lw masters seminar

40
Linshu Wang Advisor: Prof. Jakobsche Towards Hydrazine-Functionalized Peptides as Potential Lysyl Oxidase Inhibitors and a Four-Step Amine to Alcohol Conversion via N-Nitrosoamides Clark University Master’s Seminar 08/12/2016 Master’s Seminar

Upload: linshu-wang

Post on 20-Feb-2017

25 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LW masters seminar

Linshu WangAdvisor: Prof. Jakobsche

Towards Hydrazine-Functionalized Peptides as Potential Lysyl Oxidase Inhibitors and a Four-Step

Amine to Alcohol Conversion via N-Nitrosoamides

Clark University Master’s Seminar

08/12/2016Master’s Seminar

Page 2: LW masters seminar

Overview

a potent and selective inhibitor metastasis-related

enzyme Lysyl Oxidase (LOX)

Goal:

1. Synthesis of Small Molecules and Amino Acids for LOX Inhibition

Projects:

NH

NH

NH2

O

O

O

NH

NH2

semicarbazide carbazate

H2N OH

O

NHNH2

H2N OH

O

O

NHNH2

O

HN N

H

O

HNNH2

PeptidePeptide H2N OH

O

NH2Lysine

PgHN OH

O

OH6-Hydroxynorleucine

Key conversion

MeO

O

NH29 MeO

O

OH9model molecule

2. Study of the Amine to Alcohol Conversion via N-Nitrosoamides

MeO

O

NH9 R

O

MeO

O

N9 R

O

N O

MeO

O

O9 R

O

NaNO2AcOHAc2O

K2CO3MeOH

Page 3: LW masters seminar

Introduction

Why are we interested in Lysyl oxidase (LOX)?upregulated during cancer metastasis

down regulated in other cases

Lung adenocarcinoma invasion and metastasis

silenced in human gastric cancers

What is LOX?HN Peptide

O

H

PeptideHN Peptide

O

NH3

Peptidean enzymeoxidases

in elastin and collagentwo major structural proteinsextracellular matrix (ECM)

peptidyl lysine

peptidyl AAS

O2 H2O NH4 H2O2

O

-aminoadipic--semialdehyde

Page 4: LW masters seminar

Introduction

HN Peptide

O

N

Lysine

HN Peptide

O

H

Peptide

PeptideHN Peptide

O

H

Peptide

AAS AAS

HN Peptide

O

NH2

Peptide

HN Peptide

O

Peptide

NH

O

H

O

Peptide

Peptide

Formation of Schiff base

Aldol condensation

Cross linkage reactions of ECM proteins

O O

NHO

Peptide

Peptide

Page 5: LW masters seminar

Introduction

amino acid sequences of LOX has been reported3D structure is still unknown

crystalization of LOX has not been successful

Lysyl tyrosylquinone (LTQ) cofactorfunctional part of LOX catalysis

O

O

H2C

NH

NH

O

HN

OLys 314

Tyr 349

Page 6: LW masters seminar

ON

NH

Lysyl Oxidase

RCH2NH2

H2O

ROH

N

NH

R:B

OHNH2

NH

Lysyl Oxidase

ONH

NH

Lysyl Oxidase

O2

H2O2

H2O

NH3

H2O

R H

O

Substrate lysine

Catalytic Cycle

Lysyl Oxidase

OH

NH

Lysyl Oxidase

NN

Ph

azo tautomer(favored)

InhibitionMechanism

PhHN NH2

O

NH

Lysyl Oxidase

NNH

Ph:B

Phenylhydrazine inhibits the LTQ cofactor covalently and irreversibly

Introduction

OH

Tyr 349NH2

Lys 314

Lysyl Oxidase

Cu2+

oxidation

OO

NH

Lysyl Oxidase

Page 7: LW masters seminar

Introduction

To better understand LOX's effects in cancer metastasis and develop new treatments

