luật mạnh số lớn trong đại số von neumann

Upload: tranthevut

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    1/74

    Mc lcLi m u 1

    1 Kin thc chun b 41.1 i s von Neumann v vt . . . . . . . . . . . . . . . . 4

    1.1.1 i s Banach . . . . . . . . . . . . . . . . . . . . 41.1.2 Php tnh lin hp . . . . . . . . . . . . . . . . . 51.1.3 i s von Neumann . . . . . . . . . . . . . . . . 61.1.4 Phim hm tuyn tnh dng v biu din . . . . 6

    1.2 Ton t o c theo mt vt . . . . . . . . . . . . . . . 71.2.1 Cc tnh cht c bn ca ph . . . . . . . . . . . 71.2.2 Khi nim v ton t khng b chn . . . . . . . 91.2.3 M u v php chiu . . . . . . . . . . . . . . . 111.2.4 L thuyt v ton t o c . . . . . . . . . 12

    1.3 Khng gian Lp theo mt vt . . . . . . . . . . . . . . . . 211.3.1 Hi t hu u trong i s von Neumann . . . . 241.3.2 Cc kiu hi t hu chc chn trong i s von

    Neumann . . . . . . . . . . . . . . . . . . . . . . 261.3.3 Dng khng giao hon ca nh l Egoroff . . . . 281.3.4 Khi nim v lut s ln . . . . . . . . . . . . . . 29

    2 Lut mnh s ln trong i s von Neumann 312.1 Tnh c lp . . . . . . . . . . . . . . . . . . . . . . . . . 32

    2.2 Hi t hu y trong i s von Neumann . . . . . . 322.3 nh l gii hn mnh cho dy trc giao . . . . . . . . . 342.4 M rng khng giao hon ca nh l Glivenko-Cantelli . 412.5 Bt ng thc Kolmogorov i vi vt v mt s h qu 442.6 Lut mnh s ln i vi vt . . . . . . . . . . . . . . . . 47

    i

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    2/74

    1

    2.7 Tc hi t trong lut mnh s ln . . . . . . . . . . . 622.8 Ch v ch thch . . . . . . . . . . . . . . . . . . . . . 68

    Kt lun 70

    Ti liu tham kho 72

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    3/74

    Li ni uCc ti liu khoa hc hin ti a ra nhiu bng chng rng cc

    phng php i s vn cch mng ha ton hc thun thy th nayli ang gy nh hng tng t i vi khoa hc vt l. Tip cn is i vi c hc thng k v l thuyt trng lng t l mt v dcho nh hng mi ny.

    Gn y nhiu tc gi m rng cc nh l hi t im c bntrong l thuyt xc sut v l thuyt ergodic sang (ng cnh) i svon Neumann.H cung cp mt s cng c mi cho vt l ton vng thi to ra nhiu k thut hp dn cho l thuyt i s ton t.

    Mc ch chnh ca ti l trnh by bn cht ca mt s tngv kt qu t lnh vc ni trn,chuyn cc kt qu c in bit trongl thuyt xc sut n cc phin bn khng giao hon ca chng, avo cc ng dng trong l thuyt trng lng t.

    i s von Neumann l mt s tng qut ha khng giao hon rt

    t nhin ca i s L v nhng cu trc tt ca n em li kh nngthu c cc phin bn hu chc chn ca cc nh l gii hn.Trong i s von Neumann, ta c th a ra khi nim hi t huu tng ng vi khi nim hi t hu chc chn trong i sL.Kiu hi t ny s l nn tng cho ton b ti.

    Ni dung ca ti gm hai chng :Chng 1 Trnh by mt s kin thc chun b cho vic nghin

    cu chng 2 bao gm cc kin thc nn tng v gii tch v xc

    sut.Mt s tnh cht ca hi t

    hu u

    trong i s von Neumann.Chng 2 Ni dung chnh ca ti: Lut mnh s ln trongi s von Neumann

    Trnh by cc kt qu ca Batty ,cng mt s kt qu khc. Nu nhtrong xc sut c in cc dng hi t theo xc sut ,hi t hu chcchn v hi t trung bnh ca dy bin nhin ng vai tr then cht

    2

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    4/74

    Li ni u 3

    trong Lut s ln th y chng ta c tip cn vi 1 kiu hi thon ton mi hi t hu u .Cc nh l c chng minh i vitrng thi , i vi vt. V mt trng thi th khng cng tnh di trndn cc php chiu nn cc qui tc v cc k thut i vi trng thikhng vt khc nhiu v kh khn hn nhiu so vi cc qui tc i vivt. ng ch y l cc lp lun cn dng i vi vt thng rt

    ging trng hp c in. Nhng trong mt s thng hp th chng tacn hng tim cn mi .Hu ht cc kt qu c trnh by trong ti l kt qu mi.

    Mt s ni dung ca ti l mt trong s cc bi ging ti iHc Tenessee Knoxville v ti Trung Tm Qu Trnh Ngu Nhin(Centerfor Stochastic Processes) ti i hc North Carolina ChapelHill (bi R.Jajte)

    Ni dung ca ti vn ang l hng quan tm ca nhiu nhton hc v vt l hc trong cc lnh vc i s ton t v cc ngdng ca chng nh Lance 1976-1978 ; Goldstein 1981; Watanabe 1979;Yeadon 1975-1980; Kiinrinerre 1978;.......

    Trong qu trnh tm hiu , nghin cu ni dung cc cng trnh cangi khc chng ti h thng , gii thiu nhm phc ha trin vngng dng cc kt qu nghin cu ca mnh trong tng lai.

    Tc gi xin c gi li cm n su sc n ngi thy, ngi hngdn khoa hc ca mnh l PGS. TS. Phan Vit Th, ngi a ra

    ti v hng dn tn tnh trong sut qu trnh nghin cu bn lunny. ng thi tc gi cng chn thnh cm n cc thy c trong khoaTon - C - Tin hc trng i hc Khoa hc T nhin, i hc Qucgia H Ni, v cc thy c gio Vin Ton hc -Vin KHCNVN tn tnh ging dy ,to iu kin thun li trong sut thi gian Tc gihc tp v nghin cu.

    H Ni, nm 2009Hc vin

    V Th Hng

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    5/74

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    6/74

    CH NG 1. KI N TH C CHU N B 5

    A c php nhn:A A A

    (x, y) xy

    tha mn cc tnh cht sau :

    1. x(yz) = (xy)z;

    2. (x + y)z = xz + yz; x(y + z) = xy + xz;

    3. (xy) = (x)y = x(y), x,y,z A, CKhi , A c gi l mti s phc. Hn na , nuA l mtkhng gian Banach (vi chun ||.||) tha mn cc tnh cht sau :

    4. ||xy|| ||x||.||y||; (x A, y B)

    5. A cha phn t n v e sao cho xe = ex = x (x A);

    6. ||e|| = 1;thA c gi l mti s Banach.

    Nu php nhn giao hon th gi l i s (i s Banach) giaohon .

    1.1.2 Php tnh lin hp

    nh ngha 1.1.2. Gi sA l mt i s phc , nh x x A x

    gi lphp lin hp nu tha mn cc iu kin sau :

    (i) (x + y) = x + y

    (ii) (x) = x

    (iii) (xy) = yx

    (iv) (x) = x

    i s phc A ng i vi php lin hp gi l i s . Nu Al i s Banach ng i vi php lin hp th gi l mt i sBanach .NuA l mt i s Banach tha mn iu kin ||x|| = ||x|| thAgi li s Banach lin hp. Nu i s Banach tha mn iukin ||xx|| = ||x||2, x A th gi l mtC i s

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    7/74

    CH NG 1. KI N TH C CHU N B 6

    Phn t x A (A l i s ) gi l chun tc nu xx = xx.Gi l Hermit nu x = x, unitar nu xx = xx = e, (e l n v caA). Nu A l C i s th ||x|| = ||x||, x A. Vy mi C i su l i s Banach lin hp.

    1.1.3 i s von Neumannnh ngha 1.1.3. Gi sH l khng gian Hilbert, B(H) l i s ccton t b chn. A B(H) l mt i s con.i sA B(H) gi l i s von Neumann nu:

    (i) A l kn i vi php ly lin hp;

    (ii) I A

    (iii) A ng i vi topo hi t yu, tc lAnw

    A nu :< Anx, y >< Ax, y > vi mix, y H

    Nh vy i s von Neumann l mt C i s.

    1.1.4 Phim hm tuyn tnh dng v biu din

    nh ngha 1.1.4. (*) Gi sA l i s von Neumann. Phim hmtuyn tnh :

    : A C

    gi ldng nu:(xx) 0, x A

    (*) gi lphim hm dng chnh xc (ng) nu:

    (xx) 0

    v t(xx) = 0 suy rax = 0

    c bit : |||| = (I)(*) Nu(I) = 1 th gi ltrng thi

    nh ngha 1.1.5. K hiu : A+ = {x A : x 0} . nh x : A+ [0, ] tha mn tnh cht :

    (i) (x + y) = (x) + (y), x, y A+

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    8/74

    CH NG 1. KI N TH C CHU N B 7

    (ii) (x) = (x), 0; x A+ (quy c 0. = 0)

    (iii) NuU l unitar th : (U xU1) = (x), x A+

    Khi gi l vt ca i sA .Nu :

    (x) < , x A+

    th gi lvt hu hn.Nu :

    (x) = sup{(y)|y x; (y) < }

    th gi l vt na hu hn .Nu : (x) = 0, x 0 m suy rax = 0 th gi lvt chnh xc (hayvt ng)Vt gi lchun tc (Normal) nu:

    (T) = sup (T)

    trong T l dy cc ton t tng tiT.

    i s von Neumann gi l hu hn (hay na hu hn) nu vi mix A, x = 0 tn ti vt chun tc hu hn sao cho (x) = 0. Trn is von Neumann na hu hn lun tn ti mt vt chun tc , chnhxc na hu hn.

    1.2 Ton t o c theo mt vt

    Phn ny ta s nh ngha khi nim v tnh o c theo mt vt trn mt i s von Neumann A v ch ra rng tp A cc ton t oc l mt i s topo y .Gi s A l mt i s von Neumann na hu hn hot ng trnkhng gian Hilber H v l trng thi na hu hn chun ng trn A.

    1.2.1 Cc tnh cht c bn ca ph

    nh ngha 1.2.1. Gi sA l i s Banach . G = G(A) l tp hptt c cc phn t kh nghch ca i s A . Khi G lp thnh mt

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    9/74

    CH NG 1. KI N TH C CHU N B 8

    nhm . Ph (x) ca x A l tp hp tt c cc s phc sao choe x khng c kh nghch . C/(x) c gi l tp hp chnh quy caphn tx.

    C/(x) = { : (e x)1}

    S(x) = sup{|| : (x)}

    c gi l bn knh ph ca phn t x.

    Ta lun chng minh c rng (x) = , x A.

    nh ngha 1.2.2. Gi s a l ton t tuyn tnh vi min xc nhD(a) . K hiu

    D(a) = {g : ! g, < g|af >=< g|f > f D(a)}

    vi gi thit D(a) = H. Khi D(a

    ) l khng gian con v ton tag = g, g D(a), g l phn t duy nht

    < g|af >=< g|f >

    l mt ton t tuyn tnh. a gi l lin hp ca ton ta.

    Nu a a th a gi l ton t i xng . Nu a = a th a gi lt lin hp.Khi a l ton t ng v D(a) = H th khi D(a) = H v a = a.

