectives: 1. The proximal segment can rotate against the

relatively fixed distal segment. 2. The distal segment can rotate against the

relatively fixed proximal segment. State the bone that is considered the primary

rotating segment. Tibial-on-femoral movement Femoral-on-tibial movement

17

Dr. M

ichael P

. Gille

spie

Page 18: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

UPPER EXTREMITY OSTEOKINEMATICS

Most routine movements of the upper extremity involve distal-on-proximal segment kinematics.

We bring objects held by the hand either closer to or further away from the body (i.e. eating and throwing a baseball).

The proximal segment is stabilized by muscles, gravity or inertia.

The distal segment segment rotates with fairly free movement.

18

Dr. M

ichael P

. Gille

spie

Page 19: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

LOWER EXTREMITY OSTEOKINEMATICS

The lower extremities perform both proximal-on-distal and distal-on-proximal segment kinematics.

These kinematics are apparent in walking during the stance phase and the swing phase.

Kicking and squatting are also good examples of distal-on-proximal and proximal-on-distal kinematics respectively.

19

Dr. M

ichael P

. Gille

spie

Page 20: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

DISTAL-ON-PROXIMAL & PROXIMAL-ON-DISTAL KINEMATICS

20

Dr. M

ichael P

. Gille

spie

Page 21: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

OPEN AND CLOSED KINEMATIC CHAINS

The terms “open” and “closed” are typically used to indicate whether the distal end of an extremity is fixed to the earth or some other immoveable object.

An open kinematic chain describes a situation in which the distal segment of the kinematic chain is not fixed to the earth or other immoveable object.

A closed kinematic chain describes a situation in which the distal segment of the kinematic chain is fixed to the earth or another immoveable object.

From an engineering perspective, the terms apply to the kinematic interdependence of a series of connected rigid links.

21

Dr. M

ichael P

. Gille

spie

Page 22: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

ARTHROKINEMATICS Arthrokinematics describes the motion that

occurs between the articular surfaces of joints. The shapes of articular surfaces range from flat

to curved. Most joint surfaces are at least slightly curved. One side is convex and the other is concave. This convex-concave relationship improves joint congruency (fit), increases the surface area to dissipate forces, and helps to guide the motion between joints.

The fundamental movements that exists between curved joint surfaces are as follows: Roll Slide Spin 22

Dr. M

ichael P

. Gille

spie

Page 23: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

FUNDAMENTAL ARTHROKINEMATIC MOVEMENTS

Movement Definition Analogy

Roll (rock) Multiple points along one rotating articular surface contact multiple points on another articular surface

A tire rotating on a stretch of pavement

Slide (glide) A single point on one articular surface contacts multiple points on another articular surface

A non-rotating tire skidding across a stretch of icy pavement

Spin A single point on one articular surface rotates on a single point on another articular surface

A toy top rotating on one spot on the floor

23

Dr. M

ichael P

. Gille

spie

Page 24: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

ARTHROKINEMATICS

24

Dr. M

ichael P

. Gille

spie

Page 25: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

ARTHROKINEMATIC PRINCIPLES OF MOVEMENT

For a convex-on-concave surface movement, the convex member rolls and slides in opposite directions.

For a concave-on-convex surface movement, the concave member rolls and slides in similar directions.

Manual therapy techniques can take advantage of these principles by applying external forces to assist or guide the natural arthrokinematics of the joint.

25

Dr. M

ichael P

. Gille

spie

Page 26: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

CLOSE-PACKED AND LOOSE-PACKED POSITIONS AT A JOINT Close-packed position.

The pair of articular surfaces within most joints “fits” best in only one position, which is usually at the end of the range of motion.

This position of maximal congruency is referred to as the joint’s close-packed position.

In this position, most ligaments and parts of the capsule are pulled taut, which provides stability.

Accessory movements are minimal. Used in standing.

Loose-packed position. All positions other than a joint’s close-packed position are

referred to as the joint’s loose-packed positions. The ligaments and capsule are relatively slackened. There is an increase in accessory movements. The joint is least congruent near its midrange. Biased towards flexion. Used during long periods of immobilization.

26

Dr. M

ichael P

. Gille

spie

Page 27: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

KINETICS

Kinetics is the branch of study of mechanics that describes the effect of forces on the body.

A force is a push or pull that can produce, arrest, or modify movements.