Small molecule inhibitors

HO O

O

HNN

H

O

NH

O

O

O NHNH2

H2N OH

O

NHNH2

HO O

O

HNN

H

O

NH

O

NHNH2

O

HNN

H

O

NH

O

NHNH2

Amino acids building blocks that mimic lysine

Peptide inhibitors

H2N OH

O

NH2

Lysine

H2N OH

O

O

NHNH2

O

Selective and potent inhibitors

Our approach:

Synthesis

Analytical methods:1H NMR, 13C NMR, COSY NMRLC-MS

HN

NH2 NH

NH

NH2

O

O NHNH2

O

O NH

NH2

S ONH2N

HN

HN

NH2

O

NH

NH2

phenylhydrazine semicarbazide

carbazate thiocarbonyl hydrazide pyrrolidine semicarbazide

alkyl hydrazine acyl hydrazine

Page 8: LW masters seminar

Syntheses of Small molecule inhibitors

H2N NHBocCuI 0.05 eq, DMSO 1M,

Cs2CO3 1.5 eq, 50 oC 18 h.

NNH2

Boc

I

Column24% y

99% y

HN

NH2 HCl

Synthesis of phenyl hydrazine hydrochloride salt

Ullmann type coupling reaction

1.2 eq

1 eqHCl 17 eq

dioxane 0.16 MN2, RT 4 h

Model for more complex systems

NH

NH

NHBocO

NC

ONH2

column11% y

DCM 0.5 MNaHCO3 (sat. in H2O)

0 °C 30min

H2N NHBoc

0 °C 15min then RT 15h

NH

NH

NHBocO

NH

NH

NH2

O

97% yHCl

HCl / dioxane

O O Cl

O

Cl

Cl Cl Cl Cl

H2N NH2 H2O

Synthesis of semicarbazide hydrochloride salta modified one-pot reaction

The known methodology usedhydrazine monohydrate

by Ashley Burke

isocyanate intermediateseperate the org. phase

reported 4 h reaction time for the second step

0.33 eq

1 eq

Page 9: LW masters seminar

Syntheses of Small molecule inhibitors

Synthesis of pyrrolidine semicarbazide trifluoroacetic acid salt

NHN

DCM 0.36 M

N2, 0 C then RT 1hy 46%

O O Cl

O

Cl

Cl Cl Cl Cl0.39 eq

2 eq

N2H4H2O in EtOH N NH

NH2

O

N O

O

N Cl

O

N2H4H2O in THFnot clean, can't be purified by column

O

CF3ON NH

NHBocO

N Cl

O

y 24%

H2N NHBoc

N

reflux 1.5 h

column y 12%

ONH3N

HN

TFA 0.16 eq, DCM 0.12 M

3.5 h RT

1 eq

16 eq 10 M

the reaction does not occur without pyr

O NH

NH2

SC SS

EtOH 3.2 eqKOH 1.1 eq, H2O 13 M,

RT 2 hN2H4H2O 1.1 eq

40 C 1.5 hO S

S

61% mass recovery

Synthesis of thiocarbonyl hydrazide one-pot reaction

xanthate intermediateyellow

colorless crude product,become pink overtimemight be light sensitivedecomepose overtimevia radical reactions

Page 10: LW masters seminar

Syntheses of Small molecule inhibitors

OH

O

N N NN

O

DCM 0.48 MN2, RT,30 min

O

N

N

N

HN

y 70%

byproduct

O

O

HN

NHBocH2N NHBoc

NEt3 1.5 eq, 100 °Covernight, Tol 0.025 M

Attempt of synthesis of boc-protected carbazate

Conclusion: a different intermediate was needed.

CDI, similar to acid chlorideless reactive

1.2 eq1.1 eq

reduced reactivity compare to

hydrazine monohydrate

Page 11: LW masters seminar

Syntheses of Small molecule inhibitors

O NHNH2

O

O Cl

O

N2H4H2O THF 0.39 M

0 C then RT overnight

Attempt of synthesis of hydrazine ethyl ester

4 eqThe more reactive chloroformate was tested

Direct conversion to hydrazide was tested first

column purificatrion

confirmed by LC-MS

O NH

O HN O

O61% y

O Cl

OO

H2N NHBoc

NEt3 1.5 eq, THF 0.53 Mwater bath then RT overnight,

column purificationy 21%, can be optimized

confirmed by LC-MS

Boc-protection was consideredInitial attempted reaction of boc-hydrazide substitution.

