lúa mì Î - borlaug100.org · eie у ee cruithneachd ... bruno gerard, director, cimmyt...

70
koring grurë trigo pšenice triigo гандум triticum triticum blat Weizen hveiti kus sarak o' nihi' blé σιτάρι álkámà trigo kviečiai Weess grano grano 小麦 идай genim kvieši буудай cruithneacht pszenica igo pšenica gandum búza buğda de kvīši gandum пченица пченица e пшаніца i wheat улаан буудай tłʼoh naadąąʼ hveiti grano łitǫne uğday bugdaý пшениця bug'doy lúa mì gwenith weet kveite пьшєница vete cruithneachd пшеница пшеница مدنگgrâu бодай koring grurë trigo pšenice trii triticum triticum blat Weizen hveiti kus sarak tili'ko' nihi' blé σιτάρι álkámà trigo kviečiai Weess grano grano 小麦 бидай genim kvieši буудай cruithneacht p trigo pšenica gandum buğda hvede kvīši gandum пченица tarwe пшаніца gari wh улаан буудай tłʼoh naadą hveiti gran łitǫne buğday b пшениця b lúa mì weet k пьш cruithnea пшениц пшен grâu бодай trigo nu hveiti triigo ngano triticum blat Weizen hveiti kus sarak o' nihi' товзюро tritiko vehnä blé σιτάρι álkámà trigo Weess grano 小麦 идай genim kvieši буудай frumento cruithneacht wīti pszenica igo gandum búza nisu uğda buğda de kvīši gandum пченица пченица e пшаніца ай i 小麥 улаан буудай tłʼoh naadąąʼ hveiti grano łitǫne gwenith weet kveite пьшєница vete пшеница пшеница hvete مدنگgrâu trigu trigo granu hveiti trii triticum blat Weizen hveiti kus sarak tili'ko' nihi' товзюро tritiko vehnä blé σιτάρι álkámà trigo Weess grano 小麦 бидай genim kvieši буудай fru cruithneacht w p trigo gandum nisu buğda buğda hvede kvīši gandum пченица tarwe пшаніца бойҙай gari wheat 小麥 улаан буудай tłʼoh naadą hveiti gran łitǫne weet k пьш пшениц пшен hvete grâu Celebrating 100 Years of BORLAUG on Wheat for Food Security SUMMIT BOOK OF ABSTRACTS 25-28 March 2014 • Cd. Obregón, Sonora, Mexico

Upload: nguyenthu

Post on 04-Nov-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

koringgrurë

trigo

pšenice

triigo

гандум

ngano

triticum

triticum

blat

Weizen

hveiti

kus sarak

tili'ko' nihi'

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

cruithneacht

pszenica

trigo

pšenica

gandum búza

buğda

buğda

hvede kvīši gandum

пченица

пченица

tarwe

пшаніца

бойҙайgari

wheat

麥 улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mì

gwenith

weet

kveiteпьшєница

vete

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай koring

grurë

trigo

pšenice

triigo

triticum

triticum

blat

Weizen

hveiti

kus sarak

tili'ko' nihi'

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

cruithneacht

pszenica

trigo

pšenica

gandum

buğda

buğda

hvede kvīši gandum

пченица

tarwe

пшаніца

бойҙайgari

wheat

麥 улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mìweet

kveiteпьшєница

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай

koringgrurë

trigu

trigo

granu

pšenice

hveiti

triigo

гандум

ngano

triticum

triticum

blat

Weizen

hveiti

kus sarak

tili'ko' nihi'

товзюроtritiko

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

frumento

cruithneacht

wīti

pszenica

trigo

pšenica

gandum búza

nisubuğda

buğda

hvede kvīši gandum

пченица

пченица

tarwe

пшаніца

бойҙайgari

wheat

wheat

小麥

улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mì

gwenith

weet

weet

kveiteпьшєница

vete

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай koring

grurë

trigu

trigo

granu

pšenice

hveiti

triigo

triticum

triticum

blat

Weizen

hveiti

kus sarak

tili'ko' nihi'

товзюроtritiko

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

frumento

cruithneacht

wīti

pszenica

trigo

pšenica

gandum

nisubuğda

buğda

hvede kvīši gandum

пченица

tarwe

пшаніца

бойҙайgari

wheat

wheat

小麥

улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mìweet

weet

kveiteпьшєница

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай

гандум

pszenica

гандум

pszenica

Celebrating 100 Years of

BORLAUG on Wheat for

Food Security

SUMMIT

BOOK OF ABSTRACTS25-28 March 2014 • Cd. Obregón, Sonora, Mexico

The International Maize and Wheat Improvement Center, known by its Spanish acronym, CIMMYT® (www.cimmyt.org), is a not-for-profit research and training organization with partners in over 100 countries. The center works to sustainably increase the productivity of maize and wheat systems and thus ensure global food security and reduce poverty. The center’s outputs and services include improved maize and wheat varieties and cropping systems, the conservation of maize and wheat genetic resources, and capacity building.

CIMMYT belongs to and is funded by the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org) and also receives support from national governments, foundations, development banks, and other public and private agencies. CIMMYT is particularly grateful for the generous, unrestricted funding that has kept the center strong and effective over many years.

© International Maize and Wheat Improvement Center (CIMMYT) 2014. All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. CIMMYT encourages fair use of this material. Proper citation is requested.

Correct citation: Perry Gustafson, Petr Kosina, Emma Quilligan, Mike Listman, (2014). Borlaug Summit on Wheat for Food Security, Book of Abstracts. Cd. Obregón, Sonora, Mexico, 25-28 March 2014. Mexico, DF.: CIMMYT.

Borlaug Summit on Wheat for Food Security

Book of aBStractS25-28 March 2014 l Cd. Obregón, Sonora, Mexico

Editors: Perry Gustafson, Petr Kosina, Emma Quilligan, Mike Listman

CONTENTS vii. Welcome to the Borlaug Summit on Wheat for Food Security Thomas A. Lumpkin

SpeakerS 1. Thomas A. Lumpkin 2. W.RonnieCoffman 3. Gordon Conway 4. Hans-Joachim Braun 5. HowardG.Buffett 6. Robert W. Herdt 7. Per Pinstrup-Andersen  8. Sanjaya Rajaram 9. Rachel Laudan  10. WolfgangH.Pfeiffer 11. Tony Fischer 12. Uma Lele  13. Graham Farquhar   14. Jesse Poland 15. Bruno Gerard  16. Jikun Huang   17. Ashok Gulati 18. Mahmoud Solh 19. Tray Thomas  20. Derek Byerlee  21. Steve Jennings   22. Robert Paarlberg 23. Robert T. Fraley 24. Rikin Gandhi 25. Wayne Powell 26. Hélène Lucas

eXTeNDeD aBSTraCTS 27. Borlaug: a Man on Message RonnieCoffman,DirectorofInternationalPrograms,CollegeofAgricultureand

LifeSciences,CornellUniversity,USA

29. The Green revolution – Lessons for the Future SirGordonConway,ProfessorofInternationalDevelopment,ImperialCollege,

UK

30. Why the Next revolution Must Be Brown, Not Green HowardG.Buffett,Chairman&CEO,HowardG.BuffettFoundation,USA

32. Meeting agricultural requirements in 2050…Not by Technology alone RobertW.Herdt,InternationalProfessorofAppliedEconomicsand

Management,CornellUniversity,USA

33. Necessary policies PerPinstrup-Andersen,ProfessorEmeritus,CornellUniversity,USA

iii

35. Wheat: The Grain at the Center of Civilization RachelLaudan,AuthorofCuisineandEmpire:CookinginWorldHistory,UK

38. Developing and Delivering High-Zinc Wheat: The role of Wheat in reducing Hidden Hunger

WolfgangH.Pfeiffer,DeputyDirectorofOperations,HarvestPlus,Colombia

42. potential Yields and Yield Gaps in Wheat: The Bases of Wheat Yield progress TonyFischer,HonoraryResearchFellow,CommonwealthScientificandIndustrial

ResearchOrganisation,Australia

44. Water and agriculture: are We ready for the Future? UmaLele,HervePlusquellecandRichardReidinger

45. Genomic Selection and precision phenotyping JessePoland,AssistantProfessor,KansasStateUniversity,USA

46. precision agriculture From Smallholder Farmers: are We Dreaming? BrunoGerard,Director,CIMMYTConservationAgricultureProgram,Mexico FrancelinoRodrigues,Biometrician,CIMMYT

49. China’s Grain policy and the World JikunHuang,Director,CenterforChineseAgriculturalPolicy,ChineseAcademy

ofSciences,China

52. India’s Grain policy and the World AshokGulati,Chairman,CommissionforAgriculturalCostsandPrices,Ministry

ofAgriculture,GovernmentofIndia

54. CentralandWestAsiaandNorthAfrica:WhereWheatReallyMatters MahmoudSolh,DirectorGeneral,InternationalCenterforAgriculturalResearch

intheDryAreas(ICARDA)

55. World Market Outlook for Wheat Dr.TrayThomas,FoundingPartner,ContextNetwork,USA

56. AgriculturalIntensification,LandUseandDeforestation:RevisitingtheBorlaugHypothesis

Dr.DerekByerlee,IndependentResearcherandVisitingScholar,StanfordUniversity,USA

57. perceptions on the Future of Biotech RobertL.Paarlberg,ProfessorofPoliticalScience,WellesleyCollege,USA

59. partnerships and the Future of agriculture Technology RobertT.Fraley,ExecutiveVicePresidentandChiefTechnologyOfficer,

Monsanto,USA

60. Social Networks for agricultural Development RikinGandhi,ChiefExecutiveOfficer,DigitalGreen,India

61. Wheat for africa FentahunMengistuetal.,DirectorGeneral,EthiopianInstituteofAgricultural

Research(EIAR)

62. The Wheat Initiative, a Global research Coordination platform for Wheat Improvement

Dr.HélèneLucas,InternationalScientificCoordinatoroftheWheatInitiative,France

iv

Welcome to the Borlaug Summit on Wheat for Food Security

WhenDr.NormanBorlaugarrivedinMexicoin1944,hungerwasanendemicproblemandthreateningtocauseahumandisaster,butNormanwasavisionary.HesoonwenttotheYaquiValleytoestablishanexperimentalshuttlebreedingprogramforwheatbetweenthe Sonora desert and the central highlands that would produce new varieties in half the time.HewasliterallysowingtheseedsthatgreatlyimprovedfoodsecurityinMexicoandacrosstheworld.Hishighspeedbreedingsystemwithsemi-dwarf,diseaseresistanttraitshadunexpectedbenefitse.g.helpingMexicoachievewheatself-sufficiencyandlaunching the Green Revolution in South Asia. Even Borlaug was surprised by its triumph – “that wasn’t supposed to happen by the books” he later remarked. Borlaug constantly experimentedandbroughttogethergoodideasfromotherresearchprograms–thatwasthe secret of his success.

Theworldtodayisinaverydifferentstatethanthehungeryearsofthe50sand60s.Nonetheless,in1969Borlaugforewarnedthat“theseriousnessormagnitudeoftheworldfoodproblemshouldnotbeunderestimated.Recentsuccessinexpandingwheat,riceandmaizeproductioninAsiancountriesoffersthepossibilityofbuying20-30yearsoftime.”Whilesomemayargueaboutthetiming,hispredictionhascometrue.Nearly50yearsaftertheGreenRevolution,globalagricultureisonceagainfacingdauntingchallenges.Climatechange,groundwaterdepletion,soildegradation,plantdiseases,malnutrition,changingdietsandhigherlabor,fuelandfertilizercostsareallthreateningfoodsecurity.

Giventhosecircumstances,theBorlaugSummitonWheatforFoodSecurityismorethanjustatimetocelebrate,butanopportunitytopromoteanewGreenRevolution,basedonsustainableintensification,collaborativepartnershipsandmeasuredcommitmentstoimprove agriculture and food and nutritional security across the developing world. We especiallyneedtotakethisopportunitytogiveavoicetothevoiceless,thosethathavebeen left behind and neglected by economic growth.

TheBorlaugSummitonWheatforFoodSecurityhasbroughttogetherleadingscientists,policymakers and philanthropists from both the public and private sectors. Let us all be inspiredbytheongoingworkofCIMMYTandits’partnershereinObregonandtogethermetaphoricallybakethebreadforafoodsecurefuture.IhopethatNormanBorlaug’sspiritwillaccompanyusasweworktogethertodesignandsetinmotionanew,moreproductive and sustainable Green Revolution.

Tom LumpkinDirectorGeneral,CIMMYT

1

Thomas A. Lumpkin  

Thomas A. Lumpkin is the Director General of 

CIMMYT.  In a career spanning over 30 years, he 

has specialized in research, education, 

development and administration originally within 

the areas of Asian agronomy and horticulture, 

ethnobotany, marketing systems and economic 

development.  He served in the Peace Corps in the 

Konkan region of India, teaching rice production 

along with wheat and horticultural crops. He has a 

BSc from Washington State University in 

agronomy, and MSc and PhD degrees in 

agronomy from the University of Hawaii. He carried out his doctoral research 

in mainland China and served as a Research Scholar at IRRI for six months. 

Lumpkin worked at Washington State University as a professor and later as 

Chair of the Department of Crop and Soil Sciences. Prior to taking up his 

appointment at CIMMYT, he served for five years as Director General of 

AVRDC‐The World Vegetable Center in Taiwan. 

 

   

SPEAKERS 

2

W. Ronnie Coffman  

W. Ronnie Coffman serves as International 

Professor of Plant Breeding and Director of 

International Programs of the College of 

Agriculture and Life Sciences at Cornell 

University, Ithaca, NY, USA.  He also serves as 

Principal Investigator of the Agricultural 

Biotechnology Support Project (ABSPII), the 

Agricultural Innovation Partnership, the Durable 

Rust Resistance in Wheat project, and the Next 

Generation Cassava project.  With Jeanie Borlaug 

Laube as Chair, he serves as Vice Chair of the 

Borlaug Global Rust Initiative. Previous positions 

include Associate Dean for Research and Director, Cornell University 

Agricultural Experiment Station; Chair of the Department of Plant Breeding 

and Genetics at Cornell, and Plant Breeder at the International Rice Research 

Institute  (IRRI).  Coffmanʹs work has been important to the development of 

improved rice varieties grown on several million hectares throughout the 

world. He has collaborated extensively with institutions in the developing 

world and has served as a board member for several international institutes, 

including the West Africa Rice Development Association (WARDA) and the 

International Center for Agricultural Research in the Dry Areas (ICARDA).  