    Ch . i s con A ca i s B(H) gi l chun tc nu n giaohon v nu T A th T A.

    nh ngha 1.2.3. Ton t P c gi l ton t chiu nu D(P) =H; P = P = P2

    Nh vy , ton t chiu P l b chn v c s tng ng mt - mtgia cc ton t chiu v cc khng gian con ng trong khng gianHilbert.

    nh ngha 1.2.4. Xt H l khng gian Hilbert . (, ) l mt khnggian o, l trng. P l tp hp cc ton t chiu trong khnggian HilbertH. nh xE : P c gi l mtkhai trin n vtrn (, ) nu cc iu kin sau c tha mn :

    1. E() = 0, E() = I

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    10/74

    CH NG 1. KI N TH C CHU N B 9

    2. E(AB) = E(A)E(B)

    3. E(A B) = E(A) + E(B) nuAB =

    4. x, y H hm tp hp Ex,y xc nh bi cng thc

    Ex,y(A) =< E(A)x, y >

    l mt o phc trn

    nh l 1.2.5. (V biu din Ph) Nu T B(H) v T l ton tchun tc th tn ti ng mt khai trin n v trn cc tp con Borelca ph(T) ca ton tT sao cho

    T =

    (T)

    dE()

    NuT l t lin hp th(T) R. Khi

    T =

    ba

    dE

    NuT l ton t unitarT T = TT = I . Khi (T) nm trong vngtrn n v . Khi

    T =

    20

    eidE()

    1.2.2 Khi nim v ton t khng b chn

    Vi cc ton t (tuyn tnh) a, b trn H ta c th nh ngha tng a + bv tch ab l cc ton t trn H vi min xc nh :

    D(a + b) = D(a) D(b)

    D(ab) = { D(b) b D(a)}

    Cc php ton ny c tnh cht kt hp, v th a+b+c v abc l cc tont c nh ngha tt. Hn na ,vi mi a,b,c ta c : (a + b)c = ac + bcv c(a + b) ca + cb

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    11/74

    CH NG 1. KI N TH C CHU N B 10

    nh ngha 1.2.6. Mt ton ta trn H l ng nu thG(a) can ng trongH H ;a l trc ng nu bao ngG(a) ca th ca n l th ca mtton t ng no ( gi l bao ng ca a , k hiu l [a]) ;a l xc nh tr mt nu D(a) tr mt trongH.

    Nu a, b v ab xc nh tr mt th :

    (ab) ba

    ng thc xy ra nu a b chn v xc nh khp ni.Ton t ng , xc nh tr mt a c biu din cc:

    a = u|a|

    y |a| l ton t t lin hp dng , v u l mt ng c ring vi

    supp(a) l php chiu u ca n v r(a) , php chiu ln bao ng camin gi tr ca a , l php chiu cui ca n.

    nh ngha 1.2.7. Nu tnga + b ca hai ton t xc nh tr mtavb l trc ng v xc nh tr mt , th bao ng [a + b] c gi ltng mnh caa vb. Tng t , tch mnh l bao ng [ab] nu ab ltrc ng v xc nh tr mt.

    Ta vit||a|| = sup{||a||

    |||| 1}

    vi mi ton t xc nh khp ni a trn H, b chn hoc khng. Khi c lng sau y ng :

    ||a + b|| ||a|| + ||b||; ||ab|| ||a||.||b||

    K hiu A l hon tp ca A (hon tp A ca i s von Neumann Al tp tt c cc b trong B(H) giao hon vi a trong A). nh l hontp 2 ln von Neumann khng nh A = A.

    nh ngha 1.2.8. Ton t tuyn tnh a trn H c gi l kt hpviA (v ta vitaA) nu:

    y A : ya ay

    Ta k hiu A l tp tt c cc ton t ng , xc nh tr mtkt hp vi A

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    12/74

    CH NG 1. KI N TH C CHU N B 11

    1.2.3 M u v php chiu

    K hiu Aproj l dn cc php chiu ( trc giao ) trong A . i vih (pi)iI cc php chiu trc giao trong A, k hiu :

    iI

    pi; (iI

    pi)

    l php chiu ln iI

    piH; (iI

    piH)

    Ta c :(iI

    pi) =

    iI

    pi ; (iI

    pi) =

    iI

    pi

    y p = 1 p l php chiu trc giao vi p. Hai php chiu p v q

    l tng ng nu p = uu v q = uu vi u A no . Ta k hius tng ng l . Cc php chiu tng ng c cng vt.

    Mnh 1.2.9. Gi sa l ton t ng, xc nh tr mt kt hp viA. Khi :

    supp(a) r(a)

    yr(a) k hiuphp chiu ln bao ng min gi tr caa.Vi cc php chiup, q A ta c:

    (p q) p q (p q)

    ko theo :(p q) (p) + (q)

    Tng qut hn :(iI

    pi) iI

    (pi)

    i vi h ty (pi)iI cc php chiu trongA ( nuI hu hn th iuny ko theo bng qui np; i vi trng hp tng qut , s dng tnhchun tc ca ).

    Nhn xt 1.2.10.

    p,q Aproj : p q = 0 = p 1 q

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    13/74

    CH NG 1. KI N TH C CHU N B 12

    ( y c ngha tng ng vi mt php chiu con ca ).Tht vy :

    p = 1 q = (p q) p

    = (p q) p q (p q) q = 1 q

    1.2.4 L thuyt v ton t o cnh ngha 1.2.11. Gi s, R+ . Khi ta k hiuD(, ) l tptt c cc ton taA sao cho tn ti php chiup A tha mn :

    (i) pH D(a) v ||ap||

    (ii) (1 p)

    KhipH D(a) th ton tap xc nh khp ni , i hi ||ap|| ko

    theo ap b chn .

    Mnh 1.2.12. Cho 1, 2, 1, 2 R+ . Khi :

    (i) D(1, 1) + D(2, 2) D(1 + 2, 1 + 2)

    (ii) D(1, 1).D(2, 2) D(12, 1, 2)

    Mnh 1.2.13. Gi s, R+:

    (i) Nua l ton t trc ng , th:a D(, ) [a] D(, ).

    (ii) Nua l ton t ng , xc nh tr mt vi biu din cc a = u|a|th:

    a D(, ) u A, |a| D(, )

    B 1.2.14. Cho a A v, R+ . Khi :

    a D(, ) (],[(|a|))

    ( y],[(|a|)

    k hiuphp chiu ph ca |a| tng ng vi khong ], [ ).

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    14/74

    CH NG 1. KI N TH C CHU N B 13

    Chng minh.

    t :p = [0,](|a|)

    . Khi : pH D(|a|) v

    || |a|p||

    Vi p Aproj no ta c :

    || |a|p||

    v (1 p) Gi s:

    |a| =

    0

    de

    l phn tch ph ca |a| . By gi: pH ta c:

    || |a|||2 2||||2

    v : (1 e)H{0}

    ta c:|| |a|||2 > 2||||2

    V:

    || |a|||2 =

    0

    2d(e|) =

    ],[

    2d(e|)

    nn:(1 e)HpH

    phi l {0} ,tc l (1 e) p = 0Vy 1 e 1 p, do

    (1 e)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    15/74

    CH NG 1. KI N TH C CHU N B 14

    Mnh 1.2.15. Cho a A v, R+. Khi :

    a D(, ) a D(, )

    Chng minh. Gi s a = u|a| l biu din cc ca a. Khi u l mtng c ca

    ]0,[(|a|) = supp(a)ln

    ]0,[(|a|) = supp(a) = r(a)

    Do tnh duy nht ca phn tch ph suy ra vi mi R+, u l mtng c ca

    ],[(|a|)

    ln ],[(|a|). p dng b trn c iu phi chng minh.

    nh ngha 1.2.16. Mt khng gian con E ca H c gi l trmt nu R+ , tn ti php chiu p A sao cho pE E v(1 p) .

    Mnh 1.2.17. Gi sE l khng gian con tr mt caH . Khi tn ti mt dy tng (pn)nN cc php chiu trongA vi

    pn 1, (1 pn) 0,

    n=1pnH E

    .

    Chng minh. Ly cc php chiu qk A, k N sao cho :

    qkH E

    v (1 qk) 2k. Vi mi n N , t :

    pn =

    k=n+1

    qk

    Khi

    pnH =

    k=n+1

    qkH E

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    16/74

    CH NG 1. KI N TH C CHU N B 15

    v

    (1 pn) =

    k=n+1

    (1 qk)

    k=n+1

    (1 qk)

    k=n+1

    2k = 2n

    . Ko theo: pn 1.Tht vy, k hiu p l supremum ca dy tng pn , ta c

    n N : (1 p) (1 pn) 2n

    do (1 p) = 0 v p = 1. Hn na

    n=1pnH E

    Vy nu E l khng gian con tr mt ca H th E tr mt trongH.

    B 1.2.18. (i) Cho p0 Aproj .Gi s rng :

    R+, p Aproj : p0 p = 0

    v(1 p) . Khi : p0 = 0.

    (ii) Cho p1, p2 Aproj. Gi s rng

    R+, p Aproj : p1 p = p2 p

    v(1 p) . Khi : p1 = p2.

    Mnh 1.2.19. Cho a, b A vE l khng gian con tr mt ca

    H cha trongD(a) D(b). Gi sa|E = b|E . Khi a = bChng minh. Xt trong khng gian Hilbert H2 = H H i s von

    Neumann A2 =

    A A

    A A

    c trang b vt na hu hn chun ng 2

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    17/74

    CH NG 1. KI N TH C CHU N B 16

    xc nh bi 2

    x11 x12

    x21 x22

    = (x11) + (x22). K hiu pa v pb l cc

    php chiu ln th G(a) v G(b) ca a v b .V a v b kt hp vi Ann G(a) v G(b) bt bin di tt c cc phn t ca

    A2 = { y 00 y |y A}

    v do pa, pb A2 . Gi s R+ khi tn ti mt php chiu p A

    vi pH E v (1 p) /2. t p2 =

    p 0

    0 p

    Khi : 2(1 p2) . Hn na

    pa p2 = pb p2

    V a v b thng nht trn pH E nn

    G(a) (pHpH) = {(,a)| pH,a pH}

    = {(,b)| pH,b pH} = G(b) (pHpH)

    Theo b trn , ta suy ra pa = pb, do a = b.

    nh ngha 1.2.20. Mt ton t ng , xc nh tr mt kt hp viA

    c gi l o c nu vi mi R+ , tn ti mt php chiup A sao cho pH D(a) v(1 p) .K hiuA ltp tt c cc ton t ng , o c ,xc nhtr mt

    Nhn xt 1.2.21. 1. Nu a, b A v a b th a = b.

    2. Nu a A, v a l i xng th a t lin hp .

    3. Nu a ng v p Aproj tha mn pH D(a) th ton t , xc nh

    khp ni ap cng ng v b chn.

    nh ngha 1.2.22. Ton t aA c gi tin o c nu vimi R+ tn ti php chiup A sao cho

    pH D(a), ||a|| <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    18/74

    CH NG 1. KI N TH C CHU N B 17

    v(1 p) .Hay tng ngGi saA . Khi a l tin o c khi v ch khi

    R+, R+ : a D(, )

    Mnh 1.2.23. (i) Ta c A

    A.(ii) Via A tha A.

    (iii) Cho a, b A khi a + b vab xc nh tr mt v tin ng , v[a + b] A, [ab] A.

    (iv) A l mt i s i vi tng mnh v tch mnh.