1 eq

Conclusion: the conversion was proved to be possible

HN

ONH

O

O

Page 12: LW masters seminar

Syntheses of Small molecule inhibitors

O O Cl

O Cl

Cl

ClClCl

0.39 eq

OH O

O

HN

NHBocO Cl

O

O O

O

N2 , DCM 0.12MN 2 eq

H2N NHBoc 1 eq

NEt3 1.5 eq THF , RT overnight,

mostly productjust filtration of white solids0 C then RT overnight

partially volatilereacts with water

aqueous work up

Final reaction conditions:

OHO Cl

OO O Cl

O Cl

Cl

ClClCl

0.52 eq

DMF 0.035 eqNa2CO3 1 eq

Tol 0.25MN2 , 0 °C 8h

Na2CO3 removed by filtration

N

THF 0.61M , RT overnight

O

O

HN

NHBoc

H2N NHBoc 1.5 eq

1.4 eqcolumn purification

y 39%can be optimized

The second step reaction with extra DMF was tested with ethyl chloroformate.The reaction was not affected.

DMF is known to activate triphosgene to prepare liquid phosgene

one-pot reaction

Page 13: LW masters seminar

Syntheses of Small molecule inhibitors

O

CF3OO

O

HN

NHBoc

TFA, DCM 3.5h RT

O

O

HN

NH3

O

O

HN

NHBocO

O

HN

NH2

HCl / dioxane

HCl

Attempts of deprotection reactions:

Conclusion: a different group on the hydrazide is needed to achieve a clean deprotection

Alternative: Cbz protecting group

O Cl

O

O NH

O HN O

O

Na2CO3 removed by filtration

H2NHN O

O

N

THF, RT overnight

O NH

ONH2

Pd/C, H2

H2NHN O

OO Cl

O

N2H4H2O 1.5 eqTHF 0.23M

Na2CO3 2 eq

2h 0°C

Exact Mass: 166.07

NH

HN O

OO

O

Exact Mass: 300.11

O O

O

Exact Mass: 242.09

Possible byproduct

reaction not cleanmostly product with

unidentified byprodect LC-MS m/z 236 (ESI)

Page 14: LW masters seminar

Syntheses of Small molecule inhibitors

Summary

HN

NH2 NH

NH

NH2

O

O NHNH2

O

O NH

NH2

S ONH2N

HN

HN

NH2

O

NH

NH2

phenylhydrazine semicarbazide

carbazate thiocarbonyl hydrazide pyrrolidine semicarbazide

alkyl hydrazine acyl hydrazine

Syntheses by Ashley Burke

Initial inhibition data collected by Ashley Burke, Maria Solares and Lizzy Severson