Currently, he serves on the Board of Trustees of the American University of 

Beirut, the International Service for the Acquisition of Agribiotech 

Applications (ISAAA), and the Council of Advisors of the World Food Prize.  

In October of 2013, Coffman was awarded the Inaugural World Agriculture 

Prize by the Global Confederation of Higher Education Associations for the 

Agricultural and Life Sciences (GCHERA).  His Ph.D. is from Cornell 

University (thesis research supervised by Norman Borlaug in Mexico) and 

undergraduate work was done at the University of Kentucky, his home state. 

 

 

 

 

 

 

 

 

 

3

Gordon Conway  

Gordon Conway is a Professor of International 

Development at Imperial College, London and 

Director of Agriculture for Impact, a grant funded 

by the Bill & Melinda Gates Foundation, which 

focuses on European support of agricultural 

development in Africa. 

 

From 2005‐2009 he was Chief Scientific Adviser to 

the Department for International Development. 

Previously he was President of The Rockefeller 

Foundation and Vice‐Chancellor of the University of Sussex.   

 

He was educated at the Universities of Wales (Bangor), Cambridge, West 

Indies (Trinidad) and California (Davis).  His discipline is agricultural 

ecology.  In the early 1960ʹs, working in Sabah, North Borneo, he became one 

of the pioneers of sustainable agriculture.  

 

He was elected a Fellow of the Royal Society in 2004 and an Honorary Fellow 

of the Royal Academy of Engineering in 2007. He was made a Knight 

Commander of the Order of Saint Michael and Saint George in 2005.  He is a 

Deputy Lieutenant for East Sussex. He was recently President of the Royal 

Geographical Society. 

 

He has authored The Doubly Green Revolution: Food for all in the 21st century 

(Penguin and University Press, Cornell) and co‐authored Science and 

Innovation for Development (UK Collaborative on Development Sciences 

(UKCDS)).  His most recent book One Billion Hungry: Can we Feed the World? 

was published in October 2012.  

 

 

 

   

4

Hans‐Joachim Braun  

Hans‐Joachim Braun, a native of Germany has a 

background in wheat breeding and is currently 

based in Mexico. Since 2004, Braun has served as 

Director of CIMMYT’s Global Wheat Program, 

which develops and distributes wheat germplasm 

to more than 250 cooperators in around 100 

countries. He previously lived in Turkey for 20 

years, where he lead the TURKEY‐CIMMYT‐

ICARDA International Winter Wheat 

Improvement Program. He contributed to the 

development of more than 40 winter wheat 

varieties, released mainly in West and Central Asia that are now grown on 

more than 1.8 million hectares. Braun was also instrumental in recognizing 

zinc deficiency and soil borne diseases as a major constraints for winter wheat 

production in the dryland areas of West Asia. He has published more than 50 

peer‐reviewed articles and book chapters. He received his PhD from the 

University of Hohenheim, Germany. 

 

 

   

5

Howard G. Buffett  

Mr. Buffett manages the Howard G. Buffett 

Foundation, a private charitable foundation. He 

oversees a 1,500‐acre family farm in central Illinois 

and farms in Nebraska with his son. He oversees 

three foundation‐operated research farms: 1,400 acres 

in Arizona, 4,400 acres in Illinois, and 9,200 acres in 

South Africa.  

Mr. Buffett currently serves on the Corporate Boards 

of Berkshire Hathaway, Inc., an investment holding 

company; The Coca Cola Company, the world’s 

largest beverage company, Lindsay Corporation, a world‐wide leader in the 

manufacturing of agricultural irrigation products; and Sloan Implement, a 

privately owned distributor of John Deere agricultural equipment in North 

America. Mr. Buffett has served on the boards of Archer Daniels Midland, a 

leading world food processor; Coca‐Cola Enterprises, Inc., the largest Coca‐Cola 

bottler in the world; ConAgra Foods, one of North America’s largest food 

service manufacturers and retail food suppliers and Agro Tech Foods, a publicly 

traded food manufacturing company in India.  

In 1997, Mr. Buffett became a member of the Commission on Presidential 

Debates; he received the Aztec Eagle Award from the President of Mexico in 

2000, the highest honor bestowed on a foreign citizen by the Government of 

Mexico; In 2002, he was recognized by the Inter‐American Institute for 

Cooperation on Agriculture as one of the most distinguished individuals in 

agriculture; In 2005, he received the Will Owen Jones Distinguished Journalist of 

the Year Award; In 2007, he was appointed a United Nations Goodwill 

Ambassador Against Hunger on behalf of the World Food Programme; In 2011, 

Mr. Buffett was awarded the World Ecology Award and the George McGovern 

Leadership Award; In 2012, he was awarded the National Farmers Union 

Meritorious Service to Humanity Award, the Columbia University Global 

Leadership Award, an Honorary Doctorate of Humane Letters from 

Pennsylvania State University, the Leader in Agriculture Award from 

Agriculture Future of America, and the Special Service Award from the 

Association for International Agriculture and Rural Development; and in 2013, 

he received the Chairman’s Award from National Geographic Society and the 

International Quality of Life Award from Auburn University.  

He has traveled to 130 countries and authored eight books on conservation, 

wildlife, and the human condition.   

6

Robert W. Herdt  

Bob Herdt is International Professor of Applied 

Economics and Management, Adjunct; Advisor to 

the Director of Cornell’s International Program in 

the College of Agriculture (IP‐CALS); and Advisor 

to the Director of the Cornell International Institute 

of Food, Agriculture and Development (CIIFAD).   

 

From 1986 through 2000 Bob was Director of 

Agricultural Sciences at the Rockefeller Foundation 

in New York, and from 2000 to 2003 he was Vice 

President for Program Administration.   

 

He earned his undergraduate degree in General Agriculture and Master’s 

degree in Agricultural Economics at Cornell. His Ph.D. degree in Agricultural 

Economics is from the University of Minnesota. 

 

Bob focuses on world food issues and on how agricultural technology and 

information affect the productivity of farming systems and the well‐being of rural 

people in developing countries.  Before joining Rockefeller he was Scientific 

Advisor at the CGIAR Secretariat at the World Bank and from 1973 to 1983 was a 

researcher and then head of the agricultural economics program and at the 

International Rice Research Institute in the Philippines. From1979 to 1984 he was 

on the faculty at the University of Illinois.   

 

His recent work on management of agricultural research, intellectual property 

rights, and the economics of technological change is designed to foster 

understanding of the role of new technology as an important force generating 

agricultural productivity and income gains over the past century.   

Herdt is the author or co‐author of over 100 journal articles and a number of books 

including The Rice Economy of Asia, co‐uthored with Randy Barker, a 

comprehensive analysis of the farm, market and international dimensions of rice in 

Asia.  Recently he published a retrospective on lessons from his career: People, 

institutions, and technology: A personal view of the role of foundations in international 

agricultural research and development 1960–2010 appears in the April 2012 issue of 

Food Policy. 

 

 

   

7

Per Pinstrup‐Andersen  

Per Pinstrup‐Andersen is Professor Emeritus and 

Graduate School Professor at Cornell University 

and Adjunct Professor at Copenhagen 

University.   He is past Chairman of the Science 

Council of the Consultative Group on 

International Agricultural Research (CGIAR) and 

Past President of the American Agricultural 

Economics Association (AAEA). He has a B.S. 

from the Danish Agricultural University, a M.S. 

and Ph.D. from Oklahoma State University and 

honorary doctoral degrees from universities in 

the United States, the United Kingdom, 

Netherlands, Switzerland, and India. He is a 

fellow of the American Association for the Advancement of Science (AAAS) 

and the American Agricultural Economics Association. He served 10 years as 

the International Food Policy Research Institute’s Director General and seven 

years as department head; seven years as an economist at the International 

Center for Tropical Agriculture, Colombia; and six years as a distinguished 

professor at Wageningen University. He is the 2001 World Food Prize 

Laureate and the recipient of several awards for his research and 

communication of research results.  

 

 

 

   

8

Sanjaya Rajaram  

Sanjaya Rajaram is a prolific wheat breeder, 

recognized for breeding the greatest number of 

varieties of the crop in the world. 

Currently the director of Resource Seed 

Mexicana in Mexico, Rajaram was most recently 

the director of the Biodiversity & Integrated Gene 

Management Program (BIGM) of the 

International Center for Agricultural Research in 

the Dry Areas (ICARDA) and the joint 

coordinator of the Borlaug Global Rust Initiative 

(BGRI). He also previously worked at CIMMYT as director of the Global 

Wheat Program. 

His work has built on the successes of the Green Revolution and focuses on 

raising the yield potential of wheat as well as breeding for drought, pest and 

disease resistance.  

This research has led to the release of 500 varieties in 51 countries during the 

last three decades. Wheat varieties bred and developed by his team are now 

planted on more than 60 million hectares worldwide and provide an 

additional $US 1.3 to 3.9 billion to wheat farmers. 

The varieties are developed as International Public Goods, meaning that they 

are available to and researchers, farmers and seed producers free of charge. 

These improved varieties allow wheat farmers to profit from their work and 

help reduce rural unemployment in developing countries. Rajaram has 

received more than 75 honors and awards for his leadership and 

contributions to the global wheat community, including the M.S. 

Swaminathan Award. 

A Mexican citizen, Rajaram received a B.Sc. in agriculture from the College of 

Jaunpur in India, a M.Sc. in genetics and plant breeding from the Indian 

Agricultural Research Institute in New Delhi, India, and a Ph.D. in plant 

breeding from the University of Sydney in Australia. 

 

 

   

9

Rachel Laudan  

Rachel Laudan is author of Cuisine and Empire: 

Cooking in World History (2013).  Raised on a large 

arable and dairy farm in southern England, 

trained as a geologist, she is author of several 

books and many articles on the history and 

philosophy of science and technology, as well as 

being co‐editor of the Oxford Companion to the 

History of Modern Science.  After deciding to leave 

academia, she moved to Mexico, and turned to 

food history for which she has won the two major 

prizes: the Sophie Coe Prize of the Oxford 

Symposium of Food and Cookery and the Julia 

Child Prize of the International Association of Culinary Professionals.  She 

now lives in Austin, Texas.  

 

 

 

 

   

10

Wolfgang H. Pfeiffer   

Dr. Pfeiffer provides overall leadership and drives 

HarvestPlus ‘Operations’ to achieve the 

technological and commercial project goals: 

generating micronutrient‐dense, high‐yielding, 

high‐profit varieties of key staple foods and in 

designing and implementing the delivery of the 

technology to undernourished people. 

Crop development oversight responsibilities 

include coordinating the development and 

implementation of product concepts, enabling 

technologies and related plant science research at 

CGIAR‐Centers and public/private National Agricultural Research & 

Extension Systems. 

Delivery management responsibilities embrace the design and 

implementation of effective delivery strategies in target countries with 

HarvestPlus country teams by forming operational and strategic partnerships 

along value chains in areas such as seed supply, farm extension, marketing 

and advocacy.  

He obtained his M.S. and Ph.D. degrees in Agricultural Sciences from 

Stuttgart‐Hohenheim University in Germany. Prior to joining HarvestPlus in 

2005 he worked for more than 20 years at the International Maize and Wheat 

Improvement Center (CIMMYT) in Mexico and was responsible for applied 

and strategic bread wheat, durum wheat, and triticale improvement under 

CIMMYTʹs global germplasm development mandate. 

 

 

   

11

Tony Fischer  

Tony Fischer came from a wheat–sheep farm near 

Boree Creek in southern New South Wales 

(NSW), Australia, a commercial operation in 

which he was involved for over 50 years. He 

completed degrees in Agricultural Science at the 

University of Melbourne before pursuing a PhD 

in plant physiology at the University of California, 

Davis, USA. He worked as a crop agronomist and 

physiologist for the NSW State Department of 

Agriculture and at CSIRO, and in the same 

capacity at CIMMYT, Mexico, from 1970 to 1975. 

He later returned to CIMMYT as Wheat Program 

Director (1988–95), following which he was a 

program manager in crop and soils at ACIAR in 

Canberra, Australia. He is now an Honorary Research Fellow at CSIRO Plant 

Industry, also in Canberra. His research publications in plant and crop 

physiology and agronomy are widely cited. He has served on several 

International Center Boards of Trustees as well as the Board of GRDC, and 

has travelled widely in the grain cropping regions of the world, especially 

those of Asia and Latin America. He has received many awards for 

contributions to crop science, including the Colin Donald and William Farrer 

medals, and Fellowships of the Australian Institute of Agriculture, the 

Australian Academy of Technological Sciences and Engineering, and the 

American Crop Science and Agronomy societies. In 2007 he was elected a 

Member of the Order of Australia. 

 

 

   

12

Uma Lele  

Dr. Uma Lele, an independent scholar and 

development economist, is currently writing a 

book tentatively titled “Can International 

Institutions Help Transform Food and 

Agriculture in a Radically Changed World?”  She 

has a Ph.D. from Cornell University and four 

decades of experience in research, operations, 

policy analysis, and evaluation in the World 

Bank, universities and UN organizations. She has 

published extensively and has served on 

numerous advisory, expert and award panels in international organizations 

including on the Sasakawa 2000 Program (1992‐94), and the World Food Prize 

(1987‐94). She was a Graduate Research Professor (1991‐1995) and Director of 

International Studies (1992‐93) at the University of Florida, co‐chaired an 

international taskforce on Global Research on the Environmental and 

Agricultural Nexus (GREAN) (1992‐95), and established and directed the 

Global Development Initiative of the Carter Center and the Carnegie 

Corporation (1992‐93). She was on the founding board of the CGIAR’s Centre 

for International Policy Research (1993) and a member of the CGIAR’s 

Technical Advisory Committee (1994‐95). She is Fellow of the American 

Agricultural and Applied Economic Association and of India’s National 

Academy of Agricultural Sciences; she established a Best Research on Gender 

Award at IAEA and a Mentorship Program for students from developing 

countries at the American Agricultural Economic Association. 

