lawhite shear veer paper wdshear

Upload: snada

Post on 10-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    1/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page1

    CharacterizingWindSpeedandDirectionShearwithSoDARDataNielsLaWhite,ElizabethWalls,andKenCohn

    SecondWindInc.

    ABSTRACTSoDARdatafromthreesiteswereanalyzedtoidentifyfrequencyofoccurrenceofatypicalwind

    conditionssufficienttoimpactresourcesuitabilityorturbineperformance.Windspeedanddirection

    measurementswereobtainedforasetofheightsspanningatypicalwindturbinerotor.Foreachsite,

    10minutewindaverageswerecollectedforathreemonthperiod.Apowerlawshearcoefficientwas

    then

    fit

    to

    each

    10

    minute

    set

    of

    wind

    speed

    measurements,

    yielding

    an

    accurate

    short

    term

    measure

    of

    windspeedshear.Similaranalysiswasperformedforwinddirectionshear(alsocalledveer)byfittinga

    straightlinetoeachsetof10minutewinddirectionmeasurements.Thewinddirectionchangefrom

    lowertoupperbladetipwasthenusedasashorttermmeasureofveer.

    Tohighlighttheeffectofspeedanddirectionshearonturbineoperation,datasampleswithhubheight

    windspeedbelow6m/swereremovedfromthedataset.Histogramrepresentationisusedtoshowthe

    frequencyofoccurrenceofspeedanddirectionshearvalues,andtheheavytaileddistributionssuggest

    thatextremeshearandveer,whilesomewhatrare,occursurprisinglyoftenandusuallyatnight,when

    atmosphericstabilityreducescouplingbetweenupperandlowerlevelair.Areversecumulative

    distribution,orfrequencyofexceedanceplot,isshowntobeusefulincomparingthefrequencyof

    occurrenceofdegreesofshearatthethreeexamplesites.

    OBJECTIVESTheprimaryobjectiveofwindresourceassessmentistoidentifysiteswithsufficientwindsforpower

    generation.Whenacandidatesiteisidentified,thewinddataforthesitearefurtheranalyzedtoensure

    suitabilityofthelocalwindconditionsforwindturbineoperation.Oneaspectofsuitabilitythatisoften

    neglectedistheoccurrenceofextremewindshear. Often,onlyasingle,seasonal,averageshear

    coefficientisobtainedforasite,eventhoughsuchlongaveragesmaskthepresenceofwindshear

    extremesthatoccurinfrequently.

    Acommonreasonforoveraveragingwindshearisthelackofaccuratedata.Whentheonlyavailable

    dataarefrombelowhubheightmetmasts,windshearvaluesmustbeextrapolatedfromasmallsetof

    readings.Astowershadowandanemometeroverspeedingcancausesmallerrorsinthosereadings,the

    extrapolatedshearvalueswillhaveuncertaintywhenaveragedovershorttimeintervals.Also,itis

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    2/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page2

    commontoignorewinddirectionshearaltogether,becausemanymettowersareinstrumentedwith

    winddirectionvanesatonlyasingleheight.

    Thedevelopmentofinexpensiveremotesensingtechnology,suchasSonicDetectionandRanging,or

    SoDAR,hasmadeitpracticaltoobtainaccuratemeasurementsofwindspeedanddirectionatseveral

    heightsacross

    the

    swept

    area

    of

    atypical

    wind

    turbine

    rotor.

    Because

    modern

    SoDAR

    equipment

    is

    robust,iseasytodeploy,andcanruncontinuously,itisanidealchoiceforstudyingthevarietyoflocal

    shearconditionspresentatanypotentialwindfarmsite.

    Forthisresearch,weusedmeasurementsfromaSecondWindTritonSonicWindProfiler,which

    measures10minuteaveragewindspeedanddirectionatsixdifferentheightsspanningatypicalrotor

    sweptarea,asshowninFigure1.

    Figure1: ExampleTritonWindSpeedandDirectionMeasurementswithExtremeShear.

