lecture 10 11

20
Driven Coupled Oscillators

Upload: sumeet-khirwal

Post on 19-Dec-2015

215 views

Category:

Documents


1 download

DESCRIPTION

physic.

TRANSCRIPT

Page 1: Lecture 10 11

Driven Coupled Oscillators

Page 2: Lecture 10 11

Equations of motion of driven damped coupled oscillators

π‘šπ‘₯ 1 = βˆ’π‘˜π‘₯1 βˆ’ π‘˜0 π‘₯1 βˆ’ π‘₯2 βˆ’ π‘Ÿπ‘₯ 1 + 𝐹0 cosΩ𝑑

π‘šπ‘₯ 2 = βˆ’π‘˜π‘₯2 βˆ’ π‘˜0 π‘₯2 βˆ’ π‘₯1 βˆ’ π‘Ÿπ‘₯ 2

π‘˜ π‘˜

m m F(t)

Page 3: Lecture 10 11

Equations of motion of driven damped coupled oscillators

π‘₯ 1 + 2𝛽π‘₯ 1 +π‘˜ + π‘˜0π‘š

π‘₯1 βˆ’π‘˜0π‘š π‘₯2 = 𝑓0 cosΩ𝑑

π‘₯ 2 + 2𝛽π‘₯ 2 +π‘˜ + π‘˜0π‘š

π‘₯2 βˆ’π‘˜0π‘š π‘₯1 = 0

⟹ π‘₯1= π‘ž1 + π‘ž2 , π‘₯2 = π‘ž1 βˆ’ π‘ž2

π‘ž1 = π‘₯1 + π‘₯2 /2, π‘ž2 = π‘₯1 βˆ’ π‘₯2 /2

Page 4: Lecture 10 11

π‘ž 1 + 2π›½π‘ž 1 +πœ”12π‘ž1 =

𝑓02cosΩ𝑑 , πœ”1

2 =π‘˜

π‘š

π‘ž 2 + 2π›½π‘ž 2 + πœ”22π‘ž2 =

𝑓02cosΩ𝑑 , πœ”2

2 =π‘˜ + 2π‘˜0

π‘š

π‘ž1 𝑑 = π‘Ž1 cos Ω𝑑 βˆ’ πœ™1 , π‘ž2 𝑑 = π‘Ž2 cos Ω𝑑 βˆ’ πœ™2

Steady state solution:

π‘Ž1 =𝑓02

1

πœ”12 βˆ’ Ξ©2 2 + 4𝛽2Ξ©2

, tanπœ™1 =2𝛽Ω

πœ”12 βˆ’ Ξ©2

π‘Ž2 =𝑓02

1

πœ”22 βˆ’ Ξ©2 2 + 4𝛽2Ξ©2

, tanπœ™2 =2𝛽Ω

πœ”22 βˆ’ Ξ©2

Page 5: Lecture 10 11

π‘₯1 𝑑 = π‘ž1(𝑑) + π‘ž2(𝑑) = 𝐴1 cosΩ𝑑 + 𝐡1 sinΩ𝑑

π‘₯2 𝑑 = π‘ž1(𝑑) βˆ’ π‘ž2(𝑑) = 𝐴2 cosΩ𝑑 + 𝐡2 sinΩ𝑑

𝐡1,2 = π‘Ž1 sinπœ™1 Β±π‘Ž2 sinπœ™2

= 𝛽𝑓0Ξ©1

πœ”12 βˆ’ Ξ©2 2 + 4𝛽2Ξ©2

Β±1

πœ”22 βˆ’ Ξ©2 2 + 4𝛽2Ξ©2

𝐴1,2 = π‘Ž1 cosπœ™1 Β±π‘Ž2 cosπœ™2

=𝑓02

πœ”12 βˆ’ Ξ©2

πœ”12 βˆ’ Ξ©2 2 + 4𝛽2Ξ©2

Β±πœ”22 βˆ’ Ξ©2

πœ”22 βˆ’ Ξ©2 2 + 4𝛽2Ξ©2

Page 6: Lecture 10 11
Page 7: Lecture 10 11
Page 8: Lecture 10 11

For very small damping (𝛽 β†’ 0) ,

𝐡1,2 β†’ 0

𝐴1,2 →𝑓02

1

πœ”12 βˆ’ Ξ©2

Β±1

πœ”22 βˆ’ Ξ©2

π‘₯2(𝑑)

π‘₯1(𝑑)β‰ˆπ΄2 cosΩ𝑑

𝐴1 cosΞ©π‘‘β‰ˆ

πœ”22 βˆ’πœ”1

2

πœ”22 +πœ”1

2 βˆ’ 2Ξ©2

πœ”2 > πœ”1

Page 9: Lecture 10 11

Special cases

π‘₯2(𝑑)