 

 

 

   

13

Graham Farquhar  

Distinguished Professor Graham Farquhar AO, 

FAA, FRS, NAS has undertaken and led research 

across a broad range of fields and scales, from 

integration of photosynthesis with nitrogen and 

water use of plants, stomatal physiology, isotopic 

composition of plants and global change. He is a 

fellow of The Australian Academy of Science and 

of the Royal Society and a Foreign Associate of 

the National Academy of Sciences. He has over 

300 research publications and is a leading 

Australian Citation Laureate.  

 

   

14

Jesse Poland    

Dr. Poland is an Assistant Professor at Kansas 

State University and director of the Feed the 

Future Innovation Lab for Applied Wheat 

Genomics.  Research in Dr. Poland’s group is 

focused on wheat genetics and germplasm 

improvement.  They are currently developing 

new marker technologies for use in breeding, 

diversity studies, and association genetics.  In 

collaboration with public breeding programs, Dr. 

Poland is exploring the use of genomic selection 

methods in wheat breeding.  In the area of 

germplasm development, Dr. Poland’s group is 

focused on developing new breeding lines with 

resistance to the major pests of wheat including stem rust, strip rust, leaf rust 

and Hessian Fly.  To compliment advances in genomics, Dr. Poland’s lab is 

developing high‐throughput phenotyping approaches for field‐based 

evaluation of breeding lines with the primary focus being genetic 

characterization of heat and drought tolerance and development of improved 

germplasm. 

 

Dr. Poland currently supervises six graduate students, two post‐doctoral 

scholars and sits on the graduate committees of five other students at Kansas 

State University and Colorado State University, where he holds affiliate 

faculty status. 

 

 

 

   

15

Bruno Gerard  

Bruno Gerard, a Belgian citizen, is director of the 

CIMMYT Global Conservation Agriculture 

Program, based at El Batan, Mexico. He was 

trained as Agricultural Engineer (MSc, University 

Catholique de Louvain, 1987), Irrigation Engineer 

(MSc, Utah State University, 1990) and received a 

PhD from the Plant Nutrition Department at 

University of Hohenheim in 2000. Bruno joined 

ICRISAT/Niger in 1991 and worked as head of 

farm and engineering services where in addition 

to his management tasks he contributed to the 

development of spatial tools with various 

research programs and universities. In 2000, he was appointed Principal 

Scientist within the ICRISAT Natural Resource Management Program still 

based in Niger and also served as Country Leader, and Global Theme Leader 

on ‘Crop‐Livestock Interaction and systems diversification’. He developed 

and led several R4D multi‐institutional projects focusing on decision support 

to farmers and integrated soil fertility management. In 2008 he was appointed 

Coordinator of the Systemwide Livestock Program at ILRI, Ethiopia where he 

mainly developed a research project portfolio with 5 CGIAR centers and 

Wageningen University to research on crop residue tradeoff in South Asia, 

West Africa, East and Southern Africa. At CIMMYT since September 2011, he 

is leading a team of 40+ internationally recruited scientists developing 

integrated, multi‐scale, and impact focused approaches to contribute to 

sustainable intensification of maize and wheat‐based systems in Sub‐Saharan 

Africa, South Asia and Latin America. 

 

   

16

Jikun Huang   

Dr. Huang is the Founder and Director of Center 

for Chinese Agricultural Policy of Chinese 

Academy of Sciences, Professor at Institute of 

Geographical Sciences and Natural Resources 

Research., and Fellow of the World Academy of 

Sciences TWAS ‐ for the advancement of science in 

developing countries. Currently, he is also vice‐

president of Chinese Association of Agricultural 

Economics and Chinese Association of Agro‐tech 

Economics, and board member of the International 

Food & Agricultural Trade Policy Council (IPC), 

International Service for the Acquisition of Agri‐biotech Applications 

(ISAAA), and African Agricultural Technology Foundation (AATF). 

Previously he held research positions at the Chinese Academy of Agricultural 

Sciences, the International Rice Research Institute, and the International Food 

Policy Research Institute (IFPRI). He received his BS degree in agricultural 

economics in Nanjing Agricultural University in 1984 and his Ph.D in 

agricultural economics from the University of the Philippines at Los Banos in 

1990.  

 

His research covers a wide range of issues on Chinaʹs agricultural and rural 

development, including works on agricultural R&D policy, water resource 

economics, price and marketing, food security, poverty, trade policy, and the 

economics of climate change. He received the Outstanding Scientific Progress 

awards from the Ministry of Agriculture four times, Award for China’s top 

ten outstanding youth scientists in 2002, Outstanding Achievement Award 

for Overseas Returning Chinese in 2003, Outstanding Contribution Award on 

Management Science in 2008, the UPLB Distinguished Alumni Award in 

2008, and 2010 IRRI’s Outstanding Alumni Award. He has published more 

than 400 journal papers, of which about 200 papers published in the 

international journals, including Science and Nature. He is co‐author of 18 

books. 

 

 

 

   

17

Ashok Gulati    

Ashok Gulati is Chairman of the Commission for 

Agricultural Costs and Prices (CACP), since March, 

2011. Prior to this, he was Director at the 

International Food Policy Research Institute (IFPRI) 

for more than 10 years. Before joining IFPRI, he 

also served as NABARD Chair Professor at the 

Institute of Economic Growth, and Chief Economist 

at the National Council of Applied Economics 

Research in India. He has his M.A. and Ph.D. in 

economics from the Delhi School of Economics (India).  

He has been deeply involved in agri‐policy analysis and advice in India. He 

was a member of the Prime Minister’s Economic Advisory Council; a member 

of the State Planning Board of Karnataka; and a member of the Economic 

Advisory Committee of the Chief Minister of Andhra Pradesh.  

He has authored/co‐edited 10 books on issues related to Asian Agriculture 

with a focus on India, besides several research articles in international and 

Indian journals of repute.  

 

 

 

 

 

    

18

Mahmoud Solh  

 Dr Mahmoud El Solh, Director General of ICARDA, 

holds a PhD in Genetics from the University of 

California, Davis, USA, and has an impressive 

record of scientific publications. He has more than 30 

years’ experience international agriculture research 

and development in developing countries 

particularly in dry areas. He started his professional 

career in the Ford Foundation starting in 1972, then 

with ICARDA, the American University of Beirut, 

and FAO, before assuming the position of Director 

General of ICARDA. He has rich experience in donor relations and fund 

raising, and an in‐depth knowledge of the needs and aspirations of the 

national agricultural research and development systems in non‐tropical dry 

areas, particularly in West, Central and South Asia and North and East 

Africa. Throughout his career his activities have focused on contributing to 

food security, alleviating poverty, and developing sustainable agricultural 

research systems; planning, implementation, and evaluation of agricultural 

research projects for research and development; institutional and human 

resource capacity development; and promoting north‐south and south‐south 

cooperation. Dr. El Solh is the author of more than 120 publications/papers 

and articles including books and chapters of books. His contribution to 

agricultural research and development has been recognized through several 

prestigious awards and honors. 

 

 

   

19

Tray Thomas  

Mr. Thomas has focused his career on assisting 

companies in discerning the changing face of 

business in order to formulate and implement 

strategies that will most effectively utilize their 

resources. 

As Partner of THE CONTEXT NETWORK, Mr. Thomas 

leads a group of full time consultants and a large 

network of independent consultants to help 

management of large agribusiness companies with 

strategic planning, opportunity analysis, and 

market intelligence activities.   

Prior to founding THE CONTEXT NETWORK, Mr. Thomas learned the tools and 

processes of effective consulting while working as a professional management 

consultant in the Cambridge and London offices of Arthur D. Little, Inc.  Mr. 

Thomas gained first hand experience in commercializing new products and 

technologies within the rapidly changing agricultural market as an executive 

with ICI’s Global Seed Division. 

The bulk of his industry experience has been in the agricultural chemical, 

agricultural biotechnology, and seed industries.  He has also worked 

extensively in the formulation of alliances between agricultural technology 

companies and food processors and marketers. 

 

   

20

Derek Byerlee  

Derek Byerlee from Australia is currently a 

Visiting Scholar, Center for Food Security and the 

Environment, Stanford University and a 

consultant and advisor to a number of 

international organizations. Formerly the rural 

strategy adviser of the World Bank and co‐director 

of the 2008 World Development Report, 

Agriculture for Development, Byerlee has 

dedicated his career to agriculture and food 

security in developing countries as a teacher, 

researcher, administrator, and policy advisor.  

From a period as Associate Professor at Michigan 

State University, he spent the bulk of his career at the International Maize and 

Wheat Improvement Center (CIMMYT). He has published widely on 

agricultural development in Africa, Asia, and Latin America and was elected 

a Fellow of the American Agricultural Economics Association in 2003. His 

current work relates to global food security, land use and tropical 

deforestation, agribusiness, sustainable agriculture, and the history of tropical 

commodity exports and plantations.  

 

 

 

 

  

   

21

Steve Jennings   

Dr. Jennings is the Director of Programme Policy 

in Oxfam GB. Oxfam GB an International 

Development charity that, as part of Oxfam 

International, works on humanitarian assistance 

and long‐term development in over 90 countries 

worldwide. Within Oxfam GB, Programme Policy 

holds three main functions: technical advisory 

support, research, and publishing. Before 

becoming the Director of Programme Policy, he developed and lead Oxfamʹs 

strategic and practical programme of work on climate change adaptation, and 

had supported Oxfamʹs livelihoods work in countries affected by the Indian 

Ocean Tsunami. Prior to joining Oxfam, he was a consultant responsible for 

catalysing several innovative policy processes that have brought about social 

change and improved environmental and economic management in the 

private sector, and facilitated the development of multistakeholder 

sustainability standards in the palm oil and soy sectors. Before that, he was a 

scientist working out of Oxford University, conducting research into tropical 

rainforest ecology, and has many published numerous peer‐reviewed papers 

on tree regeneration ecology. 

 

 

   

22

Robert Paarlberg  

Robert Paarlberg is the B. F. Johnson Professor of 

Political Science at Wellesley College, and Adjunct 

Professor of Public Policy at the Harvard Kennedy 

School.  He is has also been a Visiting Professor of 

Government at Harvard University, and is an 

Associate at Harvard’s Weatherhead Center for 

International Affairs.   

Paarlberg received his B.A. in Government from 

Carleton College in 1967 (which honored him in 

2012 with a distinguished alumni achievement award), and his PhD in 

International Relations from Harvard University in 1975. 

Paarlberg’s central research interest is international food and agricultural and 

policy.  He has been the author of academic books on food and agricultural 

policy published by Cornell University Press, Johns Hopkins University 

Press, the University of Chicago Press, and Harvard University Press.  His 

2008 Harvard Press book, Starved for Science, included a foreword by Norman 

E. Borlaug and Jimmy Carter.  His most recent book is from Oxford 

University Press, and is titled Food Politics: What Everyone Needs to Know.  A 

second edition of this book was published in 2013. 

Paarlberg has been a member of the Board of Agriculture and Natural 

Resources at the National Research Council of the National Academies in the 

United States, and was a member of the Board of Directors of Winrock 

International.  He has been a frequent consultant to IFPRI, and also to USAID, 

COMESA, the World Bank, the Chicago Council on Global Affairs, and the 

Bill and Melinda Gates Foundation.  Paarlberg was the principal author of 

“Renewing American Leadership in the Fight Against Global Hunger and 

Poverty,” a 2009 white paper from the Chicago Council credited with helping 

to revive United States agricultural development assistance policy.   In 2009 

and 2010 Paarlberg gave testimony on United States agricultural policy to the 

Senate Committee on Foreign Relations and to the House Committee on 

Agriculture. 

 

   

23

Robert T. Fraley  

A distinguished leader in agriculture technology, 

Dr. Fraley oversees Monsanto’s global 

Technology division, which has plant breeding, 

biotechnology, and chemistry research facilities in 

dozens of countries.  He has been involved in 

agricultural biotechnology since the early 

eighties, and has been with Monsanto for more 

than 30 years. Dr. Fraley has contributed to 

significant advances in agriculture, and has 

authored more than 100 publications and patent 

applications in agricultural biotechnology.  Most 

notably, he has been recognized for the discovery, development and 

successful commercialization of Roundup Ready® crops. Dr. Fraley has been 

the recipient of numerous awards, including the National Medal of 

Technology from President Clinton in 1999, the 2008 National Academy of 

Sciences Award for the Industrial Application of Science for his work on the 

improvement of crops through biotechnology, and in 2013 was honored as a 

World Food Prize Laureate. 

 

 

 

   

24

Rikin Gandhi   

Rikin Gandhi is chief executive officer of Digital 

Green.  His interests include sustainable 

agriculture and technology for socioeconomic 

development. Rikin received a masterʹs in 

aeronautical and astronautical engineering from 

MIT and a bachelorʹs in computer science from 

Carnegie Mellon University.  Rikin is a licensed 

private pilot and received patents for linguistic 

search algorithms that he helped develop at 

Oracle.  Born and raised in the U.S., Rikin 

ventured to rural India to start up a social 

enterprise to develop biofuels. He then joined Microsoft Research in 

Bangalore, India as a researcher in the Technology for Emerging Markets 

team that incubated Digital Green. 

 Digital Green is now an independent, not‐for‐profit organization with 

support from the Bill & Melinda Gates Foundation, the UKʹs Department for 

International Development (DFID), Google, and others. 

 

 

   

25

Wayne Powell   

Wayne Powell is currently Professor and Director 

of the Institute of Biological, Environmental and 

Rural Sciences (IBERS) at Aberystwyth University 

and will become the Chief Science Officer for the 

CGIAR in April 2014. Prior to this he was Director 

and Chief Executive Officer of the National 

Institute of Agricultural Botany (NIAB). Based in 

Cambridge, UK, NIAB is a ‘not for profit’, 

independent plant biosciences company advancing 

the role of plant genetic resources and policy 

through research, services, training, consultancy 

and product development. Previously he was Professor and Foundation 

Head of the School of Agriculture and Wine, University Adelaide, Australia. 

Between 1998 and 2000 Professor Powell worked at the DuPont Company in 

Wilmington, Delaware, USA, where he gained exposure and experience of 

operating in a global private sector organization. His personal research 

interests are at the interface of plant genetics, genome science, plant breeding 

and conservation of genetic resources with a strong emphasis on the delivery 

of ‘public good’ outcomes.   He maintains an active research group, continues 

to write grants to support his research from a diverse range of funding 

sources.  