    TheSoDARmeasurementsareeasilyanalyzedtocompute10minutevaluesforbothspeedand

    directionshearoveranentiremeasurementcampaign.However,withoutastandardpracticefor

    incorporatingshorttermshearmeasurements,itisnotclearwhattodowithsuchalargequantityof

    sheardata.Thispaperdevelopsasimpletechniqueforplottingshearfrequencyofoccurrenceinorder

    tohighlightsitetositedifferencesthatwouldaffectwindturbineperformanceandreliability.

    VALIDATIONBeforeexaminingthewindsheardistribution,acorrelationstudywasconductedforeachthreemonth

    datasetinordertoconfirmitsvalidity. Toensurethatnoisyorerroneousdatawerenotincludedinthe

    analysis,theTritondatawerefilteredbasedonaminimumqualityfactorof90%andamaximum

    verticalwindspeedof+/ 1.5m/s. Thequalityfactorisaparametercalculatedateveryheightandisa

    functionofthesignaltonoiseratio(SNR)andthenumberofvaliddatapointscollectedoverthe10

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    3/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page3

    minuteinterval. Implementingaminumumqualityfactorof

    90%removesanynoisyorinvaliddatathatmayhavebeen

    recorded. Theverticalwindspeedfilterremoveserroneous

    dataordataaffectedbyprecipitation.

    Thewind

    speeds

    as

    measured

    by

    the

    Triton

    were

    compared

    toadjacenttowerwindspeeddataandcorrelation

    coefficientsweredetermined.Figure2showsscatterplots

    ofTritonandanemometerwindspeedsmeasuredat50,

    100,and150mattheBoulderAtmosphericObservatory

    fromSeptember1st,2008toNovember30th,2008.The

    correlationcoefficientswerefoundtobeveryhighat0.985,

    0.985,and0.973at50,100,and150m,respectively.

    InFigure2,thesolidredlinerepresentsa1:1relationship

    betweentheTritonandtowerwindspeeds. Asshown,at

    allthreeheights,thewindspeeddatahaveanarrow

    distributionandarescatteredaroundthe1:1line. The

    averagewindspeedsasmeasuredbytheTritonandtower

    werealsocompared. Forthiscomparison,thetowerdata

    weredirectionallyfilteredtoreducetowershadowortower

    speedupeffects. At50,100and150m,thedifferencein

    averagewindspeed(TritonwindspeedTowerwind

    speed)wasfoundtobe1.7%,0.8%and0.0%,respectively.

    Uponsuccessfulcompletionofeachvalidationstudy,the

    wind

    shear

    and

    veer

    distributions

    were

    analyzed.

    METHODS

    Inordertocomputeshorttermaverageshearvaluesfrom

    SoDARdata,weuseasetof10minuteaveragewindspeed

    anddirectionmeasurementsfromheightsspanninga

    typicalwindturbinerotor. Forthispaper,arepresentative

    windturbinewasassumedtohavean80mhubheightand

    an80mbladediameter. Fromlowertipheighttouppertip

    height,thesetofmeasurementsfromtheSecondWind

    Tritonincluded

    heights

    40m,

    50m,

    60m,

    80m,

    100m,

    and

    120m.

    Incomputingthewindspeedshearvalueforeach10minuteinterval,thesetofmeasurementsisfittoa

    powerlawcurve,wheremeasuredwindspeedsatdifferentheightsareassumedtoberatiometrically

    relatedbytheheightratioraisedtothepoweralpha(),whereistheshearexponentusedhereas

    Figure2: ScatterplotsShowingCorrelationsbetweTowerandTritonMeasurements.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    4/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page4

    windspeedshearvalue. Thefollowingderivationshowshowtofindabestfitshearexponent,givena

    setofmeasurementsfrommanyheights.

    Thefollowingpowerlawformulashowshowthewindspeedratioisequatedtotheheightratioraised

    tothepower.

    whereU1andU2arewindspeedmeasurementsatheightsH1andH2.