More characterization and synthesis needed

Not stable upon storageDeprotection reactions not clean

Page 15: LW masters seminar

Part 2 of project 1Syntheses of hydrazine functionalized amino acid

and dipeptides

Clark University Master’s Seminar

08/12/2016Master’s Seminar

Page 16: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

HO O

O

HNN

H

O

NH

O

O

O NHNH2

HO O

O

HNN

H

O

NH

O

NHNH2

O

HNN

H

O

NH

O

NHNH2

Same length side chain as lysine

Compare affinity and see if the side chain charge is a factor

H2N OH

O

NBocNHBoc

NH

O

N

O

O

O

O

Key coupling reactions of succinimide esters

tBu O O

NH

O

N

O

O

O

O

H2NOH

OH

O

L-serine

tBu O O

O

OHH2N

tBu O O

O

HNN

H

O

NH

O

OH

boc-protected glutamic acid

Couple firstthen the conversion of functional group

O

OHH2N

L-alanine

H2N OH

O

OH

H2NOH

O

OHOL-glutamic acid

Key conversion

Page 17: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

H2N OH

O

OH

Key conversion

previously reported by Majumdar group in 201224% y over 5 steps

Bn2NOBn

O

NBocNHBoc

H2NOH

O

OHO

H2N OH

O

NBocNHBoc

Bn2NOBn

O

OH

H2NOH

O

OHO

Bn2N OBn

O

OBn

BnBr, H2ODiBAl-H

THFreflux 1 hcolumny 61%

Ice bath 2 hcolumny 58%

K2CO3, KOH

O

selective reduction

Bn2NOBn

O

NBocNHBoc

BocN=NBocBocNH-NHBoc

PPh3,THF

N2, RT filtrationcolumn

One step Mitsunobu-like reactiondeveloped by Nicholas S. MacArthur

H2N OH

O

NBocNHBoc

H2Pd / C (500mg/mmol)

MeOH

triphenyl phosphene oxide byproduct

residue can interact with Pd catalyst loses reactivity

successful only once in over 10 attempts

Page 18: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

Bn2NOBn

O

OH

Bn2NOBn

O

OMs

Bn2NOBn

O

NBocNHBoc

Pyr(0.84 eq)

MsCl(0.56 eq)

DCM, N2, Ice bath 2 h

Bochydrazine(1.5 eq)

DMF(0.3M) RT 24 h

Cs2CO3(2 eq)

Bn2NOBn

O

Br

Bn2NOBn

O

OH

PBr3 2 eqDCM 0.23 M

Two intermediates were tested

RT

decomposes during 2D-TLCConversion is almost complete

over 24 h at RT

N

OOBn

Ph

Ph

N

OOBn

Ph

Ph

RT

The only product recovered

COSY-1H NMR

2 steps y 9%

To avoid by productused upon synthesis

Conclusion: these two strategies were not successful

Page 19: LW masters seminar

N

OO

Ph

Ph

ba

Hc

d

ef

g

Ph

Ar d

b

d/b

a/ca

g g e fe/f

OMs

NO

O

OMs

Ph

Ph

ab

a bd

Ph

dHce f

g

OMsAr

pyr pyr g c

EtOAc

e/f EtOAc

deshielded because of positively charged N, shifted downfieldN

OO

Ph

HN

OO

Ph

H

Page 20: LW masters seminar

d-db-b

a-a

g-g

e-c e-c

g-f g-f

g-f

f-e f-e

f-e

db

d/b

a/c a

g g e f e/f

N

OO

Ph

Ph

ba

Hc

d

ef

g

Ph

Page 21: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

H2NOH

O

OHO

Bn2NOBn

O

OH

Bn2NOBn

O

OBn

BnBr, H2O DiBAl-H

THFreflux 1 hcolumny 61%

Ice bath 2 hcolumny 58%

K2CO3, KOH

O

H2N OH

O

NBocNHBoc

H2Pd / C (500mg/mmol)

MeOH

85% mass recoveryover 2 steps,70% purity

Bn2NOBn

O

NBocNHBoc

BocN=NBocBocNH-NHBoc

PPh3,THF

N2, RT overnightfiltrationcolumn

monitored by TLCadditional hydrazone and PPh3 were added after 5h.

Removal of triphenyl phosphene oxide byproduct:the bulk of by product was removed by addition of Et2O and gravity filtration of visible solids consecutively.column chromatography.

The bochydrazine has similar polarity as the product. Some reamined in the mixture after the purifications. Bochydrazine did not affect the hydrogenolysis reaction.

Conclusion: optimization is still needed.