 

 

   

26

Hélène Lucas  

Hélène Lucas obtained her PhD on Triticineae 

relationships from the University of Rennes in 

1987. During her post‐doc at the Plant Breeding 

Institute in Cambridge (UK), she contributed to the 

elucidation of the structure of Wis2‐1A ‐ the first 

isolated wheat LTR‐retrotransposon ‐ and to the 

study of its distribution in wheats. In the early 

1990s, she established a cereal molecular genetics 

lab at the French National Institute for Agricultural 

Research (INRA) Clermont‐Ferrand. From 1992 to 

2005 her group at INRA Versailles studied the 

transposition cycle, regulation and impact of retrotransposons on genome 

structure and evolution, using as a model system the tobacco Tnt1 

retrotransposon introduced into Arabidopsis thaliana. She deciphered several 

steps of Tnt1 replication cycle and showed that it could be used as a gene‐

tagging tool in heterologous hosts. She also demonstrated that, when present 

in multiple copies in Arabidopsis, Tnt1 amplification was controlled by a 

reversible epigenetic regulation. 

From 2005 to 2011 Dr. Lucas was Head of the Genetics and Plant Breeding 

Division at INRA, where she managed 20 research units and 15 experimental 

stations across France. She has been a member of the European Plant Science 

Organisation Board (2003‐2006), the Scientific Council of Genoplante (2005‐

2010), the Scientific Council of the CTPS (French Permanent Technical 

Committee for Plant Breeding, 2005‐2011) and the Scientific Council of 

Arvalis (2007‐2011). 

Hélène Lucas has been the Scientific Coordinator of the International 

Research Initiative for Wheat Improvement ‐ now Wheat Initiative ‐ since its 

endorsement by the G20 member states in June 2011. She coordinated the 

submission of the proposal to the G20 Agriculture Ministers.  

Since September 2011, she also chairs the Managing Board of the French 

“Green Biotech” Public‐Private Partnership Scientific Group.  

In 2012, Hélène Lucas was awarded Knight of the French Legion of Honor. 

  27

Borlaug:AManonMessageRonnie Coffman, Director of International Programs, College of Agriculture and Life 

Sciences, Cornell University, USA   

 

The current debate about the adoption of biotech crops is reminiscent of similar concerns expressed about the modern wheat varieties that were introduced to Asia in the 1960s during what is now called the “Green Revolution.” Dr. Norman E. Borlaug, the recipient of the 1970 Nobel Peace Prize, led the Green Revolution and was my mentor at the time. People were suspicious of the new varieties because they were shorter in stature and seemed “unnatural.” But the new, improved varieties resulted in dramatically higher yields and saved the South Asia region from famine.  For more than 40 years, South Asia has relied on these new varieties and modern agricultural technology to sustain its people, doubling wheat production and moving from wheat importers to wheat exporters. 

Today, we scientists face a tremendous communications challenge concerning the use of agricultural biotechnologies. If Dr. Borlaug were with us today, he would be dismayed and disgusted with the anti‐GMO movement and the worldwide cloud of fear and superstition that surrounds the use of biotech crops.  He would abhor the anti‐science activists and their followers who have no regard for empirical evidence and are denying farmers in developing countries the right to make choices about the varieties of crops they wish to grow.  Most of all, he would not want science to bypass the resource‐poor smallholder farmers in developing countries, for whom modern agricultural technologies can mean the difference between food and famine. 

Dr. Borlaug was an innovator and a great communicator. He was always on message. He advocated with absolute conviction about the potential benefits to humanity of deploying the modern technologies of his time, from short‐stature wheat, to modern fertilizers and agronomic techniques.   

We scientists need to learn from Dr. Borlaug’s example and consider how we might develop our own messaging skills and advocate for the use of biotechnologies to help meet the challenges of global food security.  

If he were standing here, Borlaug would tell us that in the next century, the world will be challenged by more mouths to feed, new pathogens, climate change, constrained resources, and nutritionally deficient children who go to bed hungry. He would proudly defend those technologies that we all know can make a difference ‐‐‐ from Bt maize to Bt brinjal, Bt cotton, Papaya Ringspot Virus‐resistant papaya, Cassava, Golden Rice, Late Blight Resistant potato, drought‐ and salinity‐tolerant maize, genetically engineered wheat, and crops that are still in the pipelines.  

If Norman Borlaug were alive today, he would tell us it is our moral imperative to speak up and protect the world’s right to science‐based innovation. He would want us to debate our critics, lobby politicians, engage public policy makers, and stand strong 

 

EXTENDED ABSTRACTS 

  28

before the opposition. Norman Borlaug spent a lifetime being on message and he would encourage us to be the same. 

If we do otherwise, we risk setting the world back 50 years. 

In 2013, we celebrated 50 years of Borlaug in India.  Many of the participants here at the Wheat Summit were also present there.  Borlaug came to India in 1963 at the invitation of Agricultural Minister Subramanian.  Dr. Subramanian was a courageous man who invited Borlaug when the majority of the people in the Indian Government opposed the idea.  The communists claimed Borlaug was an American who was opening the door to big business with the objective of selling seed and fertilizer to India.  But Borlaug did not waiver before the naysayers and the policy makers.  He had a clear message for Subramanian and all who wanted to hear:  Wheat seed and fertilizer had to be imported or famine was inevitable.  Subramanian listened and we all know the outcome. 

Dr. Borlaug truly despised the “constant pessimism and scare‐mongering” that was as common then as it is now.  He bemoaned the “bureaucratic chaos, resistance from local seed breeders, and centuries of farmers’ customs, habits, and superstitions.”  Through it all, however, he remained on message.  Responding to those preaching danger, he provided one of my favorite responses, “If we could get a gene from rice ‐‐ because rice does not suffer from rust ‐‐ and then use it to protect other crops that suffer from rust like wheat, that would be a big revolution, and that would not be dangerous to human health in any way.”  Speaking in Nairobi in the year 2000, not long after Ug99 was discovered, Borlaug told it like it was (and still is): "We need more investments in agriculture and we must stop looking at agriculture as a donkey's profession," he said. He pleaded with African leaders to embrace modern technology. "The so called GMOs can play a very vital role in peoples' lives. However, this must be accompanied by political goodwill because technology alone cannot survive without decisive support." 

Borlaug has been called a practical humanitarian.  He realized that what he and his colleagues had achieved was, “a temporary success in man's war against hunger and deprivation.”  He understood the challenge of the “population monster,” but he was not discouraged by it.  As we are challenged by the social ills of today’s world, as we experience the pressure of climate change, let us face the reality that while our science is sound, it sounds suspicious to many of its potential beneficiaries.  We can and we must do a better job of communicating.  We must be men and women on message, as was Borlaug, drawing on our conviction and sharing it with the world. 

As I write this, the Olympic Games are just wrapping up in Sochi, Russia.  I am reminded that Borlaug was a trained athlete – competitive, determined, and aware of the need for teamwork.  As we celebrate his 100th birthday, let us build on the best of Borlaug and, “Keep the herd together.”  Let us expand on the legacy of this great man that we all cherished, and make the world an even better place than it was just five short years ago when Dr. Borlaug left us.  He was a man with a message and he took it to the farmer like no other person in history, before or since.  He saved a billion lives and now it falls to us to sustain that salvation. 

 

  29

TheGreenRevolution–LessonsfortheFutureSir Gordon Conway, Professor of International Development, Imperial College, UK 

 

The Green Revolution was one of the great technological achievements of the 20th century. Food production kept pace with population growth and in many regions the probability of famine was reduced. However along with the successes came a number of problems.  For example, the technologies accompanying the Green Revolution turned out to have adverse environmental effects. Subsequently, the contribution of agriculture to global pollution has grown, with potentially serious consequences. Land has become degraded, forests and biodiversity lost, grazing land and fisheries overexploited. Moreover, as we have discovered in recent years, agriculture is both a victim and a culprit of climate change. 

The challenges we face today are thus similar but, in some respects, more complex. We have to intensify the production of food on the same amount of land, with the same amount or less of water, but in a sustainable fashion, with more prudent use of inputs, lower emissions of greenhouse gases, improvements to natural capital, and incorporating greater resilience. We have to do more with less and not damage the environmental resources on which agriculture depends. 

Sustainable intensification can be approached through ecological, genetic, or socioeconomic means. These are discussed with special reference to the case of increased wheat production. 

 

  30

WhytheNextRevolutionMustBeBrown,NotGreenHoward G. Buffett, Chairman & CEO, Howard G. Buffett Foundation, USA 

 

During the twentieth century, the United States built a powerful economy as a result of an agricultural and an industrial revolution. Production techniques developed in the U.S., combined with advances in crop breeding by Dr. Norman Borlaug and others, brought a “Green Revolution” to many parts of the world. Dr. Borlaug’s contributions are especially important because, for centuries, agriculture has been the backbone of every society, and when it has been neglected, civilizations have literally failed. 

We have learned much from the Green Revolution, but it is now history, so we must ask: what is the future? The future requires a “Brown Revolution,” through the design and adoption of context‐appropriate farming systems that increase yields while addressing soil health, water quality, and environmental impact. 

All farmers, large and small, will be critical to this success. There are simple things that farmers have done for decades that support the goals of the Brown Revolution. Crop rotations and continual soil cover are two of them. 

Our challenges are intensified by a growing population and increasing food production needs. As the most productive farmland becomes concentrated into the hands of fewer, and information is disseminated more quickly through new media channels, there is a risk that facts are misrepresented or individuals and institutions advocate for a status quo that is out of sync with current and future demands on food production. Promoting the status quo hurts not only farmers, but also those who are hungry. Farmers need to lead the debate on the future of food production, not let others frame the solutions. That is why the Howard G. Buffett Foundation is working with partners such as CIMMYT, the National Corn Growers Association, the American Soybean Association, and universities like Penn State, Purdue, Texas A&M, Michigan State University, Southern Illinois University, and others to find ways to increase productivity while minimizing our environmental footprint. 

Our foundation’s research demonstrates that we can modify our practices without disrupting the basics of our agricultural systems. We are using new tools and new approaches because investment and innovation are paying off. Efficiency and flexibility have reached new levels.  

Our industry’s knowledge of no‐till, strip‐till, cover crops, and nutrient management has gone from experimentation to implementation. We have more opportunities ahead of us than the successes we are leaving behind. But we must recognize that the world expects more from us, and our planet demands it. Even at the local level, we each carry a global responsibility.  

If farmers want to control our destiny then we need to develop our own solutions. If farmers in the developed world do not act with urgency to adopt better practices, we will face even greater scrutiny and regulation, as well as misinformation from uninformed sources and critics with misguided agendas. But we are not without fault. If U.S. farmers did not include the soil erosion savings gained through the Conservation Reserve 

  31

Program, the United States would be facing the worst soil erosion numbers in history. That isn’t the legacy I want to leave; it isn’t a legacy the world can afford.  

In the developing world, conservation‐based farming practices are a practical tool to addressing the soil health issues challenging many smallholder farmers. By investing in adoption of these approaches, farmers in the developing world can follow the path of countries like Brazil and Argentina that built their agricultural economies in the past few decades using practices that will sustain rather than deplete their resources. 

As farmers, we all understand the importance of time. Each of us has about 40 chances, or 40 growing seasons, during our farming career to do our best. We must grow the best crops we can, while looking toward the demands of the future. With today’s technology and knowledge, there is no reason the Brown Revolution cannot be greater than the Green Revolution; it must be if we are to defeat global hunger. That’s something Dr. Borlaug would demand from us as the best way to honor his legacy. 

Howard G. Buffett oversees a 1,500‐acre (607‐hectare) family farm in central Illinois and farms with his son in Nebraska. They grow corn and soybeans and utilize a variety of cover crops. Mr. Buffett also oversees three conservation agriculture research farms operated by the Sequoia Farm Foundation with funding support from the Howard G. Buffett Foundation. Sequoia Farm Foundation includes 1,400 acres (567 hectares) in Arizona; 4,400 acres (1,780 hectares) in Illinois; and 9,200 acres (3,723 hectares) in South Africa. 

 

 

 

  32

MeetingAgriculturalRequirementsin2050…NotbyTechnologyAlone Robert W. Herdt, International Professor of Applied Economics and Management, 

Cornell University, USA 

 

This presentation provides my perspective on the requirements agriculture worldwide likely will face in 2050 and the agricultural research needed to meet those challenges. I first describe the drivers of demand and how the needs of the poor add to market demand, then summarize total worldwide agricultural requirements and discuss what technology and policy research may be needed, and finally discuss what the CGIAR centers are doing toward that research agenda.      

Accelerating globalization driven by the cyber‐revolution increasingly means that demand generated in any market is transmitted to all markets. Global demand is increasingly relevant for all countries regardless of per capita incomes or degree to which they are market‐driven.  

The demand for agricultural production comes from growing populations; rising per capita incomes; changing food consumption patterns; increasing biofuel production; and growing commitment to wise use of soil, water, landscape, and environmental services. I believe the rate of growth required to meet agricultural demand in 2050 is within reach, but over one‐sixth of humanity have incomes so low they cannot generate market demand. Their needs for food, clothing, and shelter are no less important than the demand from those with higher incomes. If society is committed to meeting those needs by 2050, the required agricultural production growth rate will be much higher.  

Estimates of future demand are uncertain because the projections for each component have a wide range and so the total has an even wider range. Still, it seems likely that production will keep up with demand but perhaps not with the requirements of the poor in addition. However, weather‐induced shocks and erratic policies will be even harder to cope with. Meeting the 2050 challenges will require biological, policy, and institutional research as well as advocacy. The CGIAR centers have underway modest efforts to foresee needed technology research, but thinking about what policy and institutional research is needed has received much less attention, and bio‐physical technology alone will not see us through 2050.  

 

 

  33

NecessaryPolicies Per Pinstrup‐Andersen, Professor Emeritus, Cornell University, USA 

 

Appropriate policies are necessary to enhance the desired impact of research and to provide incentives to funders and researchers to guide research priorities towards the achievement of societies’ goals.  The importance of the interaction between research and policy was fully appreciated and understood by Norman Borlaug, whose advice to governments played a significant role in achieving the benefits from the Green Revolution. In its most narrow sense, the goal of agricultural research may be specified as increasing agricultural productivity. However, much more is expected. Agricultural research is supposed to achieve many other goals, including the improvement of household and individual food security; reduction of poverty and hunger together with better nutrition; assuring sustainable management of natural resources and helping farmers to adapt to climate change; increasing farmer incomes; reducing food prices; reducing unit‐costs of production and marketing; and reducing risks and uncertainties for producers, traders, and consumers.  Ideally, research and policy would be combined to identify and achieve multiple‐wins. The Green Revolution achieved this to a considerable degree. 