    T y ta s b qua k hiu [ ] trong k hiu tng mnh v tch

    mnh.nh ngha 1.2.24. Vi mi, R+ , ta t

    N(, ) = A D(, )

    tc l , N(, ) l tp cc a A, o c sao cho tn ti php chiup A tha mn ||ap|| v(1 p) .

    nh l 1.2.25. (i) N(, ), vi , R+ to thnh c s cho cc

    ln cn ca 0 i vi topo trn A bin A thnh khng gian vc ttopo.

    (ii) A l i s topo Hausdorff y vA l mt tp con tr mtcaA

    Chng minh. iu kin (i) l hin nhin . Ta chng minh (ii) :(1) . A l Hausdorff , ta s chng minh rng

    ,R+

    N(, ) = {0}

    Lya

    ,R+

    N(, )

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    19/74

    CH NG 1. KI N TH C CHU N B 18

    Khi : R+, R+ : (],[(|a|))

    V l ng (faithful) , iu ny ko theo

    ],[(|a|) = 0

    , do a = 0.(2). Tip theo ta s chng minh A l i s topo.Theo kt qu trn php ton lin hp l lin tc. Ly a0, b0 A v, R+ . Chn , R+ sao cho

    a0 N(, ), b0 N(, )

    Khi vi mi a, b A tha mn a a0 N(, ) v b b0 N(, ) ,ta c

    ab a0b0 = (a a0)(b b0) + a0(b b0) + (a a0)b0

    N(, )N(, ) + N(, )N(, ) + N(, )N(, )

    N(2, 2) + N(, 2) + N(, 2)

    N(( + + ), 6)

    Do (a, b) ab l lin tc.(3).A l tr mt trong A.Tht vy , gi s a A , ly cc php chiu pn A sao cho

    pn 1, (1 pn) 0,nN

    pnH D(a)

    Khi apn A v apn a trong A v

    ||(apn a)pm|| = 0

    vi mi m n v (1 pm) 0 khi n (4). Cui cng ta s chng minh rng khng gian vc t topo A l y.V A c mt c s m c cho cc ln cn ca 0 ( chng hn s dng

    N(1/n, 1/m), n, m N

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    20/74

    CH NG 1. KI N TH C CHU N B 19

    ) ta ch cn chng minh rng mi dy Cauchy (an)nN trong A hi t .V vy gi s (an)nN l mt dy Cauchy trong A v

    n N : an+1 an N(2(n+1), 2n)

    Ly php chiu pn A sao cho

    ||(an+1 an)pn|| 2(n+1)

    v (1 pn) 2n. Vi mi n N ,t:

    qp =

    k=n+1

    pk

    V

    (1 qn) = (

    k=n+1

    (1 pk))

    k=n+1

    (1 pk)

    k=n+1

    2k = 2n

    vm n + 1, l N : ||(am+l am)qn|| 2

    m

    V qn pkvi mi k m n + 1 v do

    ||(am+l am)qn||

    m+l1

    k=m

    ||(ak+1 ak)qn||

    m+l1k=m

    ||(ak+1 ak)pk|| m+l1k=m

    2(k+1) 2m

    Ly

    nN

    qnH

    .Khi qnH vi n N no ,v do dy(am)mN

    l dy Cauchy. ta = limmam

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    21/74

    CH NG 1. KI N TH C CHU N B 20

    Nh vy ta nh ngha mt ton t a vi

    D(a) =nN

    qnH

    (ch rng D(a) l khng gian tuyn tnh con v (qn)nN l mt dytng cc php chiu). Theo cc xy dng , a l tin o c . Vimi n N ta c

    qnH D(a)

    v (1 qn) 2n. Ta khng nh rng a cng tin ng. thy iuny , p dng lp lun trn cho (an)nN. Do tn ti mt ton t tin o c b sao cho

    bn = limman, D(b)

    Khi D(a), D(b) : (a|) = lim(am|) = lim(|a

    m) = (|b)

    nn a b. Nh vy a tin ng . Vy [a] A. t: a0 = [a], cui cngta chng minh an a0 trong A. Gi s , N0. Ly n0 N sao cho

    2(n0+1)

    v 2n0 . Khi vi mi m n0 + 1 ta c

    ||(a0 am)qn0|| 2(n0+1)

    v(1 qn0) 2

    n0

    v H : (a0 am)qn0 = liml(am+l am)qn0

    v||(am+l am)qn0|| 2m 2(n0+1)

    do b n0 + 1 : a0 am N(, )

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    22/74

    CH NG 1. KI N TH C CHU N B 21

    1.3 Khng gian Lp theo mt vt

    Trong phn ny chng ta s nh ngha khng gian Lp , Lp = Lp(A, )vi 1 p v xy dng cc tnh cht c bn ca chng. Segal lm vi p = 1, 2, ( khng gian L chnh l A ) , v Kunze nghincu trong trng hp tng qut. Cch tip cn ca chng ti da trn

    khi nim hi t theo o trnh by trong phn trn s n ginhn.Cho trc mt vt na hu hn chun ng trn i s von NeumannA trn khng gian Hilbert. Gi s

    L2 = {a A : (aa) < }

    Cho a trong L2 v b trong A . Khi

    (ba)

    ba ||b||a

    a

    nn ba cng trong L2 . V a v b u trong L2 nn a + b cng trong L2 v

    (a + b)(a + b) 2(aa + bb)

    Do L2 l mt idean tri . Vy n l t lin hp v do l idean haipha (sau ny ta s ng nht L2 vi L2 L) . t L = L22 . Khi Lcng l mt idean hai pha (sau ny ta s ng nht n vi L1 L).Nu a trong A+ v (a) < th a1/2 trong L2 , nn a trong L. Ngc

    li, gi s c 0 vi c trong L. Khi c l tng hu hn c = biai vibi, ai trong L2. V c

    1

    2

    (bib

    i + a

    i ai) nn ta c (c) < . Do L

    cha tt c cc t hp tuyn tnh hu hn cc phn t a trong A+ vi(a) < , v cc phn t ny to thnh L A+. Nh vy m rngduy nht thnh mt phim hm tuyn tnh (vn k hiu l ) trn L.Theo biu din cc th (ba) = (ab), v do (ba) = (ab) vi mia, b trong L. V vy ,nu a 0 v a trong L th

    (ab) = (a1/2ba1/2)

    nn0 (ba) ||b||(a)

    vi mi b 0 trong Lv do , theo tnh chun tc v na hu hn ca ,vi mi b trong A+. Kt qu l |(ba)| ||b||(a) vi mi b trong A.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    23/74

    CH NG 1. KI N TH C CHU N B 22

    Ta cng s s dng k hiu ||b|| cho chun ton t ca phn t b trongA, v ta t ||a||1 = (|a|) vi a trong L. V a = u|a| vi ||u|| = 1 nnta c

    |(ba)| ||b||||a||1; b A, a L (1.1)

    vi 1 p < v a trong L , t ||a||p = (|a|p)1/p.Ta khng nh rngbt ng thc Holder:

    |(ba)| ||b||q||a||p (1.2)

    ng , vi a, b trong L v (1

    p) + (

    1

    q) = 1. thy iu ny , gi s u v

    v trong A vi ||u|| 1, ||v|| 1 v gi s c 0, d 0, c L, d Ltha mn c v d b chn cch xa 0 trn b sung trc giao ca cckhng gian trng ca chng. Do tnh lin tc nn s gii hn ny v saus b qua, v ta khng nhc n na . Khi s (udsvc1s) lin tc

    v b chn trn 0 Res 1 v chnh hnh phn trong. Theo v dv nguyn l Phragmn-Lindelof c bit n nh l nh l 3 ngthng ,ta c :

    |(udkvc1p)| supRes=1|(udsvc1s)|ksupRes=0|(ud

    svc1s)|1k

    vi 0 k 1, v theo (1.1) v phi ||d||k1||c||1k1 . p dng iu ny

    vic = |a|1/k, d = |b|1/(1k)

    y a = u|a|, b = v|b|, k = 1/q, v 1 k = 1/q , iu ny ko theo(1.2).Vi a = u|a| trong L, t

    b =|a|p1u

    ||a||p/qp

    y 1/p + 1/q = 1 . Khi d thy ||b||q = 1 v (ba) = ||a||p. Tc l

    ||a||p = sup||b||q=1|(ba)| (1.3)

    v supremum l t c. T y ta d dng thu c bt ng thcMinkowski

    ||a + b||p ||a||p + ||b||p (1.4)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    24/74

    CH NG 1. KI N TH C CHU N B 23

    vi a, b trong L. V v tri l (c(a + b)) vi c tha mn ||c||q = 1 ,nhngn bng (ca) + (cb), do nh hn v phi theo bt ng thc Holder.Cui cng ,ch rng ||a||p = 0 ko theo a = 0 do tnh ng ca . Dovy L l khng gian tuyn tnh nh chun vi chun ||.||p . Gi Lp lkhng gian Banach tng ng vi L sau b sung cho y .Nu a 0 trong L vi biu din ph

    a =

    0

    de

    th

    ||a||pp = (ap) =

    0

    pd(e)

    nn ||a||pp p(e) (1.5)

    vi mi 0. Vy , nu an trong L l dy Cauchy trong Lp th n ldy Cauchy theo o. Do tn ti mt nh x tuyn tnh t nhinlin tc ca Lp vo A. Ta chng minh c rng nh x t nhin ny ln nh.

    nh ngha 1.3.1. i vi ton t dng t lin hp a kt hp vi Abt k , ta t

    (a) = supnN(

    n0

    de)

    y

    a =

    0

    de

    l biu din ph caa . Khi vi mip ]1, [ ta c th nh ngha

    Lp(A, ) = {a A(|a|p) < }

    v||a||p = (|a|

    p)1/p < , a Lp(A, )

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    25/74

    CH NG 1. KI N TH C CHU N B 24

    .(Lp(A, ), ||.||p) l cc khng gian Banach trong

    I = {x A(|x|) < }

    l tr mt , v tt c chng c cha trong ( hoc thm ch l nhnglin tc trong ) A

    Li bnh Khi nim v ton t o c c a ra bi I.E.Segal[17] v to thnh c s cho vic nghin cu l thuyt tch phn khnggiao hon , tc l l thuyt tch phn . L(X, ) ( tng ng vikhng gian o (X, ) ) c thay th bi i s von Neumann tng quthn. L thuyt ny ng vai tr chnh trong vic xy dng cc khnggian Lp kt hp vi cc i s von Neumann na hu hn l khng gianc th ca cc ton t ng xc nh tr mt .Trong [18] , E.Nelson a ra mt hng tip cn mi i hi t kin thc v k thut i svon Neumann cho l thuyt ny , da trn khi nim v tnh o ctheo mt vt (bt ngun t khi nim hi t theo o c gii thiubi W.F.Stinespring trong [16] ).Ton t o c bt k cng o dctheo ngha Segal ( trong khi iu ngc li ni chung khng ng ). Tuynhin ,tp hp cc ton t o c ln cha cc khng gianLp theo .