Page 22: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

HO O

O

HNN

H

O

NH

O

NHNH2

O

HNN

H

O

NH

O

NHNH2

NH

O

N

O

O

O

O

tBu O O

NH

O

N

O

O

O

O

H2N OH

O

NBocNHBoc

H2N OH

O

NBocNHBoc

Succinimide ester coupling reactionscommon in peptide synthesis

activated esters

O

OHH2NO

OHNH

O

N

O

O

OF3C

OAc2O

MeOH reflux

recrystalization twice in EtOAc

y 62%

Pyr , THF N2, dark, RT2 h 40 min

tBu O O

O

OHH2N

tBu O O

O

OHNH

O

N

O

O

OF3C

OAc2O

H2O, Na2CO3H2O bath, ph 10

RT 24 hy 99%

Pyr THF N2 , Dark , 2 h 40 min

>100% mass recoverymostly product

three timesnot clean

similar impurity

N

O

O

OF3C

ON

O

O

HO TFAA, THF

RT 2 hy 79%

Page 23: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

HO O

O

HNN

H

O

NH

O

O

O NHNH2

Carbazate

HO O

O

HNN

H

O

NH

O

O NHNH2

Acyl hydrazide

tBu O O

O

HNN

H

O

NH

O

OH

tBu O O

O

HNN

H

O

NH

O

O

O NHNHBoc

O

N N NN

H2N NHBoc

35% y over 4-stepswithout optimization

Carbazate model reactions didn't work.

Page 24: LW masters seminar

Syntheses of hydrazine functionalized amino acid and dipeptides

HO O

O

HNN

H

O

NH

O

O

O NHNH2

H2NOH

OH

O

L-serine

H2N OH

O

NBocNHBoc

tBu O O

NH

O

N

O

O

O

O

HO O

O

HNN

H

O

NH

O

NHNH2

tBu O O

O

HNN

H

O

NH

O

OH

NH

O

N

O

O

O

O

O

HNN

H

O

NH

O

NHNH2

H2NOH

O

OHOL-glutamic acid

Summary

21% y over 4 stepsoptimization of removalof byproduct is needed

coupling reactions of succinimide esterswere not suitable HOBt/ EDC coupling

was cleanbut the conversion to

carbazate functional groupwas not successful

Page 25: LW masters seminar

Project 2Study of the Amine to Alcohol Conversion via

N-Nitrosoamides

Clark University Master’s Seminar

08/12/2016Master’s Seminar

Page 26: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

HN N

H

O

HNNH2

PeptidePeptide H2N OH

O

NH2

Lysine

PgHN OH

O

OH

6-HydroxynorleucineHydrazine functionalizedpeptide inhibitor

Key conversion

Synthesis of a peptide inhibitor

MeO

O

NH29 MeO

O

OH9model molecule

MeO

O

NH9 R

O

MeO

O

N9 R

O

N O

MeO

O

O9 R

O

NaNO2AcOHAc2O

K2CO3MeOH

Amine-alcohol 4-step sequence

CH3 CF3

Cl

Cl Cl

Cl

A scope of R groups based on previous study

to find the best substrate amide for this conversion

branched aromatic electron-withdrawing

Page 27: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

MeOH 1MSOCl2 2 eq

0 oC then reflux 3 h84% y

HO

O

NH2 O

O

NH3 Cl

Syntheses started with ammonium chloride salt

MeO

O

NH3 ClEDC 1 eq/ HOBt 1 eq

TEA 1.1 eq, DCM 0.2 MRT overnight, 14% y

MeO

O

NH

OCl

OH

OCl

Cl

Cl1.1 eq

MeO

O

NH3 ClTEA 2 eq, DCM 0.2 MRT overnight, 94% y

MeO

O

NH

OCl

O

OCl

Cl

Cl5 eq

Na2CO3 1 M

99% yMeO

O

NH3 MeO

O

NH2Cl

Deprotonation to obtain amine

EtOAc 1MRT Overnight

99% y

MeO

O

NH2 MeO

O

NH

OCl

Cl

MeO

OCl

Cl

1.5 eq

No aqueous work up was needed, simple removal of volatiles

Conclusion: for all the amides needed, yields of 50%-99% on gram scale were obtained.