While focused on the achievement of the above mentioned goals, policy and agricultural research should be guided by the current and expected future drivers of the food and agricultural systems. The most critical future drivers include input and output price trends and fluctuations; economic growth, urbanization, globalization, and the related diet transition and changes in the post‐harvest value chain; population growth and other demographic changes; climate change, increasing water scarcity, soil deterioration, and increasing demands for sustainability in the management of natural resources;  increasing economies of scale in production and the supply chain; and increasing competition for agricultural resources. This last driver is becoming more important as the bioeconomy places new demands on agriculture. 

So what policies should be pursued? Since specific policy recommendations should be context specific, only general policy priorities can be suggested here. Investment in rural infrastructure and institutions should be the top policy priority for most developing countries, particularly the low‐income developing countries, including most of the countries in Sub‐Saharan Africa. Without such investments, input and output markets do not work well and farmers are unlikely to be able to fully exploit potential benefits from new technology. Adoption will be very limited and the above goals will not be achieved. Yield gaps continue to be large and attempts to reduce the gaps should focus on the off‐farm constraints facing the farmer. Public investments are urgently needed in feeder roads, water management infrastructure, and institutions to assure access to savings and loans, contract enforcement, standards, incentives, and regulations. Without such public investments, the private investment so urgently needed in both production and the post‐harvest supply chain will not be forthcoming. The Green Revolution was most successful in regions where basic infrastructure was in place and input and output markets worked. Unfortunately, most smallholder farmers in the poorest developing countries do not operate in such environments.   

  34

Policies and research are urgently needed to help farmers cope with risk and uncertainty resulting from extreme weather events and price fluctuations. Risk management policies such as insurance schemes, and credit to improve storage and transportation facilities, should be pursued. Policies that provide incentives to farmers to change production systems to adapt to extreme weather events and other climate change‐induced risks and uncertainty should be combined with more research to develop drought, flood, heat, and salt tolerant crop varieties. Policy is needed to facilitate the development and rapid approval of the most effective technologies to address these goals, using the most appropriate research methods including, when warranted, transgenic methods.   

Policies to facilitate private sector investment in technology development, including clear intellectual property rights and public support of private sector credit programs for smallholders are likely to be needed in most low‐income developing countries. While public funds should be allocated to research needed to produce public goods, private goods‐type technology will be produced by the private sector only if there is an economic demand for it. Thus, smallholder farmers should be assisted to turn their technology needs into economic demand through access to credit and risk management programs. Alternatively, public funds could be made available to either develop the private sector‐type technology through publicly‐funded research, or by establishing funds that would purchase and take intellectual ownership to technology developed by the private sector and make it available to smallholders for free.   

Policies are needed in many countries to clarify land and water tenure and user rights and to avoid labor‐replacing capital subsidies. Of particular concern are policies that facilitate large‐scale international land acquisition and the related unsustainable exploitation of water currently taking place in many low‐income countries, in which low‐cost foreign capital is replacing smallholder farmers. While these programs may increase total agricultural production (raw materials for biofuel production as well as food), they are likely to reduce household food security in the regions where they take place. 

Input and output price policies are needed to help reduce price volatility to both farmers and consumers.  While seed and fertilizer subsidies may be warranted to develop or strengthen the seed industry and expand fertilizer use, they should probably be limited to landlocked countries and a well‐defined short period of time, and combined with the above mentioned investments in rural infrastructure and domestic markets. 

Policy is needed to change the food system, including both agriculture and the post‐harvest supply chain, to better meet health and nutrition goals. This would include incentives and regulation to alter the output of private sector food processing and changing the goal of explicit and implicit commodity subsidies from more dietary energy to more and lower‐priced nutrients. Failure to pursue such policies may result in a world population of obese and nutrient deficient people. This is a trend that has already begun.    

 

  35

Wheat:TheGrainattheCenterofCivilizationRachel Laudan, Author of Cuisine and Empire: Cooking in World History, UK 

 

Wheat is the raw material of many of the world’s most important and most cherished dishes: cakes, pies, pastries, dumplings, and above all bread and noodles in all their multifarious forms. No one would have predicted this of the hard‐to‐process seeds of this finicky, low yielding grass.  Nor would they have predicted that processing wheat would have encouraged new forms of economic organization, expressed political and social status, and symbolized moral and religious beliefs. This is the story of humankind’s twenty thousand year exploration of the possibilities of wheat and the consequences that followed.  

20,000 B.C.‐100 B.C. One Among Many Seeds  

For 20,000 years, wheat was just one among many seeds of herbaceous plants that by the sweat of their brows humans turned into food. Men and women threshed and winnowed, constructed granaries, stood to pound and knelt to grind, boiled in pots, and baked on stones and in tandoors. Their onerous labor produced porridges and pottages, flatbreads, alcohol, sweeteners, and oil. With these they had reasons to farm, ways of provisioning cities with the two pounds of grain a day that every inhabitant needed, the basis for states, and the pay for armies and imperial bureaucracies. By 1000 B.C., they divided the world’s peoples into the civilized who lived on cooked grains and the barbarians who did not. They offered sacrifices of grain and meat to the gods and goddesses who had given them grain.  

Wheat, now grown from western Europe to the Yellow River of China, low yielding, difficult to rid of its protective layers, and too hard to make appealing porridges, waited in the wings for its moment while Confucius dined on millet porridge, Socrates and Plato enjoyed barley bannocks.  

 100 B.C.‐1850 A.D. The Grain of Rulers   

That moment came in the centuries just before the birth of Christ when new wheat breeds and new ways of processing made it possible to created raised bread in the west and steamed or boiled doughs (pasta) in China.  Bread baked in a beehive oven and rolled, cut, pulled and pressed noodles were to stay the same until the late nineteenth century. As the centuries passed, they were joined by both savory and sweet pies, puddings, and dumplings, and sweet cookies, pastries, and yeast‐raised cakes. Sauces were thickened first with bread, then from the seventeenth century with fine white flour.    

Rotary grindstones replaced lateral ones. Hand mills were joined by those moved by animal or waterpower. Gristmills came to dot the rivers of Eurasia and then of the Americas. Funding these expensive structures gave rise to the precursors of joint stock companies and disseminated knowledge of gearing and mechanical devices through whole populations.  

  36

Bread and salt were offered to guests, bread and an accompaniment were the basic meal. The color of your bread reflected your place in society. Wheat, particularly bolted white wheat, “flower”, was for the ruling classes, their armies, and their horses. Dark bread was for laborers, while in many places the poorest continued to eat the lesser grains or stretch their bread with acorns, chestnuts, or straw.   

 The success of armies and navies depended as much on their supply of bread as on their prowess in battle. Armies and navies were successful as much bread provisioned the military. Rotary mills spread across the Roman empire when every unit of eight men were required to carry one to grind their own wheat. The stuffed dumpling spread across the heart of Eurasia from China to Russia to Turkey with the Mongol troops. The industrialized production of hard tack, which enabled ships to stay long periods at sea, was key to the British Navy’s dominance of the oceans in the late eighteenth century.  

Buddhists in China made mock meats from wheat gluten, “the muscle of flour.”  Muslims remembered that tharid, toasted flatbreads soaked in meat juices, was the favorite dish of the prophet Mohammed. Christians prayed to be given their daily bread, hallowed as god’s body. The split between the Eastern and Western churches in the Middle Ages was understood by the faithful as a split between those who offered raised bread and those who offered wafers in the Mass.    

Ensuring the bread supply was the ruler’s prime duty to his subjects everywhere that bread was the staff of life. Prices were regulated, enforced by police, and guaranteed by public granaries. When the bread supply was threatened, riots broke out. Fear of a repeat of the French Revolution helped pass the repeal of the Corn Laws in England in the 1830s, opening the way to world trade in wheat.  

With white wheat bread so closely associated with the state, reformers who wanted to change society from Graham to Kellogg turned to whole wheat or maize as an expression of their dissent.  

1850s onwards. The Grain for All  

Wheat bread (and beef) declared the physicians were the strongest of foods necessary to grow strong citizens. Their thesis appeared to be borne out with the geographical and demographic explosion of the British Empire and the United States in the second half of the nineteenth century.  Politicians in Japan, Mexico, Colombia, Italy, India, and other countries where most of the population did not eat wheat flour products took measures to make soldiers, children, and if possible the whole population eat wheat so that they could reach the same level of civilization.  

The bread debates coincided with a huge expansion in wheat acreage and the biggest changes in wheat technology in a couple of thousand years. Germans farmed wheat on the Volga, the British irrigated the Punjab, Italian migrants traveled annually for the wheat harvest in Argentina. Threshing machines and combine harvesters put an end to the labor of threshing. Railroads and steamships moved grain and flour. Speculators bet on wheat futures, grain merchants brokered deals over vast distances, and food aid to Europe at the end of World War I set wheat on its way as a tool of international power. Roller mills, 

  37

invented in Hungary in 1865, had displaced gristmills in Europe and America by the end of the century, and in the rest of the world a decade later. Mill owners transformed into the great corporations of the twentieth century: General Mills and ConAgra in the United States, Rank in Britain, Rong in China.   

 Power extrusion mills and artificial drying facilities for noodles, packaged yeast, chemical raising agents, continuous flow bakeries for bread made new products possible: the baguette in France; packaged sliced bread in the United States, and now worldwide; packaged dried pasta; the expansion of Chinese noodles across Southeast and East Asia; and instant ramen.  

Conclusion 

From one grain among many, to the grain of rulers, to the grain of choice for much of the world’s population, wheat’s trajectory as the grain at the center of civilization has been an extraordinary one.  From wheat has come a sequence of different foodstuffs, the motivation for new economic institutions, the underpinning for different political systems from monarchies to democracies, and a series of potent moral and religious symbols.  At this exploration of wheat’s future in celebration of the 100th anniversary of Norm Borlaug’s birth, wheat’s history is a reminder that just as the past of wheat sent ripples far beyond agriculture and supplying calories for the hungry, so too will its future.  

 

 

  38

DevelopingandDeliveringHigh‐ZincWheat:TheRoleofWheatinReducingHiddenHungerWolfgang H. Pfeiffer, Deputy Director of Operations, HarvestPlus, Colombia 

 

Plant breeding for micronutrient density (biofortification) gained legitimacy when micronutrient deficiencies were recognized as a global public health challenge of the 21st century. HarvestPlus was established to add food nutritional quality to agricultural production research and reduce micronutrient deficiencies among poor at‐risk populations. HarvestPlus’ applied and strategic research is driven by an impact/product pathway integrating crop development, nutrition, socioeconomic disciplines, and country‐specific crop delivery plans. Biofortified product concepts must consider factors associated with probability of success in achieving: 1) Technological goals with trait discovery and expression in adapted genotypes; 2) Crop improvement goals to generate a biofortified germplasm product without compromising agronomic performance, nutrition, or end‐use quality; and 3) Commercial goals to guide the design, delivery, and adoption of the technology. Strategic priorities and challenges are detailed here for high‐zinc wheat.  

HarvestPlus seeks to develop and disseminate more nutritious varieties of food staples (rice, wheat, maize, cassava, pearl millet, beans, and sweet potato) high in iron, zinc, or provitamins. Biofortified crops offer a cost‐effective, sustainable, and rural‐based intervention that, by design, initially reaches more remote populations, which comprise a majority of the undernourished in many countries. It then penetrates to urban populations as production surpluses are marketed. Thus, biofortification complements other nutrition interventions such as fortification and supplementation.  

Developing and Delivering High‐Zinc Wheat: A Multidisciplinary Approach 

Broadly, for biofortification to succeed: first, breeding must be successful – generating crop and marketing options for farmers. High nutrient density must be combined with high yields. Second, nutritional efficacy must be demonstrated – the micronutrient status of human subjects must be shown to improve when consuming the biofortified varieties as normally eaten. This includes evaluating that sufficient nutrients are retained during processing and cooking and that these nutrients are sufficiently bioavailable. Third, the biofortified crops must be adopted by farmers and consumed by those suffering from micronutrient malnutrition in significant numbers. 

The  interdisciplinary  nature  of  biofortification  research  necessitates  collaboration between plant breeding and a range of disciplines, including:  

a) Socioeconomics: To accurately identify target populations that both consume the target crops and bear the biggest micronutrient burden and to measure the effectiveness of biofortified crops as a cost‐effective public health intervention. For wheat, India and Pakistan are initial target countries. Within India, Uttar Pradesh in the Eastern Gangetic Plains Zone (EGPZ) was selected for first impact assessment of high‐zinc wheat delivery and time‐to‐market.  

  39

b) Human nutrition: To determine micronutrient target levels that will have a measurable impact on human health; to estimate intake of the crop among the target population; to evaluate retention of the added micronutrient after storage, processing, and cooking; to test the bioconversion/ bioavailability of nutrients ingested from biofortified crops and; to ultimately measure the nutritional impact of biofortified crops on human health. Due to the higher bioavailability of zinc (20%) compared to iron (5%), zinc was selected as primary target trait and iron as the secondary. As zinc and iron are positively correlated, indirect selection response in selecting for high zinc results in a concomitant increase in iron. For India, the micronutrient target increment for zinc was set at +12 ppm, which provides about 25% of the estimated average requirement for preschool children aged 4‐6 years and adult women of child‐bearing age. 

c) Marketing: To effectively produce and deliver seed, generate demand by developing sustainable markets for seed, grain, and processed products. Project goals include reaching a high‐zinc wheat market share in Uttar Pradesh of approx. 4% by 2018, thus providing access to more than 5 million people.  