    1.3.1 Hi t hu u trong i s von NeumannL thuyt xc sut khng giao hon l nn tng ton hc ca c hclng t, n c th coi l m rng t nhin ca l thuyt xc sut cin. Trong c hc c in, vi mi h ht im vt l c mt a tpkh vi U tng ng .Cc trng thi ca h c biu din bi cc imca U, v cc lng vt l (cc quan st c ) s c m t bi cchm (o c) trn a tp U. Trong c hc lng t, vi mi h vtl c mt khng gian Hilbert H tng ng. Vi h c s bc t do hu

    hn , cc trng thi hn hp c cho bi cc ton t lp vt dng (ton t tr mt ) .Cc quan st c s c biu din bi cc ton tt lin hp hot ng trn H. i vi h ht c s bc t do v hn ,ngi ta ng nht trng thi ca h vi trng thi ( ton hc ) trnmt i s ton t A thch hp . Trong hu ht trng hp ta c th lyA l i s ton t von Neumann hot ng trn mt khng gian phc

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    26/74

    CH NG 1. KI N TH C CHU N B 25

    (kh ly) . i s tt c cc ton t tuyn tnh b chn trn H l mt is von Neumann. Trng hp c in dn ta n i s von Neumanngiao hon L(U, Bu, ) cc hm o c b chn trn mt khng giano (U, Bu, ) . Khi cc hm o c khng b chn s c gn vo L(U, Bu, ) mt cch t nhin. o sau khi thc trin duynht thnh tch phn

    U

    f(d)

    l mt trng thi chun tc ng trn L. Do trng hp c inc coi l sn ca i s von Neumann (giao hon).

    i vi mt khng gian xc sut (, F , ) , gi L(, F , ) l i s(cc lp tng ng ) tt c cc hm nhn gi tr phc, b chn ctyu v F o c trn . N c th coi l mt i s von Neumanngiao hon hot ng trong L2(, F , ) nu ta ng nht hm g Lvi ton t nhn ag : f f g, vi f L2. i s A = L(, F , ) ctrng thi vt chun ng ( cho bi

    (f) =

    f d

    ). Theo nh l Ergoroff, s hi t hu chc chn ca dy (fn) tA l tng ng vi s hi t hu u ca n. Tc l ta c th pht

    biu li hi t hu chc chn bng chun trong L , trng thi vcc hm c trng.

    nh ngha 1.3.2. Gi s A l i s von Neumann vi trng thichun tc ng. Ta ni rng dy(xn) cc phn t caA hi t huu ti phn tx A nu vi mi > 0 ,tn ti mt php chiup Avi(1 p) < tha mn ||(xn x)p|| 0 khin .

    Ch . nh ngha trn khng ph thuc vo cch chn do hit hu u tng ng vi hai iu kin sau:(*) Trong mi ln cn mnh ca n v trong A , tn ti php chiu psao cho ||(xn x)p|| 0 , khi n (**) Vi mi trng thi chun ng trn A v , tn ti php chiup A vi (1 p) < tha mn

    ||(xn x)p|| 0

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    27/74

    CH NG 1. KI N TH C CHU N B 26

    Nhn xt. Nu l mt trng thi chun tc ng th topo mnh tronghnh cu n v S trong A c th metric ha bi khong cch

    dist(x, y) = [(x y)(x y)]1/2

    nh l 1.3.3. Gi s A l mt i s von Neumann vi trng thi

    chun ng. Vi dy b chn cc ton t (xn) tA s hi t hu uko theo s hi t mnh ( mnh) ca(xn).

    1.3.2 Cc kiu hi t hu chc chn trong i

    s von Neumann

    Khi nim hi t hu u l s tng qut ca khi nim hi t hu chcchn cho i s von Neumann . Ta c th xt cc phin bn khng giaohon khc ca khi nim ny.

    nh l 1.3.4. Gi s A l mt i s von Neumann vi trng thichun ng .Vi mi dy b chn (xn) trong A, cc iu kin sau ltng ng

    (i) Vi mi > 0 , tn ti php chiu p trong A vi (1 p) < vs nguyn dngN sao cho

    ||(xn x)p|| <

    vin N.

    (ii) Vi mi > 0 , tn ti php chiup A vi(1 p) < sao cho

    ||(xn x)p|| 0

    khin .

    (iii) Vi , tn ti dy cc php chiu (pn) trong A tng ti 1.( trongtopo mnh ) sao cho

    ||(xn x)pn|| <

    vin = 1, 2,...

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    28/74

    CH NG 1. KI N TH C CHU N B 27

    (iv) Vi mi php chiu khc khng p trong A tn ti php chiu khckhngq A sao cho q p v

    ||(xn x)q|| 0

    khin

    R rng trong trng hp i s von Neumann giao hon L(, F , )c 4 iu kin va thnh lp u tng ng vi hi t hu chcchn.

    nh l 1.3.5. Nu l mt trng thi vt chun ng ( tc A l is von Neumann hu hn ) th c 4 iu kin trn l tng ng.

    Gi s l mt vt ( hu hn hoc na hu hn ) . Xt i s

    A cc ton t o c i vi (A, ) theo ngha Segal Nelson. Hi thu u (hay hi t gn u khp ni )cng c th c xt i vi dytrong A (c th l i vi dy (xn) trong L1(A, )).

    nh ngha 1.3.6. Mt dy(xn) trongA c gi lhi t hu utix nu vi mi > 0, tn ti php chiup A sao cho

    (p) < , (xn x)p A

    vin > n0 v ||(xn x)p|| 0

    khin .

    nh l 1.3.7. Dy(xn) trongA ( trongA nu l mt vt ) c gil hi t hu u hai pha ti x A hay(A) nu vi mi > 0 ,tn tiphp chiup A sao cho (1 p) < v

    ||(xn x)p|| 0

    khin

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    29/74

    CH NG 1. KI N TH C CHU N B 28

    1.3.3 Dng khng giao hon ca nh l Egoroff

    Mnh 1.3.8. Gi sA l mt i s von Neumann hot ng trongkhng gian Hilbert H. Nu dy (xi) trong A hi t mnh ti x0 th vimi > 0 , tn ti dy(pi) ProjA sao cho pi 1 mnh v

    ||(xi x0)pi|| <

    vii = 1, 2,...

    nh l 1.3.9. (nh l Egoroff khng giao hon) Gi sA l mt is von Neumann vi trng thi chun ng ; xn l dy trongA hi tnx theo topo ton t mnh . Khi vi mi php chiup A v mi > 0, tn ti php chiu q p trong A v dy con (xnk) ca (xn) saocho (p q) < v ||(xnk x)q|| 0 khik .

    B 1.3.10. Gi s {xn} l mt dy ton t dng t A v {n} lmt dy s dng . Nu

    n=1

    1n (xn) < 1/2

    th tn ti php chiup A sao cho

    (p) 1 2

    n=1 1

    n (xn)

    v ||pxnp|| 2n vi min = 1, 2,....

    nh l 1.3.11. nh l Rademacher-Menchoft. Gi s 1, 2, ....l dy cc bin ngu nhin trc giao vc1, c1, .... l dy s thc tha mn

    k=1c2k(lgk)

    2 <

    Khi chui

    k=1

    ckk

    hi t vi xc sut1.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    30/74

    CH NG 1. KI N TH C CHU N B 29

    Cc k hiu s dng trong ti : A k hiu 1 i s vonNeumann hot ng trong mt khng gian Hilbert phc H ; A l hontp ca A; l mt trng thi trn A ; A+ l nn cc ton t dngtrong A ; ProjA l tp hp tt c cc php chiu trc giao trong A .Vip ProjA lun lun p = 1 p. Ton t n v trong A l 1, i vitp con Borel Z ca ng thng thc v ton t t lin hp x , k hiu

    eZ(x) l php chiu ph ca x tng ng vi Z. Vi x A th |x|2 = xx.A l tp cc ton t ng , o c , xc nh tr mt. A l tp ccton t ng , xc nh tr mt v kt hp vi A

    1.3.4 Khi nim v lut s ln

    Mt bin c ngu nhin c th xy ra m cng c th khng xy i vimi php th. i lng ngu nhin c th ly mt trong cc gi tr c

    th ca n. Nhng khi xt mt s ln nhng bin c ngu nhin hay ilng ngu nhin , ta c th thu c kt lun no m trn thc tc th xem l chc chn. Trong l thuyt xc sut ngi ta gi nhngnh l khng nh dy no nhng i lng ngu nhin hit theo xc sut v hng s l nhng nh l lut s ln . Nhngnh l lut s ln c in ( lut s ln i vi hi t theo xc sut )nh nh l Bernoulli v nh l Chebyshev , Khinchin...v lut s lni vi hi t hu chc chn nh nh l Kolmogorov.

    nh ngha 1.3.12. Lut yu s ln cn c gi l nh lKhinchin Xt n bin ngu nhin X1, X2,....,Xn c lp , cng phnphi vi phng sai hu hn v k vng E(X). Khi vi mi s thc dng , xc sut khong cch gia trung bnh tch ly

    Yn =X1 + X2 + ... + Xn

    n

    v k vngE(X) ln hn l tin v0 khin tin v v cc.

    limnPX1 + X1 + .... + Xn

    n E(X) = 0

    nh ngha 1.3.13. Lut mnh s ln Kolmogorov Xtn bin ngunhin c lp X1, X2, ........., Xn cng phn phi xc sut vi phng saiE(|X|) < . Khi trung bnh tch ly

    Yn =X1 + X2 + .... + Xn

    n

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    31/74

    CH NG 1. KI N TH C CHU N B 30

    hi t hu nh chc chn vE(X) .Tc l

    P

    limnYn() = E(X)

    = 1

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    32/74

    Chng 2

    Lut mnh s ln trong

    i s von Neumann

    Trong chng ny chng ta s cp n mt s kt qu c coi lm rng ca nh l c in cho dy bin ngu nhin c lp ( haykhng tng quan ) . D nhin ta s cn khi nim tng qut tng ngv tnh c lp trong i s von Neumann. Vic thit lp li nh nghac in khng kh. Nhng iu cn nhn mnh y l tnh c lplin quan n trng thi l mt iu kin rt hn ch ,c bit khi

    khng phi l vt.Khi nim c lp trong xc sut khng giao khngng vai tr qu quan trng nh trong xc sut c in. l l do vsao cc nh l v dy ton t c lp dng nh t quan trng so vicc nh l martingale hay ergodic . Rt may l i vi trng thi vt(tracial state) th cc k thut vn tng t nh trng hp c in.Vvy ta thu c rt nhiu kt qu ng cho c trng hp giao hon vkhng giao hon theo cch lm khng khc nhiu cch lm c in .

    Thay cho vic nghin cu tnh c lp, ta s nghin cu tnh trcgiao ( lin quan n trng thi ) vi iu kin km cht hn nhiu. Ccnh l lin quan n dy trc giao dng nh c ng dng nhiuhn, v s c nghin cu trong chng ny. Cc nh l nh vy clin h vi l thuyt tng quan trong cc qu trnh ngu nhin lngt ( xem [14] ) v cho ta mt s thng tin v bin thin tim cn cady quan st c khng tng quan.

    31

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    33/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 32

    Nu trng thi l vt th ta s thit lp c mt s nh l chody ton t o c. Chnh xc hn, ta s xt dy (xn) A ,vi A l*- i s t p cc ton t o c theo ngha Segal-Nelson . Cc thutng v mt s kt qu lin quan n ton t o c c th xem thmti liu trong phn ph lc.

    2.1 Tnh c lp

    Cho A l mt i s von Neumann vi trng thi chun tc ng (faithful normal state ) . K hiu A1, A2 l cc i s von Neumanncon ca A . Theo Batty [11] ta c 2 phin bn ca khi nim clp i vi dy ton t .

    nh ngha 2.1.1. Cc i s conA1, A2 c gi l c lp ( lin quann ) nu(xy) =(x)(y) vi mix A1, y A2 .

    R rng quan h c lp c tnh cht i xng.

    nh ngha 2.1.2. Cc phn tx, y A ( hay tA nu l trng thivt ) c gi lc lp nu cc i s von NeumannW(x) vW(y)ln lt sinh ra bi x vy l c lp.