Page 28: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

MeO

O

O7

O

Cl

Cl

MeO

O

NH7 R

O

MeO

O

N7 R

O

MeO

O

O7 Me

O

NaNO2 2+2 eq

NO

MeO

O

O7 R

O

MeO

O

O7 CF3

O

(A, desired product)

(B, desired rearrangement product)

(C, acetate)

(D, trifluoroacetate)

(E, dichloroacetate)

MeO

O

N7

O

O

F3C

( F, imidoyl trifluoroacetate)

N-Nitrosylation of amides.

0 oC, 6 hcosolvent 0.3 M

Anhydride/ acid (5:1)

Amide Solvent Conversion Product Distribution

NH

CH3

O

AcOH /Ac2O full A

NH

OCl

Cl

DCA /Ac2O

AcOH /Ac2O

DCA /EtOAc

full

82%

0%

94% (A) : 6% (B)

66% (A) : 16% (B)

none

NH

OAcOH /Ac2O full A

TFA /TFAA /EtOAc 80% F

NH

CF3

OAcOH /Ac2O 17% C

NH

O

TFA /Ac2O2 h

98% 78%(A):6%(B):14%(D)

DCA /Ac2O2 h

full 94% (A) : 6% (E)

iBA /iBAn6 h

full A

Page 29: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

NaNO2EtOAc/TFA / TFAA

5:1:1MeO

O

NH MeO

O

N

OO

F3C

O

6 h, Ice Bath

The unexpected product raised questions about the mechanism of nitrosylation

ON

O

nitrite anion

O R

OH

O R

O

ON

OH

nitrous acidblue

in cold solution

ON

OH

HH2O

N O

nitrosonium cation

ON

OHside reactions:

H2O

NO2 NOO2

NO2

brown-red gas

NO

brown-red gas

colorless

imidoyl acetamide intermediate

NH

R'

O

O R''

O

OR'' R''

O O

H~

N R'

OR''

O

N O

N R'

O

N Ogreen

N2O4

keep reaction drythe additional NaNO2

the reaction does not occur without anhydride

CF3 is very electron-withdrawing,so the imidoly acetate

is less nucleophilic

Page 30: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

MeO

O

O7

O

Cl

Cl

MeO

O

N7 R

O

MeO

O

O7 Me

O

MeO

O

7

MeO

O

O7 CF3

O

(A desired product)

(E, elimination)

(C, acetate)(B, trifluoroacetate)

(D, dichloroacetate)

( F, rearranged elimination)

NO

MeO

O

7

MeO

O

O7 R

OAmide

Solvent/Concentration

(mmol/ mL)Conversion Product

DistributionTemperature

/Time

24 h 88% 71%(A):16%(E)N CH3

O

0.11NO

toluene 70 ºC

toluene/ 0.11

toluene/1 eq AcOH

toluene/1 eq TEA

toluene1 eq AcOH/ 1 eq TEA

full

full

full

50 ºC/ 24 h

full

84%(A):5%(C):11%(E)

51%(A):36%(C):13%(E)

81%(A):8%(C):11%(E)

49%(A):38%(C):13%(E)

50 ºC/ 24 h

50 ºC/ 24 h

50 ºC/ 24 h

Cl

Cl

0.05

0.11

toluene

toluene

toluene 0.11 full

100 ºC/ 2 h

40 ºC/ 24 h

50 ºC/ 5 h

full

full

93%(A) :7%(E)

80%(A):6%(C):14%(E)

74%(A):3%(C):23%(E)

0.11toluene 50 ºC/ 24 h full 84%(A):2%(C):14%(E)

CF3

during nitrosylation

5 : 1 Ac2O/ TFA 0 ºC/ 6 h full

36(A):28%(C):24%(E):12%(F)

Several other solvents were also tested,full conversion was achieved in CCl4, DMF and EtOAc,DMF give more byproduct.EtOAc is the extraction solvent of nitrosylation