Crop Development and Delivery Elaborated 

HarvestPlus’ crop improvement activities focused first on exploring the available variation for iron and zinc in the wheat genetic diversity spectrum while characterizing agronomic and end‐use features. Diversity evaluation aimed at identifying: 1) Parental genotypes for use in crosses, genetic studies, molecular marker development, and parent‐building and 2) Existing varieties, pre‐varieties in the release pipeline, or finished germplasm products for “fast‐track” delivery and shortening time‐to‐market. Results from analyzing more than 25,000 germplasm samples in phase I revealed variation in‐excess for iron and zinc  to reach the mineral target levels in wild relative species and strategic gene pool unadapted backgrounds, but lack of latent variation in adapted, tactical gene pool germplasm. Hence, prior to using the trait in final product development, breeders had to transfer the zinc trait from diverse unadapted sources, such as T. spelta, synthetics, and landraces into locally‐adapted, agronomically‐competitive germplasm, focusing on consumer‐preferred end‐use quality attributes. Addressing linkage drag, balancing yield and zinc objectives, and incorporating resistance to Yr27 and Ug99 yellow rust and stem rust races – considered mandatory – posed challenges in developing the first wave of high‐zinc wheat. Along with biofortification breeding at CIMMYT, and NARS BHU, PAU, IARI, and DWR in India and PARC in Pakistan assuming full operational scale, research included conducting genetic studies and developing molecular markers to facilitate breeding and trait mainstreaming. As high‐zinc wheat lines are increasingly used in crossing programs as parents, the majority of new varieties will be biofortified in the long term, since the trait is not subject to genetic erosion. Considering zinc and iron combined as a generic trait is part of the key strategy; presently, mainstreaming of the zinc trait at CIMMYT, as a percentage of the global wheat breeding effort, and at Indian partner NARS, is estimated at 25‐30%.  

A major task in phase I was establishing screening. Sampling/analytical protocols, high‐throughput screening methods, and in‐house screening capabilities had to be developed, standardized and implemented, and environments characterized for their suitability for 

  40

micronutrient breeding and testing. A major breakthrough was the HarvestPlus‐led adaptation of the high‐throughput XRF technology, now implemented at all partner NARS, and experience in generating zinc selection environments. 

In‐country and regional G x E testing is a key element of the HarvestPlus strategy. Early in the project, breeding effectiveness for high‐zinc wheat in Asia was optimized through HarvestPlus Yield and Screening nurseries, which were assembled and distributed by CIMMYT. Agronomic and zinc data from multiple sites per country allowed high‐precision identification of parents for breeding, leads for promotion to registration trials, and higher effectiveness in targeted breeding for yield and zinc stability based on adaptive pattern. Further, by substituting temporal by spatial environmental variation in large‐scale regional G x E testing, steps could be eliminated and time‐to‐market shortened by 1‐2 years. Multi‐location trials also facilitated engaging private seed companies in testing; public/private crop development and commercialization partnerships are critical for the long‐term success and sustainability of the project. Currently, regional testing is expanded to additional countries in Asia, Africa, and Latin America. 

Beyond meeting technological and crop improvement goals, plant breeders must also address commercial goals that guide design and delivery of this agricultural technology for public health. To address these goals, the project invests in productive research networks linking national research programs in target regions with advanced agriculture and nutrition research institutes around the globe. The aim is to build sustainable research capacity in biofortification where it is most needed. Commercial goals demand that breeders are keenly aware not just of farmers, but also of end‐consumers and other actors along the value chain. Consumer acceptance and economic marketability are key factors that must influence the breeding product concept.  

Ultimate acceptance by, and subsequent impact of biofortified crops on, producers and consumers will hinge on plant breeders not only developing attractive trait packages that do not compromise agronomic characteristics, but also understanding the value farmers and consumers place on the traits. The latter will determine crop adoption and may require adjustments to the crop development strategy.  

Value propositions to farmers are assessed along with G x E testing via participatory variety selection trials and on‐farm demonstrations. Starting with the test marketing of five leads in 2013/2014, awareness and demand for high‐zinc wheat seeds is created by promotions, demonstrations, farmers’ meetings, and mobile campaigns, distribution of literature, pamphlets and engagement at points–of‐sale, as well as by educating household decision makers on the crop’s health benefits through extension agents, community health workers, and teachers. HarvestPlus initially boosts seed production, pioneering larger scale off‐season seed production, but with increasing market presence will focus on demand creation activities. This includes partnerships with food companies, large flour mills, and supermarkets for grain, flour, and value‐added products. The value chains for these products are well developed in India, with strong presence of multinational, regional, national, and local food companies and retailers. Test markets will be used to generate diagnostic information, messages and product benefits, testing the 

  41

effectiveness of communication channels, and selecting brand and specific promotional messages.  

Results and Conclusions 

To date, HarvestPlus has successfully developed zinc‐dense, agronomically‐competitive wheat. Further, it has demonstrated that added zinc has a measurable impact on human zinc status. But much work remains, and a large‐scale efficacy trial with human subjects in India is underway. With test‐marketing/commercialization commencing, the program enters its third phase – crop delivery. Business plans for effective delivery and advocacy of high‐zinc wheat are developed and in implementation, and the network of expertise that makes up the multidisciplinary tapestry of biofortification continues to expand. Communication and marketing specialists are now becoming engaged to ensure adoption and sustainability of this agricultural innovation for public health.   

 

 

  42

PotentialYieldsandYieldGapsinWheat:TheBasesofWheatYieldProgressTony Fischer, Honorary Research Fellow, Commonwealth Scientific and Industrial 

Research Organisation, Australia  

 

Progress in global average wheat yield (farm yield, FY) over the last 30 years has been remarkably linear (32 kg/ha/yr or 1.0% p.a. relative to 2012 yield of 3.1 t/ha). In seeking to understand yield prospects, recent past progress can be disaggregated by region or country, and by underlying technology, in particular progress through technology creation in terms of higher potential yield (PY) and through technology adoption in closing of the FY to  PY difference (the yield gap, expressed as % FY). Progress in PY (or water‐limited PY, PYw) is generally measured under the best management (optimum fertility; no diseases, pests, or weeds; and for PY no lack of water) in experimental plots, and is expressed as % p.a. relative to PY of the latest releases. Yield gap is calculated by the difference between current PY and FY under similar natural resource endowments (soil type, radiation, temperature, rainfall if PYw). This approach is used to dissect yield progress over the last 20 to 30 years in a number of key breadbasket regions around the globe.  

Across 12 wheat case studies, PY progress averaged 0.61% p.a. (range 0.3 to 1.1%), being not significantly different in water‐abundant and water‐limited situations. PY progress derives from genetic and agronomic improvement, and the positive interaction between the two (e.g. variety x soil fertility), but genetic improvement alone is becoming the dominant component. Yield gaps averaged 48% (of FY); they tended to be greater in developing countries, and appear to be closing only slowly (average 0.2% p.a., range ‐0.8% to +1.0%). Since the minimum gap to be expected from socioeconomic considerations is about 30%, scope for closing the yield gap is thus quite limited in general, but especially in the developed world; for example, gaps actually appear to be growing in Western Europe such that FY is almost static. Weighting these case study numbers according to megaenvironment production level and expert opinion, the current 1.0% rate of world FY progress appears to derive from 0.6% PY progress and 0.4% in gap closing. 

Prospects for faster PY progress seem difficult as new agronomic technologies appear scarce, although there are some possibilities, and conventional breeding, while still successful, is probably facing diminishing returns. New sources of natural genetic variation, and new molecular and crop physiological selection tools may help, but this will require major and coordinated investment. Despite the hype, genetic engineering seems unlikely to impact PY or PYw directly, but may have indirect benefits. 

For faster yield gap closing, breeding can help (e.g. better host plant resistance, and genetic engineering should have a role in this). However, most important will be the extension of improved agronomic management, especially surrounding conservation tillage, crop diversity, and soil fertility (and this also helps notably with sustainability and resource use efficiency). The challenge in closing the yield gap is greatest in the developing world, where farmer resources are more limited, investment in extension is poor, and institutional and infrastructural constraints are also usually serious.  

  43

Negative effects of climate change from warming are likely to be balanced by the positive effects of increased CO2 at least until 2050, but the growing cost of blue water will likely push wheat production more to rainfed areas. Overall, it is concluded that lifting FY progress above 1% p.a. through increased PY (and PYw) and through narrower yield gaps is seen as very difficult without substantially increased investments in agricultural research, development, and extension, and in other rural assets.  

 

  44

WaterandAgriculture:AreWeReadyfortheFuture?Uma Lele, Herve Plusquellec and Richard Reidinger 

FAO projects the need for a 60 percent increase in food production to feed 9 billion people by 2050. But it also acknowledges the uncertainty surrounding  those projections. On the downside is the increased scarcity of land and water, and climate change, the mother of all challenges, with temperature rise, changes in hydrological cycles, and a wide range of predictions of likely impacts on agriculture. Irrigation has been a key ingredient in the generation of the Green Revolution, contributing 44 percent of total production on 18 percent of the cultivated land. Agricultural sectors remain the largest users of water in much of the world, but irrigation expansion is reaching its limits. Poor performance of surface irrigation has resulted in over‐exploitation of groundwater, often reaching unsustainable levels. The “wicked challenge” of water management promises to get tougher in the future, both in irrigated and rainfed areas. Most of the poorest farmers make a living from rainfed agriculture. With all eggs in the irrigation basket, rainfed agriculture has traditionally been ignored. Now climate change may be influencing rainfall patterns and making rainfed agriculture even riskier. Part 1 of the presentation explores the current and future desirable basin level scenarios; part 2 addresses the problems and solutions at the field and farm levels in increasing water and crop efficiency and productivity; and part 3 describes irrigation and water management challenges and solutions to address crop specific challenges. A modernization of irrigation systems is needed, rather than just rehabilitation of large‐scale dysfunctional surface systems. At center stage will have to be the need for effective services to farmers.  

 

  45

GenomicSelectionandPrecisionPhenotypingJesse Poland, Assistant Professor, Kansas State University, USA 

 

To accelerate the continual development of new and improved wheat varieties, novel approaches are needed to extend conventional selection methods. With advancements in DNA sequencing technology, it has become less expensive to determine the genotype of new breeding lines than to evaluate those same lines in yield trials. In this context, whole‐genome prediction models (i.e. genomic selection) can be applied to more efficiently utilize resources while shortening the breeding cycle. At the same time, however, genomic selection cannot completely replace phenotypic assessment of new breeding lines. To match the phenomenal advancements in genomics, novel approaches for precision, high‐throughput phenotyping are needed. Working at the intersection of genetics, breeding, engineering, physiology and computer science, the development of novel phenotyping platforms and the implementation of these platforms in plant breeding programs will match and expand the transformative effect of genomics‐assisted breeding. Revolutions in genomics‐assisted breeding, complimented with advancements in precision, high‐throughput phenotyping will enable 21st century plant breeding on the scale needed to address increasing crop production for food security despite less favorable climates and land degradation.   

 

 

  46

PrecisionAgricultureFromSmallholderFarmers:AreWeDreaming?Bruno Gerard, Director, CIMMYT Conservation Agriculture Program, Mexico Francelino Rodrigues, Biometrician, CIMMYT  

Precision agriculture (PA) can be defined as “the application of technologies and agronomic principles to manage spatial and temporal variability associated with all aspects of agricultural production for the purpose of improving crop performance and environmental quality” (McGraw‐Hill Science & Technology Dictionary). Helping small‐scale farmers improve their livelihoods through precision agriculture approaches may at first appear a ‘blue sky’ idea, given that PA concepts have seen relatively low adoption in developing world agriculture, requiring investments beyond the reach of poor, small‐scale enterprises without the intervention of key stakeholders. However, as stated by Cook et al. (2003): “From the description of site‐specific activities it is obvious that although PA, as seen in Europe and North America [and Australia], is largely irrelevant in developing countries, the need for spatial information is actually greater, principally because of stronger imperative for change and lack of conventional support.’ 

Technical innovations in the last 25 years have opened fantastic windows of opportunity for agriculture and the development of site‐specific management applications, mainly for large commercial farming enterprises; allowing higher profitability, increasing input/resource use efficiencies, and mitigating the negative environmental effects of agriculture. Global positioning systems (GPS), remote sensing, geographical information systems (GIS) software, and information and communication technologies (ICTs) are omnipresent in modern life and form the backbone of PA. Except for the rapid and deep penetration of cell phone technology (see figure 1), the majority of recent technological progress (taken for granted in developed countries) is yet to touch the lives of smallholder farmers. International agricultural research has a key role (and a comparative advantage) in exploring opportunities for smallholder crop growers to benefit from state‐of‐the‐art technologies; ‘piggybacking’ on national research and developing proofs of concept and viable models to improve crop production decision‐making with regional, national, and local public and private partners.  

Smallholder cereal‐based systems in Asia, Africa, and Latin America present diverse agro‐ecological, socio‐economic, market, and institutional environments, so that PA business models must be tailor‐made to ensure adoption. A broader concept than PA as it is understood in the developing world is needed: our efforts should help farmers to practice a ‘more precise agriculture,’ implying a better allocation of resources in space and time, in some places producing more with less and in others producing more with more! 

The components of PA can be divided into four major categories: 1) field or farm spatial diagnosis; 2) transformation of spatial information to management recommendations; 3) tools to apply recommendations; and 4) ICTs to communicate spatial diagnoses to appropriate expert systems and further transfer recommendations to farmers and/or local agents. 

  47

72.1 70

30

70.7

82.1

99

60

80

56.4

84.3

52.9

92.1

60 6054.3

 Figure 1. Cell phone penetration rate in rural areas as percentage of households owning a cell phone (source CCAFS surveys, 2012) 

 Careful ex‐ante/prospective analyses are required to objectively assess the potential impact of precision agriculture in specific environments. Those studies must include: 

‐ Assessment of information management needs by smallholder farmers, extension services, private sector and the likelihood that information will be used for decision‐making by farmers and other stakeholders 

‐ Assessment of the impact of management recommendations on field and farm productivity, stability and resource‐use efficiencies 

‐ Identification and cost/benefit analysis of the most appropriate geospatial tools and decision support systems 

‐ Plausible business models and identification of potential actors in the public and private sectors        

Current research and technological developments e.g. advances in satellite and unmanned aerial vehicle (UAV)‐based remote sensing, affordable smart phones, etc. increasingly support a realistic future for precision agriculture and remote sensing in wheat and maize farming (Fig. 2), with international research having a key role to play by bridging the gaps between developed and developing world (CIMMYT, 2013).   

 

 

 

 

  48

 

Figure 2. Nitrogen management online decision support system for wheat in Mexico (Greensat) developed jointly by SAGARPA and CIMMYT under MasAgro initiative.    