    Dy {xn} cc phn t t A ( hay A nu l mt vt ) c gil c lp lin tip nu vi mi n , i s W(xn) c lp viW(x1, x2,....,xn1) .

    nh ngha 2.1.3. H {B, } ca cc i s von Neumann concaA ( hay trongA nu l vt ) gi lc lp yu nuB c lpviW{B; {}}

    2.2 Hi t hu y trong i s vonNeumann

    T y ta s s dng mt s kiu hi t trong ATa cng nhn nh ngha sau:

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    34/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 33

    nh ngha 2.2.1. Dy {xn} trong A c gi l hi t hu y tix nu vi mi > 0 ,tn ti dy (qn) cc php chiu trongA sao cho

    n

    (1 qn) <

    v ||(xn x)qn|| < ; n = 1, 2, ....

    Trc ht ta lu rng nu l vt th hi t hu y ko theohi t hu u.

    Chng minh. Tht vy , gi s xn 0 hu y . Khi tn ti dycc php chiu qn sao cho ||xnqn|| < , n = 1, 2,... v

    n(qn ) <

    t :

    pn =

    s=n

    qn

    , ta c :

    (1 pn)

    s=n

    (1 qn) 0

    Tc l xn 0 hu khp ni . Theo nh l 1.3.5 th xn 0 hu u.

    Khi l mt trng thi , ta c kt qu sau:

    nh l 2.2.2. Gi sA l i s von Neumann vi trng thi chuntc ng , v (xn) l dy b chn trong A . Nu xn x hu y thxn x hu u.

    Chng minh. Gi s ||xn|| 1 v x = 0 . Cho trc > 0. Ta s tmdy (qn) cc php chiu trong A sao cho :n

    (qn ) <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    35/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 34

    v ||xnqn|| < vi n = 1, 2,...C nh dy s dng (n) tha mn:n 0 v

    n=1

    (1 qn)1n < /2

    Theo b 1.3.10 , tn ti php chiu p A vi (p

    ) < v tha mn||pqnp|| = ||qnp

    ||2 < 2n; n = 1, 2, ....

    Khi ta c:

    ||xnp|| ||xnqnp|| + ||xnqnp|| ||xnqn|| + ||q

    np|| < + (2n)

    1/2 < 2

    vi n > M0()V vy iu kin sau c tha mn:

    (*) Vi mi > 0 , tn ti php chiu p vi (p) 1 v tha mn||xnp|| < vi n > n0();Theo nh l 1.3.4 th xn 0 hu u ;

    2.3 nh l gii hn mnh cho dy trc

    giao

    Trong mc ny ta s chng minh nh l gii hn mnh sau y v dytrc giao lin quan n mt trng thi .

    nh l 2.3.1. [15] Gi s A l i s von Neumann vi trng thichun tc ng , v (xn) l dy trc giao tng i trong A (tc l(xnxm) = 0 vim = n)Nu :

    n=1(lg n

    n

    )2(|xn|2) < (2.1)

    Th cc trung bnh :

    Sn =1

    n

    nk=1

    xk (2.2)

    hi t hu u ti0

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    36/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 35

    chng minh nh l ny ta s bt u vi kt qu nh sau .

    Mnh 2.3.2. Gi s (yn) l dy trc giao tng i trong A . t:

    tn =n

    k=1

    yn (2.3)

    Khi tn ti dy ton t dngBm trongA sao cho :

    |tn|2 (m + 1)Bm 1 n 2

    m (2.4)

    v

    (Bm) (m + 1)2mk=1

    (|yk|2) (2.5)

    Chng minh. Vic chng minh da trn tng ca Plancherel [ 7] vc trnh by trong l thuyt v chui trc giao ( xem [8] ). Ta s btu vi biu din nh phn ca ch s n ; ta chia khong I = (0, 2m]thnh cc khong (0, 2m1] v (2m1, 2m] ,mi khong ny li tip tcc chia i .... v ta s thu c dy phn hoch ca I . Cc phnt ca phn hoch u tin c di 2m1 ,ccphn t ca phn hochth r c di 2mr . i vi s nguyn dng n 2m , ta c biu dinnh phn ca n. Khi khong (0, n] c th vit thnh tng ca nhiunht m khong ri nhau I(n)j mi khong thuc mt phn hoch khc

    nhau , tc l :

    (0, n] =m

    j=0

    I(n)

    j (2.6)

    Vi I(n)j l tp rng hoc l khong c di |I(n)

    j | ; (j=1,2,...m) Tac th vit :

    tn =m

    j=0

    kI

    (n)j

    yk (2.7)

    (ng nhin , ta s t kI

    (n)j

    yk = 0

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    37/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 36

    nu I(n)j trng ) . By gi ta ch rng vi dy Z1, Z2,....,Zn trong A ,ta c :

    |n

    k=1

    Zk|2 n

    nk=1

    |Zk|2 (2.8)

    iu ny d dng suy ra bng quy np t bt ng thc :

    xy + yx xx + yy

    t:Bm =

    I

    |kI

    yk|2 (2.9)

    y I chy trn tt c cc khong l phn t ca phn hoch ca(0, 2m]. Khi ta c:

    |tn|2 (m + 1)

    mj=0

    | kI

    (n)j

    yk|2 (m + 1)Bm (2.10)

    Hn na Bm khng ph thuc vo n (0, 2] nn (2.5) ng .Mnh c chng minh xong .

    * Chnh minh nh l 2.3.1

    Chng minh. t :

    SN = 1N

    Nk=1

    xk

    . Gi s : 2k < N 2k+1. Khi :

    |SN S2k|2 = |(

    1

    N

    1

    2k)

    2ks=1

    xs +1

    N

    Ns=2k+1

    xs|2 (2.11)

    2[(

    1

    N

    1

    2k )

    2

    |

    2k

    s=1 xs|2

    +

    1

    N2 |

    n

    s=2k+1

    xs|

    2

    ]

    p dng mnh 2.3.2 , ta c:

    |SN S2k|2 212k[|

    2ks=1

    xs|2 + (k + 2)Bk]

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    38/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 37

    y Bk l ton t dng , khng ph thuc vo N (2k, 2k+1] v thamn :

    (Bk) (k + 2)2k+1

    s=2k+1

    (|xs|2) (2.12)

    Do , vi 2k < N 2k+1, ta c:

    |SN S2k|2 Dk (2.13)

    Vi Dk A+, v

    (Dk) 212k[

    2ks=1

    (|xs|2) + (k + 2)

    2k+1s=2k+1

    (|xs|2)] (2.14)

    Theo gi thit ca nh l , ta c :

    k=1

    (Dk)

    k=1

    212k22k

    k2

    2ks=1

    (|xs|2)(

    lg s

    s)2

    +

    k=1

    212k22k

    k2(k + 2)2

    2k+1s=2k+1

    (|xs|2)(

    lg s

    s)2

    s=1 (|xs|2

    )(

    lg s

    s )

    2

    (

    k=12

    k2 + const) (2.15)

    Hn na:

    k=1

    (|S2k|2) =

    k=1

    1

    22k

    2ks=1

    (|xs|2)

    k=1

    22k22k

    k2

    s=1

    (|xs|2)(

    lg s

    s)2 < (2.16)

    Cho trc > 0.T (2.15) ,(2.16) suy ra ta c th tm c dy s dng(k) sao cho k 0 v :

    k=1

    1k (|S2k|2 + Dk) < /2 (2.17)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    39/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 38

    Theo b 1.3.10 tn ti php chiu p A vi (p) 1 tha mn:

    ||p|S2k|2p|| < 2k; ||pDkp|| < 2k (2.18)

    Nh vy ,vi 2k < N 2k+1 , ta c c lng sau :

    ||SNp||2 + ||(SN S2k)p + S2kp||

    2

    2[||(SN S2k)p||2 + ||S2kp||

    2]

    = 2[p|SN S2k|2p|| + ||p|S2k|

    2p||]

    2[||pDkp|| + ||p|S2k|2p||]

    < 8k 0 khiN . iu ny c ngha l :

    SN =1

    N

    N

    s=1 xshi t hu u v 0nh l c chng minh xong.

    Ta s thit lp phin bn r chiu ca nh l 2.3.1

    nh l 2.3.3. Gi s (x(i)n ); i = 1, 2,....,r l mt h hu hn cc dytrc giao tng i trong A ( tc l((x(i)n )x

    (i)m ) = 0 vi m = n v

    i = 1, 2,...,r). Gi thit :

    n=1

    (lg n

    n)2(|x(i)n |

    2) < ; i = 1, 2,...,r

    Khi , vi mi > 0 , tn ti php chiu p A vi (1 p) < vtha mn:

    Max1ir||1

    N

    Nn=1

    x(i)n p|| 0; N

    tc l, cc trung bnh1

    N

    Nn=1

    x(i)n

    hi t ti0 hu u v u theo 1 i r;

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    40/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 39

    D nhin nu l mt vt th nh l ny l h qu tm thng canh l 2.3.1. Nu l trng thi chun tc ng tng qut , chng minhc th thu c bng cch xem xt k chng minh ca nh l 2.3.1.

    Chng minh. t :

    S(i)N =

    1

    N

    N

    n=1 x(i)n

    V p dng mnh 2.3.2 , ta c c lng :

    |S(i)N S

    (i)2k

    | D(i)k ; (i = 1, 2,...,r)

    Vi D(i)k A+ no c tnh cht ging Dk . n y ta c th t :

    Dk =r

    i=1D

    (i)k ; SN = (

    r

    i=1|S

    (i)N |

    2)1/2

    V tip tc chng minh nh trong nh l 2.3.1

    Ta s so snh nh l 2.3.1 vi cc kt qu c in .nh l Rademacher - Menchoft v s hi t hu chc chn ca chuitrc giao [8] cng vi b Kronecker cho ta lut mnh s ln sau y:

    nh l 2.3.4. i vi dy(Xn) cc bin ngu nhin khng tng quan, nu :

    n

    (lg nn

    )2var(Xn) <

    Th:1

    n

    nk=1

    (Xk EXk) 0

    vi xc sut1

    R rng nh l 2.3.1 c th c coi l s m rng ca lut mnhs ln ni trn cho trng hp khng giao hon .Vi mt vi iu kin mnh hn trong nh l 2.3.1 ta s thu c shi t tt hn ca dy trung bnh . Do d dng chng minh 2 nhl sau:

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    41/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 40

    nh l 2.3.5. Gi s(xn) l dy trongA trc giao lin quan ti trngthi . Nu

    s=1

    as(|xs|2) <

    khi0 < as 0 v

    s=1

    1s2as

    <

    th1

    n

    ns=1

    xs 0

    hu y .

    Chng minh. t:

    Sn =1

    N

    Ns=1

    xs

    , khi :

    (|SN|2) =

    1

    N2

    Ns=1

    (|xs|2)

    1

    N2aN

    Ns=1

    as(|xs|2)

    Do vy : (|SN|2) < Vi > 0 , ta t :

    qN = e[0,2](|SN|2)

    Khi :||SNqN|| < vi N = 1, 2,... Hn na :

    N=1

    (qN) 2

    k=1

    (|Sk|) <

    Kt thc chng minh.nh l tip theo l kt qu mnh hn ca Batty [11] (nh l 2.3.1)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    42/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 41

    nh l 2.3.6. Gi s(xn) l dy c lp yu b chn u trong A vi(xk) = 0 . Khi

    1

    n

    ns=1

    xs 0

    hu y .

    Chng minh. Cho trc > 0. t :

    SN =1

    N

    Ns=1

    xs

    D dng ch ra rng :

    (|SN|4) N4(3N2 N)

    Do : N

    (|SN|4) <

    t :qn = e[0,4](|SN|

    4)

    suy ra: N

    (qN) <

    v ||SNqN||4 || |SN|4qN|| < 4

    Vi N = 1, 2,... suy ra iu phi chng minh.