Page 31: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

N R

O

N O

cyclic substitution

NN

O R

O

diazoester dissociation

N

diazoalkane

N O R

OH

recombine

N2

O R

O

Mechanism of thermal rearangement from literature

MeO

O

O7

O

Cl

Cl

MeO

O

N7 R

O

MeO

O

O7 Me

O

MeO

O

7

MeO

O

O7 CF3

O

(A desired product)

(E, elimination)

(C, acetate)(B, trifluoroacetate)

(D, dichloroacetate)

( F, rearranged elimination)

NO

MeO

O

7

MeO

O

O7 R

O

Rate determining stepelectron deficient R grouprearranges faster

Work up of nitrosylation reaction was optimized to remove anhydride and acid

Page 32: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

MeO

O

O

O

MeO

O

OH

K2CO3 2 eq, MeOH 0.06 M22 h, RT

MeO

O

OH

K2CO3 2 eq, MeOH 0.2 MRT overnight

MeO

O

O

O

almost full conversion48% mass recovery

63% y

MeO

O

OHMeO

O

O

OCl

Cl RT, 2h65% y

TEA 2 eq, MeOH 0.2 M

Mild and selective base catalyzed hydrolysis

Page 33: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

full conversion99% mass recovery

MeO

OCl

Cl

MeO

O

NH7

OCl

Cl

MeO

O

N7

OCl

ClNO

MeO

O

O7

OCl

Cl

NaNO2 2+2 eq,Cl2CHCOOH / Ac2O (1:1)

0 ºC, 6 h

full conversionused crude

40 ºC, 16 h, EtOAc

98% mass recoveryclean full conversion

without Ac2O

RT, 2 hcolumn purification

65% y

TEA 2 eq, MeOH 0.2 M

MeO

O

NH27

MeO

O

OH7

Dichloro group was found to be the optimal choice over 4 steps.

Easy to execute with 2 aqueous work ups and only one column. Over all yield was 63%.

1.5 eq

EtOAc 1M, 21 h, RT

Page 34: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

ONH2 O NH2

N3 NH2Si

3 amine substrates

O

OHO

O

OO O

NH2NH

+HONH2

THF/ H2O (1:1) 0.43 M

NaOH, R.T. 4 h

Allyl Bromide 1.3 eq

Tetrabutylamonium Iodide 0.1 eqTHF 0.24 M, N2 protected30 min 0C then R.T. 24 h

Column, 2 steps y 24%TFA/ CH2Cl2 (1:1) 0.12 M

30 min RT

basic extraction quant. y

NaH 1 eq

NHO

OO

O O

Synthesis of allyl amine.

24% y overall

protect the amine first

allyl iodide intermediate has better leaving group

0.54 eq

Page 35: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

BrBr N3 Br

O

ON3 N

N3 NH2

NaN3 1 eqDMF 0.4 M60°C, 4.5 h

Column

N

O

O

K

DMF 0.15M 70C, 5 h

H2N NH2 • H2O 3.5 eq

Ethanol 0.07 MReflux 4 h

Azide big enough to be handledy 23% Columny 71%

y 89%

Synthesis of azido amine

15% y overall

azide substitution, not selectiveexcess bromide to consume azide basic work up to avoid

formation to hydrazoic acid

Gabriel synthesis with Ing-Maske procedure

removal of DMF is important

1.5 eq

+

ClSi NH2HO NH2TBDPSO

Imidazole 2.2 eq

DCM 0.1 M0°C then RT 24 h

Synthesis of amine.

2 eq

O

OTBDPSO NH

TBDPSO NH2

Cl O

O

TEA 3.2 eq

DCM 0.16 M1 h R.T.column

2 steps y: 32%

Pd(OH)2/C 50mg/mmol

H2 , MeOH 0.2 M, R.T. 4 h y 95% 30% y overallless polar, can be column purified

2 eq

Page 36: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

N3

Cl

Cl

O N

O

NN3

Cl

ClO

O

N3

Cl

ClO

NH

O

O

MeCl

Cl

EtOAc, RT, 24 h

NaNO2Cl2CHCOOH

Ac2O

0 °C, 6 h

N3 NH2

a mixture of compounds

EtOAc, 40°C,24 h

Attempts of conversion of amines to alcohols via standard procedure.