 

References 

CCAFS, 2012. 00 CCAFS Household Baseline Survey 2010‐12, http://hdl.handle.net/1902.1/BHS‐20102011 UNF:5:OhyaVN1n8lHPA5BOgyF+sw== V16 [Version] 

Cook, S. E., O’Brien, R., Corner, R. J., Oberthur, T., Stafford, J., & Werner, A. (2003). Is precision agriculture irrelevant to developing countries? In Precision agriculture: Papers from the 4th European Conference on Precision Agriculture, Berlin, Germany, 15‐19 June 2003. (pp. 115–119). Wageningen Academic Publishers. Retrieved from http://www.cabdirect.org/abstracts/20033117593.html;jsessionid=FD2E98736CC7B94AA1AAC04A092F1FF0 

CIMMYT 2013. ‘Remote Sensing – Beyond Images’ Meeting, 14‐15 December 2013. Mexico City. http://maize.org/rs‐workshop‐resources/ 

 

  49

China’sGrainPolicyandtheWorldJikun Huang, Director, Center for Chinese Agricultural Policy, Chinese Academy of 

Sciences, China 

 

For 20 years, doom‐laden predictions about China’s food security and its impact on global agricultural markets have failed to materialize. First there were concerns in the early 1990s that China might struggle to feed itself and massive food imports would eventually starve the world. Second, when China entered the World Trade Organization in 2001, there were fears that China’s agriculture might face great challenges and cheap food imports would impoverish Chinese farmers. Yet the reality was quite different: agricultural growth was impressive; food security was largely ensured; and in total China exported more food than it imported during 2001‐2010. Even by 2012, China’s food self‐sufficiency measured 96% in value terms. 

The concern on food security, particular grain security, was raised again recently. China’s grain self‐sufficiency fell from more than 95% in the period before 2008 to 92% in 2010 and 88% in 2012. But this fall was mainly due to rising soybean imports. Indeed, rice and wheat have been keeping at nearly self‐sufficiency in the past decade, though China shifted from a maize exporter to importer in 2010. There is also concern on whether China will be able to meet its increasing demand for meat and other foodstuffs.  

However, most observers ignore China’s continued commitment to national food security. Recently, China’s leaders have emphasized that China will achieve absolute security in food grains (rice and wheat) and will be largely self‐sufficient in cereals. They are serious about modernizing agriculture, investing in agricultural technology and infrastructure to raise productivity, protecting the “red line” of 120 million hectares of farmland, and improving farmers’ incomes.  

To have a better understanding of China’s grain economy and its implications to global trade and agricultural markets, it is essential to know the major driving forces of food demand and supply, as well as the effects of the nation’s food policy in the past and the future.  

Food demand in China is growing for two reasons: rising incomes and urbanization. Total population growth, which has slowed from over 1% to under 0.5% per year over the past 15 years, is no longer a big factor. Rapid urbanization is expected to have significant impact on non‐grain food consumption, but little impact is found on total grain demand due to offset between falling direct food grain consumption and rising indirect grain (feed) demand for producing more meat. Far more important for China’s food security is that China’s income growth will continue to drive food demand in the future. According to most experts’ projections, China will maintain annual GDP growth of 7‐8% in 2011‐2020, falling to about 6% in 2021‐2030. With this income growth, the fast growth in total food demand over the next decade will roughly match that of the last. Demand growth will slow in 2021‐30, but will continue to expand. Only by the early 2030s will China’s demand for food stabilize.  

  50

The changing consumption patterns of the past decade will continue but broaden over the next. Increases in food demand will mainly come from non‐staple foods, particularly livestock products. While the direct consumption of grains like rice and wheat is projected to fall, rising meat consumption means that demand for grain feed will rise substantially. In the next two decades, we expect meat consumption—pork, poultry, beef, mutton and fish—to increase by more than 60%. The fastest growth will be in dairy consumption: the average person will drink nearly 70 kg of milk a year by 2030, an increase of 150%. Demand for vegetable, fruit, edible oils, and sugar will grow by 20‐60%. 

Whether China can meet these increasing demands depends on its ability to raise domestic production. The past performance of China’s agricultural production has been impressive. Overall annual growth of agriculture sector averaged 4.6% in the past three decades, which was more than four times the population growth rate over the same period. Since 1978, the agricultural sector has also responded well to qualitative and quantitative changes in food demand, leading to changes in the structure of production with the declining importance of food grains and the growing importance of cereals for livestock feed, as well as fruit, vegetables, and livestock products for direct consumption. 

Several factors have contributed to the agricultural growth and restructuring. Firstly, the introduction of the household responsibility system in 1979‐1984, which gave individual households the right to profit from land formerly held collectively, hugely boosted productivity. Technological change has also been a major driver of agricultural productivity growth since the middle 1980s. Another important factor was massive state investment in irrigation. By 2010, more than 50% of cultivated land in China was irrigated. Finally, transportation and market infrastructure improved remarkably, thereby raising the return to farmers at the farm gate.  

As food demand continues to grow, China must find new ways of boosting production. Given its severe natural resource constraints—China feeds more than 20% of the global population with just 8% of the world’s arable land and one‐quarter of its average per‐capita water resource—this requires raising productivity. There are a number of reasons to be optimistic. China is one of only a few major countries that have steadily increased public spending on agricultural technology over the past few decades. And that commitment remains strong; for the past 10 years, the Number One policy document has focused on modernizing farming and making agriculture more productive. Leaders plan to raise productivity by investing more in technological research and development and machinery, and plowing US$ 630 billion to combat water scarcity in 2010s. 

Even as overall food demand grows, it should not be difficult for China to meet its domestic demand for rice and wheat—especially as direct grain consumption is expected to fall. China will also be able to grow the vast majority of its vegetables and fruits, and will remain a net exporter of horticulture products—though imports of tropical fruits will rise. Increases in total meat imports are also expected, but these will only be moderate as China ramps up domestic meat production. China should produce nearly enough pork and poultry to be self‐sufficient, though self‐sufficiency for beef, mutton, and dairy produce will fall to between 80‐90%. 

The most significant increase in imports will be for feed from soybeans and maize. The huge increase in soybean imports over the past decade was driven by both demand for 

  51

edible oils and feed, and this rising import trend will continue into the future. Soybean imports, which reached 63 million tons in 2013, are projected to hit nearly 90 million tons in 2030. Although domestic maize production should steadily increase, more imports will also be projected for China to achieve high level of meat self‐sufficiency. By 2030, imports could exceed 40 million tons.  

All these numbers presume a business‐as‐usual scenario, but further increase in crop yields could significantly reduce China’s imports of soybean and maize. China’s grain yield is already high compared with other developing countries, but is lower than many developed countries. On average, China produces 5.7 tons of maize per hectare, still well behind the 7.8 ton average in the U.S. Investment in better irrigation, advances in biotechnology, better farm management could all boost yields.  

So what are the global implications of China’s food economy in the coming decades? Mostly, they are positive. China’s ability to achieve self‐sufficiency in rice and wheat will contribute to the global food grain security. China’s growing demand for other products will be good for food exporters, but will not have much of a negative impact on other food importers. Countries with a comparative advantage in the production of soybean, maize, and dairy products will be able to expand production and benefit from growing exports to China. All the necessary increase in maize and soybean production is well within the capacity of China’s existing trade partners in North America, South America, and Eastern Europe. Moreover, a number of other countries have the capacity to expand production and become exporters once infrastructural and technological constraints are overcome. Since the vast majority of China’s rising food demand will be met by domestic production, it will have little impact on world food security. 

Some of the biggest opportunities should come in Africa, particularly in the Sub‐Saharan region. Greater China‐Africa cooperation is a huge opportunity for African farmers. Many African countries have substantial areas of land that are agro‐climatically suitable for maize, soybean, and sugar production, but are constrained by technology, marketing infrastructure, and farm management. Average yields are generally low, and there has been serious under‐investment in agricultural R&D and advisory services for many years, which China is now helping to strengthen.  

Of course, implications on the rest of world are highly dependent on China’s future agricultural policy. The direction of agricultural policy is pretty clear: China remains committed to ensuring national food security and will heavily invest in agriculture.  

 

 

  52

India’sGrainPolicyandtheWorldAshok Gulati, Chairman, Commission for Agricultural Costs and Prices, Ministry of 

Agriculture, Government of India 

 

India exported 22 million tons (mt) of cereals in the Financial Year 2012‐13 (FY 13, April‐March). It emerged as the largest exporter of rice in the world, with about 10 mt of rice exports valued at more than US$ 6 billion.  Wheat exports accounted for 6.5 mt, corn about 4.8 mt, and the balance consisted of some other miscellaneous millets. Overall grain production in FY 14 is expected to be 263 mt. This was almost unthinkable just six years ago, when India imported roughly 6 mt of wheat in FY 07, and restricted exports of wheat and common rice from September 2007 onwards in the wake of rising global food prices. How did India achieve this turn around and what implications it has for the global grain economy?  

India launched the National Food Security Mission (NFSM) in 2007 with a target to raise food grain production by 20 mt (comprising of 10 mt of rice, 8 mt of wheat, and 2 mt of pulses) in the next five years.  NFSM strategy focused largely on the untapped potential of several states in the eastern and central belt of India by distributing better seeds and extension services for improved farming practices. Simultaneously, the minimum support prices for wheat and rice (paddy) were raised by more than 30 percent to partially catch up with rising global prices. This significantly improved incentives for farmers to adopt better technologies, thereby raising productivity. The result of this twin‐pronged approach of simultaneously focusing on technology and incentives turned out better than expected. By FY 12, India's grain production (259 mt) had increased by a whopping 42 mt over the production levels of FY 07, against a target of only 20 mt. Grain stocks with state agencies started bulging, up from about 23 mt in July 2006 to more than 80 mt in July 2012. As export bans on wheat and rice were lifted in Sept 2011, grain gushed out to global markets as water gushes from sluice gates! This obviously has implications for global prices of grains.  

In September 2013, India also enacted the National Food Security Act (NFSA), whereby it committed to supply roughly 61 mt of grains (primarily wheat and rice) to 67 percent of the population at highly subsidized prices (wheat/rice at Rs 2/3 per kg, respectively), with a view to tackling hunger and malnutrition. This is likely to be the biggest food subsidy program in the world, entailing a physical distribution of 61 mt of subsidized grains by the state. This obviously necessitates large procurement and stocking of grains by the state agencies, with implications for grain markets both at home and abroad.  Currently, stock levels are way in excess of the requirements of NFSA, and should  India decide to  liquidate these 'excessive' stocks (say 20‐25 mt) in domestic or global markets, one can imagine what ripple effects it would have on global grain markets.     

India's grain policy of subsidized distribution will also impact India's fiscal situation as the food subsidy bill will amount to roughly US$ 22 billion at current calculations, which is likely to rise rapidly in the coming 3‐5 years. In order to ensure that India has ample food supplies to meet its commitments, India also gives various input subsidies on fertilizers, power, irrigation, etc. Food and fertilizer subsidies are given by the Central Government; 

  53

together they amount to roughly US$ 35‐40 billion. Non‐product specific input subsidies (fertilizers, power, irrigation, credit, etc) account for roughly 10 percent of agri‐GDP.   

The issue of how India manages its food grain economy in the wake of NFSA was raised in the Bali Ministerial meeting of the World Trade Organization in December 2013. There are concerns that it will distort not only the domestic grain markets, but that these distortions will also spill over to global markets. Only time will tell how best India manages its grain economy with minimal distortions to global markets. Our research in this area reveals that India will remain largely self‐sufficient in cereals with marginal surplus in the next 10 years or so. Indian productivity levels and support prices for wheat and rice are still low compared to several comparator countries, and there is ample scope to catch up over the next decade. This is contrary to some forecasts done earlier by some very reputable international organizations (including IFPRI, where I served for more than a decade) that India will be large importer of grains (by as much as 63 mt annually) by 2020. Such pessimistic forecasts are being made even in recent years for the years 2030 or 2040. Indian farmers, scientists, and policymakers, with great support from personalities like Norman Borlaug and Gurudev Khush and institutions like CIMMYT and the International Rice Research Institute, have surprised many in the late 1960s and early 1970s regarding such pessimistic forecasts. And most probably, they will surprise again with positive results in the next decade or two.    

 

 

  54

CentralandWestAsiaandNorthAfrica:WhereWheatReallyMattersMahmoud Solh, Director General, International Center for Agricultural Research in 

the Dry Areas (ICARDA) 

 

Wheat originated in the Fertile Crescent and is the dominant crop in the Central and West Asia and North Africa (CWANA) region, with an average wheat demand of about 191 kg/capita/year, the highest in the world. The crop has played a fundamental role in human civilization and improving food security and regional stability. A price hike in wheat can cause political instability, such as that recently experienced during the ‘Arab Spring’ in North Africa and the Middle East. The region accounts for more than 50% of the wheat production area in the developing world. Due to the adoption of modern wheat varieties of CIMMYT/ICARDA origin, utilization of inputs, better agronomic practices, and favorable policies, wheat production has increased from 22 to 126 million tons during 1961‐2011. However, compared to the global average yield (3 t/ha), wheat productivity in the CWANA region remains low (2.5 t/ha), principally due to abiotic and biotic constraints. The current annual production level of about 126 million tons of wheat on a total area of 54 million hectares is far below the regional demand of about 164 million tons. Such imbalance between demand and production has led to the importation of 44 million tons of wheat at a cost of 15 billion dollars during the 2011 season alone. According to some estimates, in the year 2050, the CWANA population is expected to increase from the current 0.9 billion to 1.4 billion, and the demand for wheat will reach 268 million tons. Fulfilling this demand is very challenging with the current scenario of climate change, increasing drought/water shortages, soil degradation, a reduced supply and increasing cost of fertilizers, increasing demand for biofuels, and the emergence of new virulent diseases and pests. Addressing these challenges requires an understanding of the drivers of past trends and future changes in wheat production; we must design an effective strategy with the application of new technologies, capacity building of NARS, increased investments for research and development, creation of enabling policies, and establishment of new networks and collaborations. In this presentation, achievements and current strategies of ICARDA in developing better wheat technologies in partnership with CIMMYT, NARS, and other Advanced Research Institutes for the CWANA region and beyond are summarized.  

 

 

  55

WorldMarketOutlookforWheatDr. Tray Thomas, Founding Partner, Context Network, USA  

As part of an extensive analysis of the global wheat industry, the Context Network assimilated information regarding the current and future factors impacting wheat acres, including an estimated forecast in wheat acres and value through 2020. This analysis looks at the key barriers and success factors that impact the profitability of wheat production versus other key crops.  