    Takingthelogarithmofbothsides,theequationbecomes:

    Tofind

    an

    aggregate

    shear

    exponent,

    or

    best

    fit

    ,given

    aset

    of

    measured

    wind

    speeds,

    Ui,

    taken

    at

    heightsHi,thepowerlawequationisreducedtotheformofastraightlinefit,bytakingthelogarithmof

    theUandHvaluestoyieldthepoints

    {log(Hi),log(Ui)}.Withasetofsuchpoints,alinearleastsquares,orstraightlinefitisperformed. The

    straightlinecorrespondstotheequation:

    log(Ui)=log(Hi)+c

    Whiletheconstantoffsetterm,c,isdiscarded,theslopeofthefitlineis,theaggregateshear

    exponentthatbestfitsthewindshearprofileacrossthesetofmeasuredwindspeeds.Figure3shows

    howatypicalcomputedshearcoefficientreflectstheoriginal10minuteaveragewindspeeddata.The

    plotshowshowtheSoDARdatafromheightsspanningaturbinerotornicelycapturethe10minute

    averageshearcharacteristicwithoutextrapolation.

    Winddirectionshearwascalculatedusingastraightlinefittothewinddirectionmeasurementsfrom

    thesamesetofheights. Inthiscase,thewinddirectionisassumedtochangelinearlywithheight,notas

    apowerlawfunctionofheight. Thusastraightlineisfittothepoints{Hi,Di},whereDiisthemeasured

    winddirectionfromheightsHi,unwrappedtoavoidjumpsof360degrees. Figure3showsatypicalline

    fittoasetof10minutewinddirectionmeasurements.

    Theslopeofthebestfitlineisameasureofhowmuchthewinddirectionchangespermeterof

    elevation.Multiplying

    the

    slope

    by

    the

    rotor

    diameter

    then

    yields

    atotal

    wind

    direction

    change

    from

    lowerbladetiptoupperbladetip. Forthispaper,thetotalwinddirectionchange,indegrees,overan

    80mrotor,isusedasameasureofwinddirectionshear,orveer.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    5/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page5

    Figure3: SampleWindMeasurementsShowingShearandVeerFit.Aswindshearatlowwindspeedshaslittleornoconsequence,all10minutedatawithhubheightwind

    speedbelow6m/swereremovedfromthedataset.Inalllikelihood,theremainingshearvalues

    occurredwellwithintheoperatingrangeofmostwindturbines.Histogramsareshownforwindspeed

    shearand

    wind

    direction

    shear

    in

    Figure

    4.

    Also

    shown

    are

    the

    time

    series

    SoDAR

    data

    from

    times

    of

    fairlyextreme,yetfrequentlyoccurringshearandveer.Thespeedsheartimeseriesexamplehasatip

    totipwindspeedratioof2:1(=0.63).Theveertimeseriesexampleshowsatiptotipdirection

    discrepancyof15degrees.Thehistogramsshowthat,atleastforshortperiodsoftime,fargreatershear

    valuesoccur.Theseshearextremesaremostoftenmaskedinresourceassessment,becauseshear

    coefficientsarederivedfromlongtermdataaverages.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    6/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page6

    Figure4: HistogramsforWindSpeedShearExponentandDirectionalShearwithMatchingTimeSeriesData.

    RESULTSAthreemonthdatasetwasobtainedforeachofthreeexamplesites:

    SITE PERIOD LOCATION DESCRIPTION

    BAO SeptNov2008BoulderAtmospheric

    ObservatoryNearby300mTower

    CapeCod MayJuly2008 Massachusetts CoastalCranberryBog

    Windfarm NovJan2008/9 Texas OperatingWindfarm

    Windshear

    is

    reduced

    by

    coupling

    between

    layers

    of

    air

    during

    periods

    of

    atmospheric

    instability,

    such

    aswhensolarheatingcausesconvectivemixingoftheair.Forthisreason,mostextremeshearevents

    occurduringperiodsofhighatmosphericstability,usuallyatnight.Evenonovercastdays,atmospheric

    stabilityisusuallysomewhatreduced,providingadegreeofprotectionagainstextremeshear.