    2.4 M rng khng giao hon ca nh l

    Glivenko-Cantelli

    Ta cn thm mt nh ngha na.

    nh ngha 2.4.1. Gi s v l 2 ton t t lin hp c st nhpviA . Gie(.) ve(.) l cc o ph ca v .Ta ni rng v l cng phn phi nu (e(Z)) = (e(Z)) vi mi tp con Borel Zca ng thng thc.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    43/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 42

    Ta s chng minh kt qu tng qut ca nh l Glivenko-Cantelliv phn phi thc nghim.

    nh l 2.4.2. [9] Gi s n l dy ton t t lin hp , c lp tngi v cng phn phi , st nhp viA. Khi vi mi > 0 , tn timt php chiup trong A sao cho :

    sup

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    44/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 43

    Nhng t nh ngha ca i,k, ta c :

    (i+1,k 0) (i,k + 0) 1

    k

    V kt qu l :

    N(i,k + 0) (i,k + 0) 1

    k

    N( 0) ( 0) N(i+1,k 0) (i+1,k 0) +1

    k(2.19)

    Nu 1,k th:

    1

    k N( 0) ( 0) N(1,k 0) (1,k 0) +

    1

    k(2.20)

    V nu > 1,k th:

    N( 0) ( 0) = 0 (2.21)

    thun tin ta t :

    N(0,k + 0) (0,k + 0) = N(1,k 0) (1,k 0) = 0

    Theo (2.19) ,(2.20) ,(2.21) th vi mi s thc v k = 1, 2,... tn timt i gia 0 v k 1 sao cho :

    N(i,k + 0) (i,k + 0) 1k

    N( 0) ( 0)

    N(i+1,k 0) (i+1,k 0) +1

    k;

    do vy vi php chiu p ty t A ta c:

    p[N(i,k + 0) (i,k + 0)]p 1

    kp

    p[N( 0) ( 0)]p

    p[N(i+1,k 0) (i+1,k 0)]p +1

    kp

    V ta thu c kt qu:

    ||p[N( 0) ( 0)]p||

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    45/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 44

    max1ik,=0 ||p[N( + ) (i,k + )]p|| +1

    k

    Ko theo :

    sup

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    46/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 45

    v:||(sn (sn))(1 q)|| n 1

    Chng minh. Ta c th gi s (xn) = 0. Ta s nh ngha cc dy phpchiu pn, qn trong A bng quy np. t q0 = 0 . Cho trc qn1 ,t:

    pn = e(2,){(1 qn1)snsn(1 qn1)}

    v :qn = pn + qn+1

    R rng cc pn trc giao ,

    qn =N

    r=1

    pr

    , pn v qn thuc W{xn : r n}

    .T tnh c lp v cc tnh cht ca vt th vi r n:

    (pr|sn|2pr) = (pr((sn sr) + sr)

    ((sn sr) + sr)pr)

    ((sn sr)srpr) + (prs

    r(sn sr)) + (prs

    rsrpr)

    = ((sn sr)srpr) + (prs

    r(sn sr)) + (prs

    rsrpr)

    = (pr(1 qr1)srsr(1 qr1)pr) 2(pr);v:

    (qn) 2

    nr=1

    (snsnpr) = 2(snsnqn)

    2(snsn) = 2

    nj=1

    ||xj||22

    t :

    q =

    r=1

    pr

    , khi :

    (q) 2n

    j=1

    ||xj||22

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    47/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 46

    , v:||(1 q)snsn(1 q)||

    ||(1 pn)(1 qn1)snsn(1 qn1)(1 pn)||

    2

    Nh l h qu ca nh l trn, ta nhn c dng suy rng sau yca nh l Kolmogorov.

    nh l 2.5.2. Gi sxn l dy c lp lin tip trongL2(A, ) sao chochui

    n=1

    ||xn (xn)||22

    hi t , v gi

    sn =

    n

    k=1 xk. Khi dysn (sn) hi t hu u.

    Chng minh. Ta c th gi s rng xn l t lin hp v (xn) = 0 . Chns nguyn nk sao cho

    n=nk

    (x2n) < 8k

    Theo nh l 2.5.1 tn ti cc php chiu qk vi (qk) < 2k

    tha mn||(sn sm)(1 qk)|| < 2

    (k1)

    vi m, n nkNn {sn} l dy Cauchy theo o . Gi s l gii hn theo o can . Khi ta c:

    ||(sm s)(1 qk)|| < 2(k+1)

    vi n > nk.V vy sn s trn cc tp ln v do hi t hu u .

    S dng b Kronecker ta thu c :

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    48/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 47

    nh l 2.5.3. Gi s{xn} l dy c lp lin tip trongL2(A, ) saocho

    n=1

    n2||xn (xn)||22 <

    . Khi

    n1

    n

    k=1

    (xk (xk))

    hi t hu u .

    Ch rng t kt qu va nu ta c th suy ra m rng sau y calut mnh s ln Kolmogorov.

    nh l 2.5.4. Gi s {xn} l dy cc ton t cng phn phi , clp lin tip v t lin hp trongL1(A, ) . Khi :

    n1n

    k=1

    xk (x1)

    hu u.

    Ta b qua chng minh ca nh l ny v trong phn sau ta s nura kt qu tng qut hn.

    2.6 Lut mnh s ln i vi vt

    Ta s bt u vi nh l 2.5.2 t suy ra m rng ca phn

    ca nh l ba chui Kolmogorov.

    B 2.6.1. Gi s{k} l dy ton t o c c lp lin tip t A.Vid > 0 , t

    k = ke[0,d]{|k|}

    . Khi cc iu kin :

    (i)

    k (e(d,){|k|}) <

    (ii)

    k (kk) <

    (iii)

    k (k) hi t .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    49/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 48

    Ko theo s hi t hu u ca chui

    k k;

    Chng minh. Theo nh l 2.5.2 v (ii) chuik

    (k (k))

    hi t hu u , v do theo (iii) chuik

    k

    hi t hu u . iu ny cng vi (i) cho ta s hi t hu u cak k.

    Tht vy, t :

    sn =

    n

    k=1 k;

    sn =n

    k=1

    k

    R rng ch cn chng minh {sn} l dy Cauchy hu u , tc l :Vi mi > 0 , tn ti p ProjA (tp hp cc php chiu ca A) vi(p) 1 v s nguyn dng N sao cho

    ||(sn sm)p|| <

    vi n, m N.V chui k

    k

    hi t hu u nn vi mi > 0 , ta tm c q ProjA v N sao cho

    ||( sn sm)q|| <

    vi n > m N v (q) < /2. t :

    p = q k=m+1

    e[0,d]{|k|}

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    50/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 49

    theo (i) ta c:

    (p) (p) +

    k=m+1

    (e(d,){|k|}) <

    Vi m ln (m N) . Khi :

    ||(sn sm)p|| ||( sn sm)q|| <

    vi n > m NDo {sn} l dy Cauchy hu u . Kt thc chng minh.

    Bin i mt cht nh l trn ta c kt qu sau:

    B 2.6.2. Gi s {n} v {n} l cc dy ton t o c t A v{cn} l dy s dng . t:

    n = ne[0,cn]{|n|}.

    Nu n

    (e(cn,){|n|}) <

    th chui n

    (n + n)

    hi t hu u khi v ch khi chuin

    (n + n)

    hi t hu u.Ni ring nu

    n

    (e(cn,){|n|}) <

    , th chuik k hi t hu u khi v ch khi chuik

    k

    hi t hu u .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    51/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 50

    Chng minh. t :

    sn =n

    k=1

    (k + k)

    ;

    sn =n

    k=1(k + k)

    V x l cc hiu (sn sm), ( sn sm) nh cch ch ra trong chngminh nh l trn.

    nh l 2.6.3. Gi sn : R+ R+ l dy hm khng gim sao chon()/ v2/n() khng gim vi min .Gi s

    0 < xn

    Nu {k} l dy ton t c lp lin tip lin kt vi A v tha mn(j) = 0 v

    k=1

    (n|k|)

    (xk)< (2.22)

    Th chui

    k=1

    kxk

    (2.23)

    hi t hu u.

    Chng minh. t :

    n = ne[0,xn]{|n|} = ne[0,1]{|nxn

    |}; n = 1, 2, ....

    Khi ta c :(e[xn,]){|n|})

    (n|n|)

    n(xn)

    T (2.22) ta thu c :

    n=1

    (e(1,){|nxn

    |}) < (2.24)

    Hn na , v :2

    x2n

    n()

    n(xn)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    52/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 51

    vi 0 xn nn ta c:

    (|n|2)

    x2nn(xn)

    (

    xn0

    n()ed{|n|})

    x2nn(xn)(n|n|)

    V do :

    n=1

    n

    xn

    2= n=1

    n

    xne[0,1]{|

    nxn

    |}2< (2.25)

    V : (n) = 0 nn ta c :

    |(n)| (|n|e[xn,){|n|}) (

    |

    n|)

    (xn)xn

    (V

    n()

    n(xn)xn

    vi xn). Do vy :

    n=1 n

    xn

    n=1(n|n|)

    (xn)< (2.26)

    Theo b 2.6.1 v (2.24) ,(2.25) ,(2.26) ta thu c (2.23). Kt thcchng minh.

    By gi ta s chng minh lut mnh s ln m khng cn gi thitv tnh hu hn ca cc m men thng ca n.

    nh l 2.6.4. Gi sn : R+ R+ l dy hm khng gim tha mn

    2

    /n() khng gim , v gi s0 < xn

    , {n} l dy ton t o c c lp lin tip . t:

    n(d) = (ed{|n|})

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    53/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 52

    Nu :

    n=1

    0

    n()

    n(xn) + n()n(d) < (2.27)

    Th tn ti dy hng s (Ck) sao cho :

    1xn

    nk=1

    (k Ck) 0 (2.28)

    hu u.V trong trng hp ny ta c th t :

    Ck = (ke[0,xk]{|k|}) (2.29)

    Chng minh. i vi hm khng gim : R+ R+ v ton t vi

    || =

    0

    e(d)

    ta t(.) = (e(.))

    th s c c lng sau ( vi x > 0 )

    0

    ()

    (x) + ()(d)

    1

    2(x)

    x0

    ()(d) +1

    2

    x

    (d)

    =1

    2(x)((||e[0,x]{||})) + (e(x,){||})

    =1

    2(x)((||e[0,x]{||})) + (e(x,){||})

    V vy ta c : n

    (n|n|)

    (xn)< (2.30)

    V: n

    (e(xn,){|n|}) < (2.31)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    54/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 53

    Vi:n = ne[0,xn]{|n|} (2.32)

    Hn na :

    (|n|2)

    x2nn(xn)

    (n|n|)

    V do : n

    (|n|2)

    x2n<

    iu ny ko theo s hi t ca chui :

    n

    n (n)

    xn

    V do vy theo b 2.6.2 ta suy s hi t hu u ca chui

    n

    (n)

    xn

    By gi ta ch vic p dng b Kronecker.