π‘₯1(𝑑)β‰ˆ

πœ”22 βˆ’πœ”1

2

πœ”22 +πœ”1

2 βˆ’ 2Ξ©2, πœ”2> πœ”1, 𝛽 β†’ 0

Case1: Ξ© = πœ”1, π‘₯2(𝑑)/π‘₯1(𝑑) β‰ˆ 1

Case3: Ξ© β‰ͺ πœ”1,π‘₯2(𝑑)

π‘₯1(𝑑)β‰ˆπœ”22 βˆ’ πœ”1

2

πœ”22 + πœ”1

2 > 0

Case2: Ξ© = πœ”2, π‘₯2(𝑑)/π‘₯1(𝑑) β‰ˆ βˆ’1

Case4: Ξ© ≫ πœ”2,π‘₯2(𝑑)

π‘₯1(𝑑)β‰ˆ βˆ’

πœ”22 βˆ’πœ”1

2

2Ξ©2< 0

Page 10: Lecture 10 11

Mechanical filters Bandpass filter:

π‘₯2(𝑑)

π‘₯1(𝑑)β‰ˆ

πœ”22 βˆ’πœ”1

2

πœ”22 +πœ”1

2 βˆ’ 2Ξ©2

πœ”1 = πœ”0 βˆ’ βˆ†πœ”,πœ”2 = πœ”0 + βˆ†πœ”, βˆ†πœ” β‰ͺ πœ”0 For

π‘₯2(𝑑)/π‘₯1(𝑑) β‰ˆ 2πœ”0βˆ†πœ”/ πœ”02 βˆ’ Ξ©2

π‘₯2(𝑑)/π‘₯1(𝑑) β†’ 0+ πœ”0βˆ’1 π‘“π‘œπ‘Ÿ Ξ© β‰ͺ πœ”0 as

π‘₯2(𝑑)/π‘₯1(𝑑) β†’ 0βˆ’ Ξ©βˆ’2 π‘“π‘œπ‘Ÿ Ξ© ≫ πœ”0 as

2βˆ†πœ” Band of pass frequencies: Cut-off frequencies: πœ”1, πœ”2

Page 11: Lecture 10 11

Low-pass filter: πœ”1 β†’ 0

π‘₯2(𝑑)

π‘₯1(𝑑)β‰ˆ

πœ”22

πœ”22 βˆ’ 2Ξ©2

Ξ© ≫ πœ”2, π‘₯2(𝑑)/π‘₯1(𝑑) β†’ 0βˆ’ For Ξ©βˆ’2 as

For Ξ© β†’ πœ”2/ 2, π‘₯2(𝑑)/π‘₯1 𝑑 β†’ ∞

For Ξ© β†’ 0, π‘₯2(𝑑)/π‘₯1 𝑑 = +1

For Ξ© = πœ”2, π‘₯2(𝑑)/π‘₯1 𝑑 = βˆ’1

Page 12: Lecture 10 11

Longitudinal waves

Page 13: Lecture 10 11

A chain of oscillators

ti 1

ti

ti 1

i-1 i i+1

Page 14: Lecture 10 11

Continuum limit

πœ‰π‘–βˆ’1(𝑑) β†’ πœ‰(π‘₯ βˆ’ βˆ†π‘₯, 𝑑)

πœ‰π‘–+1 𝑑 βˆ’ πœ‰π‘–(𝑑) βˆ’ πœ‰π‘–(𝑑) βˆ’ πœ‰π‘–βˆ’1(𝑑) β†’

Page 15: Lecture 10 11

Waves in a rod

xx x x

xx x x

tx ,

txx ,

A A

x

πœ‰π‘–+1 𝑑 βˆ’ πœ‰π‘–(𝑑) βˆ’ πœ‰π‘–(𝑑) βˆ’ πœ‰π‘–βˆ’1(𝑑)

Page 16: Lecture 10 11

Longitudinal waves in thin rods

a

Young’s modulus of elasticity

a

x x

a a

x

x

F F F

Page 17: Lecture 10 11

Also,

Newton’s law:

As

Page 18: Lecture 10 11

Acoustic waves in a gaseous medium

Fractional change in volume

Change in pressure

compressibility

|ΞΎ|<<|x|

x x+x

aP aP a

ΞΎ ΞΎ+ΞΎ

a(P+p) a(P+p+p)

x +ΞΎ

Page 19: Lecture 10 11

In an infinitely thin layer of gas,

Newton’s law:

Page 20: Lecture 10 11

As