    Thediurnaltrendisdemonstratedbysegregatingtheshearandveerhistogramsbytimeofday. Todo

    this,weplotthehistogramusingalinechartinsteadofabarchart. Threelinesareplotted:thetotal

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    7/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page7

    histogram,includingalldatawithhubheightwindspeed>6m/s,thedaytimehistogram,includingonly

    databetweenonehouraftersunriseandonehourbeforesunset,andthenighttimehistogram,

    includingdatafromothertimes. Thehourbiasisintroducedbecausethesunmustreachasufficient

    angleintheskybeforeconvectionbeginstoovercomeatmosphericstability.

    Figure5shows

    the

    wind

    speed

    shear

    histograms

    for

    the

    BAO

    test

    site.

    The

    vertical

    dotted

    line

    correspondstoafairlyextremeshearvalueof0.63,wheretheupperbladetipwindspeedistwicethat

    ofthelowerbladetip. Forthisdataset,shearinexcessof0.4isshowntooccuratnight,becausethe

    daytimehistogramisapproximatelyzero,andnighttimehistogramisapproximatelyequaltothe

    daytimehistogram.

    Figure5: HistogramofBAOShearExponentwithDay/NightDecomposition.ThewindveerhistogramoftheBAOsiteisshowninFigure6. Hereagain,extremeshearisseento

    occurmostlyatnight,asthedaytimehistogramisapproximatelyzeroforveervaluesinexcessof+/ 15

    degrees.It

    is

    interesting

    to

    note

    that

    the

    veer

    histogram

    tails

    are

    right

    sided,

    with

    veer

    more

    often

    havingincreasinganglewithincreasingheight. ThisphenomenonisrelatedtotheEkmanspiral,where

    frictionandtheCoriolisforcevectorintheNorthernHemispheremoreoftencauseapositiveshiftof

    winddirectionwithincreasingheight.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    8/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page8

    Figures7and8showtheshearandveerhistogramsfortheCapeCodsite,whichisacranberrybog

    aboutamiledownwindofanopenoceanbay.Thewindspeedshearatthissiteisoftenveryextremeat

    night,withvaluesexceeding1.0,wheretheupperbladetipwindspeedisthreetimesthatofthelower

    bladetip.

    Veer

    at

    this

    site

    is

    less

    severe

    than

    at

    the

    other

    sites,

    but

    the

    histograms

    are

    quite

    noticeably

    rightsided. Theextremevaluesontherightsideofthedistributionshowequaldaytime/nighttime

    occurrence,whilethoseontheleftaredaytimeonly. Presumablythisisbecausethesummerdaytime

    stormactivitycancausestrongveerduringtheday,whilethenighttimeatmosphericforcesfollowthe

    positivedirectionpredictedbytheEkmanspiral.

    Figure6: HistogramofBAOVeerwithDay/NightDecomposition.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    9/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page9

    Figure7: HistogramofCapeCodShearExponentwithDay/NightDecomposition.

    Figure8: HistogramofCapeCodVeerwithDay/NightDecomposition.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    10/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page10

    ThelastexamplesiteisanoperatingwindfarminTexas. Figure9showsthewindspeedshear,whichis

    usuallyquitesmallduringtheday,butspansalargerangeatnight. Itisworthnotingthatthisthree

    monthdatasetisfromwintermonths,andthuscontainsmorenighttimesamplesthandaytimesamples.

    Theveerdataforthissite,showninFigure10,arequiteextreme,almostentirelyatnight,andright

    sided.

    Figure9: HistogramofWindfarmShearExponentwithDay/NightDecomposition.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    11/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page11

    Figure10: HistogramofWindfarmVeerwithDay/NightDecomposition.