    Hai nh l sau y chnh sa mt s kt qu ca W.Feller ( i vibin ngu nhin thc)

    nh l 2.6.5. Gi s{k} l dy ton t t lin hp , cng phn phi

    i xng v c lp lin tip , lin kt vi (A, ) .Gi s rng l hmkhng gim sao cho 2/() khng gim.Gi thit: 0 = x0 < x1 < x2, .... v

    k=n

    1

    (xk)= 0(

    n

    (xn)) (2.33)

    Khi iu kin :

    n (e(xn,){|1|}) < (2.34)Ko theo:

    1

    xn

    nk=1

    k 0 (2.35)

    hu u .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    55/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 54

    Chng minh. t:n = ne[0,xn){|n|}

    . Khi :

    n=1

    (|n|)

    (xn)=

    nk=1

    (|1|e[xk1,xk){|1|})

    n=k

    1

    (xn)

    C

    k=1

    k[xk1,xk)

    ()

    (xk)(ed{|1|})

    C

    k=0

    (e(xk,){|1|}) <

    Do (2.30) ng. Hn na (2.31) tha mn theo gi thit v (n) = 0.( v n phn phi i xng ). Lp li phn chng minh ca nh l (2.6.4)

    sau cng thc (2.31) ta thu c (2.35) . iu phi chng minh.Trong trng hp n khng phn phi i xng ta cn hn ch thm

    iu kin i vi {xk}

    nh l 2.6.6. Gi s{n} l dy cng phn phi , c lp lin tip, v{xn} c m t nh trong nh l (2.6.4)Nu thm vo

    (1) = 0;xkxn

    C0k

    n; k n (2.36)

    th (2.34) ko theo (2.35).

    Chng minh. Tng t nh l (2.6.5) ta ch ra rng :

    1

    xn

    nk=1

    (k (k)) 0

    hu u. V do :1

    xn

    n

    k=1

    (k) 0

    Ta c c lng sau:

    1

    xn

    nk=1

    (n) 1

    xn

    nk=1

    xk

    (ed{|1|})

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    56/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 55

    Do s dng phn tch cc :

    k k = uk|k k|

    ta c:|(k k)| ||uk||(|k k|) = (|k k|)

    v|k k| = |k|e(xk,){|k|}

    V vy :1

    xn

    nk=1

    (k) 1

    xn

    nm=1

    mk=1

    +

    m=n+1

    nk=1

    xm+1xm

    (ed{|1|}) S1 + S2

    Vi :

    S1 =1

    xn

    nm=1

    mxm+1(e[xm,xm+1){|1|})

    S2 =1

    xn

    nm=n+1

    nxm+1(e[xm,xm+1){|1|})

    S1 0 v :n

    m=0

    (m + 1)(e[xm,xm+1){|1|})

    =

    m

    (e(xm,){|1|}) <

    Theo gi thit v do ta c th p dng b Kronecker.Lp lun tng t cho S2 . Chng minh c hon thnh.

    By gi ta s chng minh kt qu cho trng hp khng giao hon

    ca lut s ln Marcinkiewicz. Ta bt u vi 2 mnh sau:Mnh 2.6.7. Gi s{n} l dy c lp lin tip trongA v

    n=1

    10

    (e[,){|n|})d <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    57/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 56

    Khi chui

    n=1

    ( (n))

    hi t hu u , y :

    n = ne[0,1){|n|}

    Chng minh. Tch phn tng phn , ta c:

    10

    (e[,){|n|})d =1

    2(e[1,){|n|})

    +1

    2

    1

    02(ed{|n|})d =

    1

    2(e[1,){|n|}) +

    1

    2(|n|

    2)

    V do , theo gi thit ta suy ra:n

    (|n|2) <

    v n

    (e[1,){|n|}) <

    Bt ng thc th nht cng vi nh l 2.6.2 cho ta s hi t hu uca chui

    n

    (n (n))

    v cng vi bt ng thc th hai v b 2.6.2 suy ra s hi t huu ca

    n=1

    (n (n))

    .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    58/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 57

    Mnh 2.6.8. Gi s{n} xc nh nh trn v

    n=1

    10

    (e[bn,){|n|})d <

    vi{bn} l dy hng s dng , bn . Khi :

    (i)

    n=1

    b1n (n (n))

    hi t hu u , v

    (ii)

    b1n

    n

    k=1(k (k)) 0

    hu u

    yn = ne[0,bn){ n}

    Chng minh. Ta c :

    1

    0(e[bn,){|n|})d =

    1

    0(e[,){

    n

    bn })d

    V theo mnh 2.6.7 chui

    n=1

    nbn

    n

    bn

    hi t hu u ,vi :

    nbn

    =

    n

    bn e[0,1){|

    n

    bn |}

    =nbn

    e[0,bn){|n|}

    V vy ta c (i)p dng b Kronecker ta thu c (ii).

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    59/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 58

    By gi ta s chng minh kt qu tng t ca Marcin Kiewicz theoLuczak [9]

    nh l 2.6.9. Gi s{n} l dy ton t c lp lin tip , cng phnphi , tLr(A, ), 0 < r < 2. Khi

    n

    1/rn

    k=1(k k) 0hu u. yk = 0 vir < 1 vr = (1) vi1 r < 2

    Chng minh. Vi phn phi xc sut trn na ng thng thc:

    F() = (e[0,){||}), 0, A,

    ta c c lng sau:

    r

    n=1

    (e[n1/r ,){||}) (||r) 1 + r

    n=1

    (en1/r,){||}) (2.37)

    Chng hn xem [10] . S dng (2.37) ta thu c:

    n=1

    10

    (en1/r,){|1|})d

    (|1|r)

    1

    0

    1rd <

    Nu r < 2 bt ng trn cng vi mnh 2.6.8 cho ta :

    n1/rn

    k=1

    (k (k)) 0

    hu u vi :k = ke[0,n1/r]{|k|} 0

    Lp lun tiu chun ch ra rng :

    n1/rn

    k=1

    ((k) k) 0, n

    (Chng hn , xem [10], chng minh hon tt.)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    60/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 59

    Ta s kt thc phn ny vi mt s lut yu s ln trong i svon Neumann.

    nh l 2.6.10. Cho {n} l dy cc ton t t lin hp o c , cngphn phi , c lp lin tip t A . Nu :

    limn

    n(e(n,){|1|}) = 0

    th :

    n1

    k=1

    (k n) 0

    theo o, vi :n = (1e[0,n){|1|})

    Chng minh. Gi s A tc ng trong khng gian Hilberte H, t :

    Sn =n

    k=1

    k; (n)k = ke[0,n){|k|}

    Sn =n

    k=1

    (n)k ; mn = (Sn) = n(

    (n)1 )

    Vi s > 0 bt k , ta c:

    p = e[2,)(|Sn mn|) e[0,)(|Sn mn|)

    n

    k=1

    e[0,n){|k|} = 0

    Tht vy, nu vi x no c chun bng 1 , px = x th

    x e[0,n){|k|}(H)

    v do kx = (n)k x

    vi k = 1, 2,...n.Ko theo Snx = Snx .V th ta thu c :

    2 || |Sn mn|e(2,){|Sn mn|x}||

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    61/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 60

    = ||(Sn mn)x|| ||(Sn Sn)x|| + ||(Sn mn)x||

    = || |Sn mn|e[0,){|Sn mn|x}||

    iu ny khng th xy ra, vy p = 0 v do (xem ph lc)

    e[2,){|Sn mn|} e[,){|Sn mn|} n

    k=1 e[n,){|k|} (2.38)Theo bt ng thc Tchebyshev v t kt qu :

    (| ()|2) (||2)

    Ta thu c :

    (e[2,)(|Sn mn|)) 2(|Sn mn|

    2) + (n

    k=1e[n,)(|k|))

    2n

    k=1

    (|(n)k |

    2) +n

    k=1

    (e[n,))

    = 2n(|(n)1 |

    2) + n(e[n,)(|1|)) (2.39)

    By gi ly > 0 ty , t (2.39) vi =n

    2, ta c:

    e[,)(|Snn n|)= e[,)(|Sn mnn |)=

    e[n,)(|Sn mn|)

    4(|

    (n)1 |

    2)

    2n+ n

    e[n,)(|1|)

    = 42n1

    [0,n)

    2

    ed(|1|)

    +n

    e[n,)(|1|)

    Tch phn cui cng c th c lng nh sau:

    [0,n)

    2

    ed{|1|}) n1k=0

    (k + 1)2(e[k,k+1){|1|})

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    62/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 61

    =n1k=0

    (2k + 1)(e[k,n){|1|}) (e[0,n){|1|})

    +3n1k=1

    k(e[k,n){|k|}) 1 + 3n1k=1

    k(e[k,){|1|})

    Do vy cui cng:(e[,){|

    Snn

    n|})

    42n1[1 + 3n1k=1

    k(e[k,){|1|})] + n(e[n,){|1|}) 0

    khi n Chng minh c hon tt.

    S dng k thut tng t ta c th chng minh kt qu sau calut yu s ln.

    nh l 2.6.11. Cho {n} l dy phn t t lin hp c lp lin tiptL1(A, ). Nu:

    (i)n

    k=1

    (e[n,){|k k|}) 0

    khin

    (ii)n1

    nk=1

    (|k k|) 0

    khin ,vi || = ||e[0,n){||} v :

    (iii)

    n2n

    k=1

    ([|k k|2]) 0

    khin vik = (k) th :

    n1n

    k=1

    (k k) 0

    theo o.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    63/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 62

    2.7 Tc hi t trong lut mnh s ln

    Cc kt qu trong phn ny c trong t tng ca cc nh l Spitzer-Hsu-Robbins-Katz i vi bin ngu nhin thc. Chng ta s i theophng php da trn c lng tt ca cc m men ca binngu nhin b cht ct nu ra bi Dugue [12] (xem thm [13])

    Trong phn ny {n} s k hiu cho dy ton t c lp lin tip t A .Mt vi kt qu s lin quan ti trng hp n t lin hp v cng phnphi .Trong cc nh l khc ta s gi thit n khng nht thit t lin hpnhng cc ton t (|k|, k = 1, 2, ....) cng phn phi vi r > 0 v t > 0ta t :

    (n)k =

    (n)k,r,t = ke[0,nr/t]{|k|}

    , 1 k n V :

    (n)k =

    (n)k,r,t =

    (n)k,r,t (

    (n)k,r,t)

    Ta s thit lp hai mnh ph tr sau:

    Mnh 2.7.1. Cho {n} c lp v tha mn |k| cng phn phi

    (A) Nu0 < t < 2 vr > 0 th iu kin(t1) < ko theo

    n=1

    nr2(e(nr/t,){|n

    k=1

    nk |}) < (2.40)

    (B) Nu0 < t < 1, r 1 th iu kin(|1|t) < ko theo

    (|(n)1 |) = 0(n

    r/t1) (2.41)

    Chng minh. Gi s

    o < t < 2, r > 0, , (|1|t) <

    Khi theo bt ng thc Tchebysev ta c :

    n=1

    nr2(e(nr/t,){|n

    k=1

    (n)k |})

    const

    n=1

    nr2n2r/tn(|(n)1 |

    2)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    64/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 63

    i vi o xc sut trn [0, ) ,

    0

    xt (dx) <

    v r

    t > 0

    ko theo:

    n=1

    1

    n+1

    nr/t0

    xt+ (dx) (2.42)

    const

    k=1k(r/t)

    kr/t

    (k1)r/txt (dx)

    ( so snh [12] ). Trong trng hp ca chng ta th :

    (|(n)1 |

    2) = nn(r/t)(2t)+1

    vi 1

    n <

    V do ta c (2.40)By gi ta s chng minh (2.41) vi gi thit (B) . Tht vy, t:

    ||1 =

    0

    ue (du)

    (biu din ph) v (du) = (e(du)). Ta c :

    n1r/t(|(n)1 |)

    nr/t0

    xt( xnr/t

    )1t (dx) 0

    v r 1 v (||t) <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    65/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 64