Mr. Thomas will review what is currently happening in wheat technologies and breeding, including hybrids available to growers. The report reviews what has happened in wheat technology development since 1997 when Monsanto began its research and development on transgenic herbicide tolerant wheat that was later shelved due to lack of grower and commercial support. As part of this historical perspective, Thomas will look at the shift in commercial and grower support of biotechnologies as well as the ongoing collaborations and acquisitions that have occurred within the seed industry in recent years, reflecting a change in seed developers’ willingness to invest in this industry. He will also highlight the various seed technologies in the R&D pipelines and the potential impact of those potential products. 

 

  56

AgriculturalIntensification,LandUseandDeforestation:RevisitingtheBorlaugHypothesisDr. Derek Byerlee, Independent Researcher and Visiting Scholar, Stanford University, 

USA 

 

Agricultural expansion today is largely at the expense of forests, and is fastest in the tropics. Norman Borlaug argued that increased crop yields are critical for reducing crop area expansion and saving forests, in what is now commonly referred to as the Borlaug hypothesis. However, the hypothesis is controversial since some argue that higher crop yields in the tropics increase incentives to clear forests, suggesting that investment in research maybe counterproductive for enhancing sustainable growth. In this presentation, I will first outline the challenges of looming land scarcity, the ensuing global scramble for farmland, and the ongoing loss of environmentally valuable forests to agricultural expansion. I then review the evidence of the impacts of crop intensification on land use and deforestation, including the impact of crop genetic improvement by the CGIAR. Finally, I outline key policy priorities for investing in R&D for food security and sustainable land use. 

 

 

  57

PerceptionsontheFutureofBiotechRobert L. Paarlberg, Professor of Political Science, Wellesley College, USA 

 

Comparing the original Green Revolution in food production to the current and future biotech Gene Revolution in food production, a dramatic difference emerges.  The seeds that emerged from the original Green Revolution made it into farm fields worldwide, while most of the food crop seeds that have emerged so far from the Gene Revolution have been blocked from planting, either by stifling government regulations, or by fears of activist or consumer resistance.   

We should acknowledge that, so far at least, the critics of GMO foods have won a sweeping victory.  They have effectively blocked, worldwide, the planting of GMO wheat, GMO rice, GMO potato, and nearly all GMO fruits and vegetables. GMO food animals and GMO fish have also been kept off the market. Nearly all of the GMO crops being planted today are primarily for industrial or animal feed use. For example the three biggest GMO crops in the United States are soybeans, corn, and cotton, and roughly 98 percent of our soybean meal goes for animal feed, while 88 percent of the corn is employed either for animal feed or as a feedstock for making ethanol.    

So, while the critics like to depict private companies as somehow forcing GMO foods down the throats of consumers, the reality is that the biotechnology industry has so far lost nearly every battle when it comes to food crops.   

In the United States, one GMO food crop after another has been blocked from commercial use. GMO wheat seeds were first field‐tested in the United States in 1994, but in 2004 Monsanto decided it could not put them on the market because activists both at home and abroad had persuaded consumers they might not be safe.  GMO rice has never been commercialized for the same reason. GMO potato was actually grown on 25,000 acres in the United States and widely consumed between 1999 and 2001, but cultivation was then voluntarily suspended when food service chains told farmers they did not want to be accused by activists of selling GMO French fries. GMO tomatoes were also cultivated commercially in the United States between 1998 and 2002, but then cultivation stopped as consumer anxieties increased. GMO melons capable of resisting a virus have been successfully tested in the United States since 1989, but never planted commercially. The only GMO fruits and vegetables grown in the United States are Hawaiian papaya, plus a tiny share of summer squash and sweet corn.  

In the rest of the world, it is government regulation that blocks the planting of GMO food crops. GMO food crops are not legal for planting anywhere in Central or Latin America. In all of Sub‐Saharan Africa, only the Republic of South Africa allows the cultivation of a GMO variety of white maize. Until Bangladesh provisionally approved GMO eggplant late in 2013, no GMO food crops were legal to plant anywhere in South Asia or Southeast Asia. India and Pakistan permit cotton, and the Philippines permits yellow corn for animal feed, but nothing else. China permits cotton, but it does not allow farmers to plant GMO wheat, rice, corn, or potato. In most of the world beyond the western Hemisphere, national governments have not even approved the planting of GMO feed or industrial crops. Only three of the 47 countries of Sub‐Saharan Africa have made it legal for farmers to plant any 

  58

GMO seeds at all: the Republic of South Africa, Burkina Faso (cotton only), and Sudan (again, cotton only). In most countries in Africa, simply doing research on GMO crops is not yet legal. 

This considerable blockage of GMOs does not reflect any malfunction of the seeds or crops themselves. Critics who talk endlessly of risks never mention that even in Europe national academies of science and medicine have found no new risks either to human health or the environment from any of the genetically engineered crops so far in existence. This remains the official position of the Royal Society in London, the British Medical Association, the French Academy of Sciences and Medicine, and the German Academies of Science and Humanities. In 2010, the Research Directorate of the European Union (EU) produced a report that went so far as to state, “biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies.”  

The explanation for the blockage of GMOs is a continuing campaign of disinformation by individuals, mostly from well‐fed countries, who fail to appreciate the importance of giving farmers in poor countries better ways to protect against crop disease, insects, weeds, and drought. Earlier in 2013, a UK environmentalist named Mark Lynas took the unusual step of apologizing for his own role in helping to launch the anti‐GMO campaign in the 1990s. He characterized this campaign as the most successful he had ever been involved with, while admitting belatedly it was misguided. After taking a more careful look at the science, he now saw GMOs as a “desperately needed agricultural innovation” that is being “strangled by a suffocating avalanche of regulations which are not based on any scientific assessment of risk.”  

The original Green Revolution also encountered activist critics, yet it went forward with dramatic success, so why did the Gene Revolution falter?  It is not so much a difference in technology as in socio‐political context.  First, the original Green Revolution was launched by philanthropists and promoted by governments, whereas the Gene Revolution emerged primarily from corporate labs, at a time when public support for agricultural science was in decline.  Second, the original Green Revolution was launched at a time of Malthusian panic, and at a time when a significant share of rich country citizens were attracted to agricultural science, because they were only a generation or so removed from farming themselves, whereas the Gene Revolution emerged when population growth was slowing, when international crop prices were low, and when most citizens in rich countries had no first hand exposure to farming.  Third, the original Green Revolution was launched before the emergence of globally networked social activist groups promoting a vision of social justice and environmental protection that allowed very little space for modern agricultural science. 

  

  59

PartnershipsandtheFutureofAgricultureTechnologyRobert T. Fraley, Executive Vice President and Chief Technology Officer, Monsanto, 

USA 

 

As the world’s population continues to rapidly grow, the percentage of arable land per capita shrinks, and other factors such as climate change are radically impacting crop yields. Agriculture is being asked to do much more with fewer resources. Technologies that improve farm productivity and agricultural sustainability are both evolving with the development of new tools, and converging as systems approaches are developed that combine technologies to deliver solutions to farmers. Innovations are required to sustain the growth of agriculture, and rely on advances in science, partnerships among industry, academia, and the private sector, as well as public policies that support the development and adoption of technology. 

  

  60

SocialNetworksforAgriculturalDevelopmentRikin Gandhi, Chief Executive Officer, Digital Green, India  

 

The American Idol phenomenon and its reality TV spin‐offs inspire thousands to shoot for stardom in music, dance, cooking, and more.  At Digital Green, we're using a similar approach to improve agricultural development in South Asia and Sub‐Saharan Africa. We use participatory video as a medium to create star farmers in village communities. The approach bootstraps on the existing social networks that farmers use to share information with one another and uses the thrill of appearing "on video" to amplify its reach. Over 2,800 short videos that are of farmers, by farmers, and for farmers have been produced and shared among 150,000 farmers across 2,000 villages in India, Ethiopia, Ghana, and Tanzania. Using off‐the‐shelf tools, like pocket video cameras and pico projectors, Digital Green cultivates an ecosystem of educational, entrepreneurial, and entertaining content in some of the most tribal and remote parts of the country. And like the viewers of Idol TV who send in their votes via text message, Digital Green viewers vote for farmers, and the better agricultural practices and technologies that they showcase, with their hands and feet. This approach has been found to be ten times more cost effective, per dollar spent, than conventional approaches to training farmers.  

 

  61

WheatforAfricaFentahun Mengistu et al., Director General, Ethiopian Institute of Agricultural Research (EIAR)  

In 2012, African countries spent around US$18 billion to import some 40 million tons of wheat, of which sub‐Saharan African (SSA) countries accounted for around 15 million tons. Demand for wheat in Africa is growing faster than that for any other staple, in particular in urban areas. Working women are demanding more wheat, since wheat products are very convenient to prepare. Yet across the continent, farmers produce only around 40 percent of the wheat consumed locally, leaving Africa’s growing demand for the crop largely in the hands of global traders. With declining self‐sufficiency rates, these trends threaten the nutritional and national security of countries in the region and, in coming years, Africa could face further hunger, instability and even political violence, as seen in North Africa’s bread riots during the 2007/8 food price crisis. 

Efforts to put wheat on the food and trade agenda in Africa recently came together at the Forum for Agricultural Research in Africa (FARA) meeting in Accra during 15–20 July 2013, when senior research, development, and policy experts met with representatives of CGIAR’s WHEAT research program to develop a strategy for promoting African wheat production. The connections made at FARA in July followed the release of a key study in late 2012 at the ground‐breaking conference Wheat for Food Security in Africa in Addis Ababa. Shortly after that conference, African Union agriculture ministers endorsed wheat as a strategic crop for Africa. Their heads of government, at African Union level, endorsed this a few months later. 

The study mentioned above provided a 12‐country analysis of SSA’s economic and biological potential to produce rainfed wheat. Prepared by CIMMYT and IFPRI researchers, the report states that African farmers are only achieving a small part of their potential production. Using advanced computer modeling techniques, the analysis reveals that, even in rainfed areas, with appropriate use of fertilizers and other inputs, 20‐100 percent of land area across the 12 nations appears to be ecologically suitable for profitable wheat farming. Lead author, Bekele Shiferaw, stated that at least eight of the countries, particularly in highland production systems in Eastern and Central Africa, could become less dependent on wheat imports. However, to fulfill wheat’s potential, governments and development agencies will need to analyze the wheat value chain in great detail and to invest significantly in infrastructure and technical support.  

Challenges affecting farming at different scales in different country contexts must be carefully considered—from small farms’ lack of mechanization, labor, and access to markets, to problems that have undermined large‐scale wheat farming projects in Africa in the past. The aim is to ensure the best mix of small, medium, and large farms, as well as fitting options to the differing conditions of high‐ versus low‐population density nations and current highland wheat‐growing areas. 

   

  62

TheWheatInitiative,aGlobalResearchCoordinationPlatformforWheatImprovementDr. Hélène Lucas, International Scientific Coordinator of the Wheat Initiative, France  

The Wheat Initiative (www.wheatinitiative.org) is an international consortium working to coordinate worldwide research efforts for wheat improvement. Created in 2011 following the endorsement from the G20 Agriculture Ministries, the Wheat Initiative currently brings together fifteen countries, two international research organisations and nine private companies, and continuously welcomes new public and private members.  

The Wheat Initiative aims to encourage and support the development of a vibrant global wheat public‐private research community sharing resources, capabilities, data, and ideas to improve wheat productivity, quality,y and sustainable production around the world. It provides a framework to establish strategic wheat research and outreach priorities beyond the capacity of single groups and countries, which will best be achieved by international coordination and collaboration. The Wheat Initiative further aims to secure efficient and long‐term investments by fostering communication between the research community, funders, and global policymakers across developing and developed countries, so as to meet wheat research and development goals. 

The success of the Wheat Initiative will depend on the engagement of the global wheat community. It is important that all parties interested in wheat improvement participate and contribute to the development of this global research coordination platform in order to improve food security, as well as resolve the urgent challenge of sustainably providing enough safe, nutritious, and affordable food for a growing population. 

 

 

 

 

 

tili'ko' nihi'

бидай

trigo hvede

tarwe

бойҙай

trigu

granu

tili'ko' nihi'

бидай

trigo hvede

tarwe

бойҙай

wheat

koringgrurë

trigo

pšenice

triigo

гандум

ngano

triticum

triticum

blat

Weizen

hveiti

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

cruithneacht

pszenica

trigo

pšenica

gandum búza

buğda

kvīši gandum

пченица

пченица

пшаніца

wheat

улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mì

gwenith

weet

kveiteпьшєница

vete

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай koring

grurë

trigo

pšenice

triigo

гандум

ngano

triticum

triticum

blat

Weizen

hveiti

kus sarak

tili'ko' nihi'

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

cruithneacht

pszenica

trigo

pšenica

gandum búza

buğda

buğda

hvede kvīši gandum

пченица

пченица

tarwe

пшаніца

бойҙайgari

wheat

麥 улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mì

gwenith

weet

kveiteпьшєница

vete

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай

koringgrurë

trigo

pšenice

hveiti

triigo

гандум

ngano

triticum

triticum

blat

Weizen

hveiti

товзюроtritiko

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

frumento

cruithneacht

wīti

pszenica

trigo

pšenica

gandum búza

nisu

buğda

kvīši gandum

пченица

пченица

пшаніца

wheat

小麥

улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mì

gwenith

weet

weet

kveiteпьшєница

vete

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай koring

grurë

trigu

trigo

granu

pšenice

hveiti

triigo

гандум

ngano

triticum

triticum

blat

Weizen

hveiti

kus sarak

tili'ko' nihi'

товзюроtritiko

vehnäblé

σιτάριálkámà

trigo

kviečiai

Weess

grano

grano

小麦бидай

genim kviešiбуудай

frumento

cruithneacht

wīti

pszenica

trigo

pšenica

gandum búza

nisubuğda

buğda

hvede kvīši gandum

пченица

пченица

tarwe

пшаніца

бойҙайgari

wheat

wheat

小麥

улаан буудай

tłʼoh naadąąʼ

hveiti

grano

łitǫne

buğdaybugdaý

пшеницяbug'doy

lúa mì

gwenith

weet

weet

kveiteпьшєница

vete

cruithneachd

пшеница

пшеница

hvete

مدنگ grâu

бодай

Celebrating 100 Years of

Collage of Agriculture, Food and Natural Resources

Better Crops • Better Nutrition