    Theday/nighthistogramsfromthethreedifferentsitesshowninFigures510havesimilarcharacter,

    butadetailedsitecomparisonisdifficultwithoutplottingonacommonaxis. Oneveryeffectivewayto

    comparesitesistoplotthefrequencyofexceedancedistribution.Likeaninversecumulative

    distribution,

    the

    frequency

    of

    exceedance

    indicates

    the

    percentage

    of

    time

    that

    the

    sheer

    was

    in

    excess

    ofavalue.Becausethedatawerefilteredtoremoveperiodswithlowwindspeed,thepercentages

    indicatedarewithrespecttoturbineoperationaltime.Byplottingthefrequencyofexceedanceofwind

    speedanddirectionshearforallthreesites,thesitetositedifferencesarequiteapparent.

    Figure11showsthefrequencyofexceedanceofwindspeedshearforthethreeexamplesites.Fromthe

    chart,itisevidentthatsweptareashearinexcessof2:1(=0.63)occursalmost10%ofturbine

    operationaltimeattheCapeCodsite,whileonly2%attheBAOsite.

    Figure12showsthefrequencyofexceedanceoftheabsolutevalueofwinddirectionshearforthethree

    examplesites.Fromthechart,itisevidentthatsweptareaveerinexcessof20degreesoccursalmost

    10%of

    turbine

    operational

    time

    at

    two

    of

    the

    sites,

    but

    only

    occurs

    2%

    of

    the

    time

    at

    the

    Cape

    Cod

    site.

    Thusthesitewiththehighestspeedshearisseentohavethelowestdirectionalshear.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    12/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page12

    Figure11: FrequencyofExceedanceofShearExponentatThreeExampleSites.

    Figure12: FrequencyofExceedanceofVeeratThreeExampleSites.

  • 8/8/2019 LaWhite Shear Veer Paper WDShear

    13/13

    CharacterizingWindSpeedandDirectionShearwithSoDARData|LaWhite,Walls,&Cohn,SecondWindInc.|Page13

    CONCLUSIONS

    Shorttermwindspeedanddirectionshearvalueswerecomputedbasedon10minuteaverageSoDAR

    measurements.Theresultsindicatethepresenceofextremeshearatallexamplesites,eventhoughthe

    datawerefilteredtoremovelightwindperiods,whenthehubheightwindspeedwasbelowa

    conservative,6m/s

    cut

    in

    threshold.

    Extreme

    shear

    is

    shown

    to

    occur

    mostly

    at

    night,

    presumably

    becausethemorestableatmosphereovernightdoeslittletorelievetheatmosphericforcegradients

    thatcauseshear.Lastly,thefrequencyofoccurrenceofshearextremesisshownusingalogscale

    frequencyofexceedanceplot,andthedistributionsareobservedtodiffersubstantiallyfromsitetosite.

    Moreworkisneededtoassesstheimportanceofmeasuringshorttermwindshearvalues.Aswind

    turbinetechnologyadvancestoincludeindividualbladepitchcontrol,theextenttowhichdiffering

    windsacrosstherotorcauseperformanceandreliabilityproblemsmaychange.Atthecurrenttime,

    however,extremewindshearisthoughttocontributetoperformancedegradationandoperational

    downtime,sositestatisticsbeyondsimple,extrapolated,seasonalaveragesshouldbeevaluated,and

    SoDARmeasurementtechnologyiswellsuitedtoprovidethedata.

    REFERENCES1. Elliott,DennisL.,andJackCadogan(1990): EffectsofWindShearandTurbulenceonWind

    TurbinePowerCurves,PresentedattheEuropeanCommunityWindEnergyConferenceandExhibition,Madrid,Spain,1014Sep.1990

    2. Moore,KathleenE.,andBruceBailey(2007): ClassifyingRotorSpanShearProfileVariabilityandImprovingWindTurbineProductionPrediction,Windpower2007ConferenceProceedings(CDROM),

    American

    Wind

    Energy

    Association,

    2007.

    3. Schwartz,M.andD.Elliot(2006): WindShearCharacteristicsatCentralPlainsTallTowers,ReprintfromWindPower2006Conference,NREL/CP50040019,June2006.

    4. Smith,K.,G.Randall,D.Malcolmetal.(2002): EvaluationofWindShearPatternsatMidwestWindEnergyFacilities,ReprintfromWindPower2002Conference,NREL/CP50032492,May2002.