    Mnh 2.7.2. Gi s {n} c lp vi {|k|} cng phn phi v(||2) < . Khi ta c:

    m=n

    (e(n,){|n

    k=1

    (n)k |}) < (2.43)

    Chng minh. Hin nhin ta c:

    (|n

    k=1

    (n)k |

    4) constk=1

    (|(n)k |

    2|(n)1 |

    2)

    +n

    k=1

    (|(n)k |

    4)

    Hn na:(|(n)k |4) = nn3 + (|(n)1 |4)

    Vi:

    n=1

    n <

    (v chng hn: (|

    (n)k |

    2(n)k )

    (1

    2||

    (n)k ||) const.n

    ). S dng cng thc (2.42) ta thu c :

    (|(n)1 |

    4) n3n

    vi

    n=1

    n <

    V vy:

    n

    k=1

    (n)k

    4 nn4vi

    n=1

    n <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    66/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 65

    v do :

    nn4

    nk=1

    (n)k

    4 (n)k 4e(n,){n1

    (n)k

    }

    const.n4e(n,){n

    1 (n)k }

    Cui cng ta thu c:

    n=1

    e(n,){ n

    k=1

    (n)k

    }<

    nh l 2.7.3. Cho {n} c lp v |k| cng phn phi , 0 < t < 1.Khi iu kin (|1|t) < ko theo

    n=1

    n1

    e(,){ 1

    n1/t

    nk=1

    k

    }< (2.44)vi mi > 0

    nh l 2.7.4. Cho{n} c lp , t lin hp v cng phn phi. Githit : (|1|t) < , 1 t 2 v(1) = 0. Khi :

    n=1

    nt2

    e(,){1

    n

    nk=1

    k

    }< (2.45)ng vi mi > 0.

    Chng minh. By gi ta s thit lp 2 iu kin :

    (a) {n} c lp v |k| cng phn phi

    0 < t < 1, (|1|t) < , r 1

    (b) {n} c lp ,cng phn phi ,t lin hp

    1 t 2, (|1|t) < , (1) = 0, r = t

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    67/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 66

    R rng chng minh cc nh l trn ,ta ch cn chng minh rngmi mt trong cc iu kin (a),(b) ko theo:

    n=1

    nr2

    e(nr/t,){ n

    k=1

    k

    }< (2.46)

    lm iu ny ,ta s t vi r > 0, t > 0, n = 1, 2, ....

    pn = pn,r,t = e(nr/t,){|n

    k=1

    k|}

    qn = qn,r,t =n

    k=1

    e(nr/t,){|k|}

    n = n,r,t = e((n1)r/t,){|

    n

    k=1

    (n)

    k,r,t|}

    Ch rng :pn q

    n

    n = 0

    vi mi n. Tht vy, nu c :

    0 = x = pn qn

    n x

    th ta s c :

    ||n

    k=1

    kx|| = || n

    k=1

    k

    pnx|| nr/t||x||V cng lc :

    ||

    nk=1

    kx|| ||

    nk=1

    (n)k

    x|| < (n 1)r/t||x||

    L iu khng th xy ra. V vy, ta c:

    pn qn n

    v do (pn) (qn) + (n)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    68/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 67

    n y ta cn ch ra c:

    n=1

    nr2(qn) < (2.47)

    V:

    n=1

    nr2

    (n) < (2.48)

    Nu t > 0, r > 0 v (|1|t) < th r rng

    n=1

    nr2(qn,r,t)

    n=1

    nr1(e(nr/t,){|1|}) <

    V vy ch cn chng minh (2.48) .Gi s (a) ng, ta s chng minh :

    Qn = n e[0,(nr/t)/4]{|n

    k=1

    (n)k |} = 0 (2.49)

    Thc ra nu tn ti 0 = x = Qnx th ta s c :

    ||n

    1(n)k x|| (n

    r/t)/4||x||

    v:

    ||n1

    (n)k x|| (n 1)

    r/t||x||

    t:(n)k = (

    (n)k ), n = max1kn|

    (n)k |

    p dng phn tch cc ca (n)k v theo mnh (2.7.1.b) ta c :

    n (|(n)1 |) < 14

    nr/t1

    V vy vi n , ta thu c :

    ||n1

    (n)k x|| ||

    n1

    (n)k x|| + n|n|.||x||

    nr/t

    2||x||

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    69/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 68

    iu ny l khng th ,do (2.48) ng. iu ny ko theo:

    n e((nr/t)/4,){|n1

    (n)k |}

    Xem xt ti (2.40) ta thu c (2.48) .

    By gi ta gi s (b) ng. Nu 1 t < 2 th (2.40) ng (vi r = t vp dng mnh (2.8.a)) .Trong trng hp t = 2 ta c (2.43) theo mnh (2.7.2).Ch rng

    n = |((n)1 )| 0

    , ta c th chng minh (2.49) ( vi t = r) v kt thc chng minh nhtrng hp (a).

    2.8 Ch v ch thch

    Batty a ra rt nhiu khi nim v dy ton t c lp. Chng ta chx l dy c lp yu v c lp lin tip.

    nh ngha 2.8.1. H {B, } cc i s von Neumann con caAc gi l c lp mnh nu W{B, 1} c lp vi W{B, 2} vi mi tp con ri nhau 1, 2 ca . Dy ( hay h ) ton t

    trong A (hay A nu l vt) l c lp mnh nu cc i s vonNeumannW() c lp mnh.

    Trong [11] ta c th tm thy trnh by c th lin quan ti mi quanh gia cc kiu c lp. y ta cp n mt lut s ln mnh c nu ra bi S.M.Goldsteinlin quan n dy ton t tha mn iu kin Rosenblatt.

    nh ngha 2.8.2. Cho A l i s von Neumann vi trng thi chun

    tc ng . Dy {n} t A c gi l tha mn iu kin Rosenblattnu tn ti dy s dng{an} gim v0 sao cho:

    |(xy) (x)(y)| an||x||.||y||

    vi mi x W(1, 2, ....k) v y W(k+n, k+n+1, ....); (k, n =1, 2,...)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    70/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 69

    Dy{n} c gi l tha mn iu kin ||.||2 (||.||) hay tim cn giaohon nu tn ti dy s dng{bn} gim v0 sao cho :

    ||xy yx||2 bn||x||||y||

    (hay tng ng

    ||xy yx|| ||x||||y||) vi mi

    x W(1,....,k), y W(k+n, k+n+1, .....)

    (k, n = 1, 2, ....).

    nh l 2.8.3. Cho {n} l dy t A tha mn iu kin Rosenblattcng vi dy{an} v t :

    bn = sup|ij|n||ij ji|| (n = 1, 2, ....)

    Gi s rng() an c1n

    1, bn c2n2

    vic1, c2, 1, 2 l cc hng s dng, n = 1, 2,... v :

    () sup||n|| <

    Khi :

    n1

    n

    k=1

    (k (k)) 0

    hu u .

    Chng minh. Ta cng nhn nh l trn.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    71/74

    Kt lunLut s ln l mnh khng nh trung bnh s hc ca cc bin

    ngu nhin hi t theo xc sut. Lut mnh s ln l mnh khngnh trung bnh s hc ca cc bin ngu nhin hi t hu chc chn.

    Lut s ln u tin c cng b vo nm 1713 bi Jamer Bernoulli.Sau kt qu c Poisson ,Chebyshev ,Markov ,Liapunov m rng.

    Lut mnh s ln c pht hin bi E.Borel nm 1909 v c Kol-mogorov hon thin nm 1926.Lun vn cp n mt vn hon ton mi trong xc sut

    hin i , l s quan h cht ch gia i s ton t , vt l lngt v xc sut. Cc kt qu , phng php , m hnh trong xc sut cin c thay th bi cc k thut chng minh, cc khi nim ,nhngha mi. Nghin cu lut mnh s ln da trn cc ton t trc giao,vt , trng thi ,i s von Neumann,...cc dng hi t hu u ,

    hu chc chn ...Ni dung ca ti vn ang l hng nghin cu cacc nh khoa hc trn th gii, nhiu cng trnh khoa hc khng ngngc cng b nh:L thuyt tch phn khng giao hon c sng tobi I.Segal (1953), c p dng vo l thuyt biu din cc nhm com-pact a phng ( Ray Kunze....) . Ngy nay n c nhiu ng dng quantrng trong l thuyt trng lng t ,iu ny c d bo trongcc cng trnh ca Segal ...Hay l thuyt v khng gian Lp tru tng

    ca J.Dixmier ; Khi nim hi t theo o (tnh o c theo mt vt)c gii thiu bi W.F.Stinespring (1959), E.Nelsen(1972)...V gn y

    nht l cc l thuyt v chng minh khi ngun ca Haagerup(1974) vkhng gian tru tng Lp kt hp vi i s von Neumann. Sau s xuthin cc khng gian Lp ca Haagerup, A.Connes a ra nh nghav khng gian Lp da trn khi nim o hm khng gian. Nhng khnggian ny c nghin cu bi M.Hilsum.....

    Vn c cp trong lun vn tng i mi v phc tp.V

    70

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    72/74

    Kt lun 71

    vy lun vn khng trnh khi nhng hn ch .Tc gi mong mun nhnc kin ng ca cc thy c gio ,cc ng nghip b sung ,hon thin ti.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    73/74

    Ti liu tham kho[1] V Vit Yn-Nguyn Duy Tin (2001) ,L thuyt xc sut, Nh xut

    bn gio dc.

    [2] Nguyn Vit Ph-Nguyn Duy Tin (2004), C s l thuyt xc sut, Nh xut bn i hc Quc gia.

    [3] Nguyn Duy Tin (2000), Gii tch ngu nhin ,tp 3, Nh xut bni hc Quc gia H Ni.

    [4] Ryszard Jajte (1984), Strong Limit Theorems in Non-CommutativeProbability, Springer -Verlag, Berlin New York Tokyo.

    [5] Marianna Terp(1981), Lp Spaces Associated with von Neumann Al-gebras , Universitetsparken.

    [6] Edward Nelson(1972) ,Notes on Non-commutative Integration,Princeton University, New Jersey.

    [7] M.Plancherel (1913), Sur la convergence des series de fonctions or-thogonalles, Acad . Sci. Paris.

    [8] G.Alexits (1961), Convergence problems of orthogonal series, NewYork- Oxford-Paris.

    [9] A.Luczak, Some limit theorems in von Neumann algebras, Studia

    Math.

    [10] M.Loeve(1960), Probability theory , New Jersey.

    [11] K.Batty(1979), The strong law of large numbers for states and tracesof aW algebra, Z.Wahrscheinlichkeitstheorie verw .

    72

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    74/74

    T I LI U THAM KH O 73

    [12] D.Dugue(1958), Traite de statistique theorique et appliquee, Paris.

    [13] S.Goldstein(1981), Theorems in almost everywhere convergence invon Neumann algebras, J.Oper.Theory 6.

    [14] L.Accardi(1980), Quantum stochastic processes, Dublin Institute forAdvanced Studies, Ser.A29.

    [15] R.Jajte , Strong limit theorems for orthogonal sequences in von Neu-mann algebras, Proc.Amer .Math.Soc.

    [16] W.Stinespring(1959), Integration theorems for gages and duality forunimodular groups, Trans.Amer.Math.Soc.

    [17] I.E.Segan(1953), A non-commutative extension of abstract integra-tion, Ann.of Math.57.

    [18] A.Zygmund (1959), Trigonomtric Series, Vol.II, Cambridge Uni-vesity Press, London, New York.