Cl

Cl

O N

O

NO

Cl

ClO

OO

Cl

ClO

NH

O

O

O

MeCl

Cl

EtOAc, RT, 24 h

EtOAc, 40°C,24 h

ONH2

not the expected productnot compatible

NaNO2Cl2CHCOOH

Ac2O

0 °C, 6 h

Page 37: LW masters seminar

Study of amine-alcohol conversion via N-nitrosoamide

TBDPSO NH2

TBDPSO OH

y 38% over 4 stepswith trace amount of impurity

O

O

MeCl

Cl

EtOAc, RT, 24 h

TBDPSO NH

OCl

Cl

NaNO2Cl2CHCOOH

Ac2O

0 °C, 6 h

TBDPSO N

OCl

ClNO

EtOAc, 40°C,24 hTBDPSO O

OCl

Cl

TEA MeOH

silica gel chromotography

Attempts of conversion of amines to alcohols via standard procedure.

38% y

TIPSO NH2 TIPSO OH

y 49% over 4 steps

Conversion of a similar amine substrate to alcohols via standard procedure.

Page 38: LW masters seminar

Summary

HN N

H

O

HNNH2

PeptidePeptide H2N OH

O

NH2

Lysine

PgHN OH

O

OH

6-HydroxynorleucineHydrazine functionalizedpeptide inhibitor

Key conversion

Synthesis of a peptide inhibitor

MeO

O

NH29 MeO

O

NH9 R

O

MeO

O

N9 R

O

N O

MeO

O

O9 R

O

MeO

O

OH9

NaNO2AcOHAc2O

K2CO3MeOH

CH3 CF3

Cl

Cl Cl

Cl

Amine-alcohol 4-step sequence

A scope of R group

model molecule

NaNO2EtOAc/TFA / TFAA

5:1:1MeO

O

NH MeO

O

N

OO

F3C

O

6 h, Ice Bath

Formation of unexpected imidoyl trifluoroacetate product

imidoyl trifluoroacetate3 Amine substrates for compatibility study of amine-alcohol 4 step sequence

ONH2 O NH2

N3 NH2Si

38% y

Page 39: LW masters seminar

Summary

1. Synthesis of Small Molecules and Amino Acids for LOX InhibitionProjects:

2. Study of the Amine to Alcohol Conversion via N-Nitrosoamides

MeO

O

NH29 MeO

O

NH9 R

O

MeO

O

N9 R

O

N O

MeO

O

O9 R

O

MeO

O

OH9

NaNO2AcOHAc2O

K2CO3MeOH

model molecule

HN N

H

O

HNNH2

PeptidePeptide H2N OH

O

NH2Lysine

PgHN OH

O

OH6-Hydroxynorleucine

Key conversion

HN

NH2 NH

NH

NH2

O

phenylhydrazine semicarbazide

H2N OH

O

NBocNHBoc

HO O

O

HNN

H

O

NH

O

NHNH2

Page 40: LW masters seminar

Acknowledgements• Committee Members:• Professor Jakobsche• Professor Greenaway• Professor Granados-Focil• Professor Turnbull

• Group Members:• Alexander Wall• Ashley Burke• Blaine McCarthy• Danielle Augur• Devon Fontaine• Maria Solares Bucaro• Mike Reardon• Nick MacArthur• Tony Xu • Rachel Donnelly-Cokinos

• Special Thanks:• Dr. Lin• Frank Abell

• Rene Baril• Meghan O'Rourke• Sue Dejong• Ernest Krygier• Kostika Stefo• Wendy Nason• Rhady Sorm• Kai Peng• Will Wei• Amy Zheng• Mark Tan • Everyone that helped me grow in the past

three years and the audience today.

Clark University Master’s Seminar

08/12/2016Master’s Seminar