Forces either move or stabilize the body. Newton’s 2nd law of motion states that the

force (F) is the product of the mass (m) times the acceleration (a) of the mass. F=ma

The standard international unit of force is the newton (N): 1 N = 1 kg x 1 m/sec2. The Englosh equivalent of the newton is the pound (lb): 1 lb = 1 slug x 1 ft/sec2 (4.448 N = 1 lb). 27

Dr. M

ichael P

. Gille

spie

Page 28: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

MUSCULOSKELETAL FORCES

Load – A force that acts on the body is often referred to generically as a load.

Forces or loads that move, fixate, or otherwise stabilize the body also have the potential to deform and injure the body.

Any tissue weakened by disease, trauma, or prolonged disuse may not be able to adequately resist the application of loads placed upon it.

28

Dr. M

ichael P

. Gille

spie

Page 29: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

LOADS FREQUENTLY APPLIED TO THE MUSCULOSKELETAL SYSTEM

Tension Compression Bending Shear Torsion Combined loading

29

Dr. M

ichael P

. Gille

spie

Page 30: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

LOADING MODES

30

Dr. M

ichael P

. Gille

spie

Page 31: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

LOADS FREQUENTLY APPLIED TO THE MUSCULOSKELETAL SYSTEM

31

Dr. M

ichael P

. Gille

spie

Page 32: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

LOADS FREQUENTLY APPLIED TO THE MUSCULOSKELETAL SYSTEM

32

Dr. M

ichael P

. Gille

spie

Page 33: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

STRESS-STRAIN RELATIONSHIP OF TISSUES

Stress is applied to a tissue with a resultant strain on that tissue.

Initially, the tissue will respond with an elastic strain. It will stretch; however, it can return to its prior state.

With continued stress, the tissue will eventually reach a yield point. The tissue will begin to undergo plastic deformation.

If the stress continues, the tissue will reach an ultimate failure point. At this point, the tissue completely separates and loses its ability to hold any level of tension. 33

Dr. M

ichael P

. Gille

spie

Page 34: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

STRESS-STRAIN RELATIONSHIP OF TISSUES

34

Dr. M

ichael P

. Gille

spie

Page 35: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

INTERNAL & EXTERNAL FORCES

Internal forces are produced from structures within the body. Active forces are generated by stimulated

muscle. Passive forces are generated by tension in

stretched periarticular tissues (intramuscular connective tissues, ligaments, and joint capsules).

External forces are produced by forced acting from outside the body. Gravity pulling on the mass of a body segment. An external load. Physical contact.

35

Dr. M

ichael P

. Gille

spie

Page 36: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

INTERNAL & EXTERNAL FORCES

36

Dr. M

ichael P

. Gille

spie

Page 37: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

VECTORS

Forces are depicted by arrows that represent a vector.

A vector is a quantity that is completely specified by its magnitude and direction.

In order to completely identify a vector in a biomechanical analysis, its magnitude, spatial orientation, direction, and point of application must be known.

37

Dr. M

ichael P

. Gille

spie

Page 38: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

MUSCLE AND JOINT INTERACTION

Muscle and joint interaction refers to the overall effect that a muscle force may have on a joint.

38

Dr. M

ichael P

. Gille

spie

Page 39: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

TYPES OF MUSCLE ACTIVATION Isometric activation

A muscle is producing a pulling force while maintaining a constant length. Greek isos (equal) and metron (measure or length).

The internal torque is equal to the external torque. There is no muscle shortening or rotation at the joint.

Concentric activation A muscle produces a pulling force as it contracts (shortens).

Concentric means “coming to the center”. The internal torque exceeds the external torque. The contracting muscle creates a rotation of the joint in the

direction of the contracting muscle. Eccentric activation

A muscle produces a pulling force as it is being elongated by another more dominant force. Eccentric means “away from the center”.

The external torque exceeds the internal torque. The joint rotates in the direction dictated by the larger external

torque. 39

Dr. M

ichael P

. Gille

spie

Page 40: KINESIOLOGY OF THE MUSCULOSKELETAL SYSTEM Dr. Michael P. Gillespie

CONTRACTION

The term contraction is often used synonymously with the term activation, regardless of whether or not the muscle is really shortening, lengthening, or remaining at a constant length.

The term contract literally means to be “drawn together”.

Technically, contraction of a muscle occurs during concentric activation only.

40

Dr. M

ichael P

. Gille

spie