manual laboratrio orgánica i 2015

52
UNIVERSIDAD ANDRÉS BELLO FACULTAD DE CIENCIAS EXACTAS DEPARTAMENTO DE CIENCIAS QUÍMICAS MANUAL DE LABORATORIO QUÍMICA ORGÁNICA I PARA QUÍMICA Y FARMACIA QUIM 210

Upload: valentina-vergara

Post on 14-Dec-2015

50 views

Category:

Documents


3 download

DESCRIPTION

Manual laboratorio quimica organica I unab, SEGUNDO SEMESTRE AÑO 2015

TRANSCRIPT

Page 1: Manual Laboratrio Orgánica I 2015

UNIVERSIDAD ANDRÉS BELLO

FACULTAD DE CIENCIAS EXACTAS

DEPARTAMENTO DE CIENCIAS QUÍMICAS

MANUAL DE LABORATORIO QUÍMICA ORGÁNICA I

PARA QUÍMICA Y FARMACIA QUIM 210

Page 2: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

2

ÍNDICE

Normas de Trabajo en el Laboratorio............................................................... 3

Medidas de Seguridad en el Laboratorio …………………………………….. 4

Materiales de uso común en el Laboratorio de Química Orgánica I………. 7

Técnicas utilizadas en los Prácticos de Química Orgánica I………………… 10

Pauta para construir el Informe de Laboratorio.............................................. 17

Práctico n°1: Purificación de sólidos por recristalización................................ 20

Práctico n°2: Identificación de Funciones Orgánicas ....................................... 25

Práctico n°3: Extracción de eugenol a partir de clavos de olor ……..……… 36

Práctico n°4: Separación de los componentes de una tableta analgésica …… 40

Práctico n°5: Reacción de sustitución nucleofílica. Síntesis de cloruro de

t-butilo a partir de t-butanol ..........................................................................

44

Práctico n°6: Reacción de adición-eliminación: Preparación y propiedades

del jabón............................................................................................................

47

Práctico Recuperativo: Extracción de aceite de semillas por método

Soxhlet……………………………………………………..…………………….

50

Page 3: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

3

NORMAS DE TRABAJO EN EL LABORATORIO

Cada alumno debe cumplir una sesión de laboratorio obligatoria de cuatro módulos de duración cada 15 días. Las

secciones impares comienzan la segunda semana lectiva del semestre y las pares la semana siguiente

alternándose hasta completar seis laboratorios obligatorios.

Deben presentarse en el Laboratorio de Química correspondiente el día y en el horario asignados provisto de

delantal, el Manual de Laboratorio, cuaderno de laboratorio y calculadora. Se exigirá puntualidad y no se

permitirá realizar un trabajo práctico sin su delantal. Las pertenencias deben ser dejadas en los casilleros

dispuestos fuera de cada laboratorio por lo cual deben llevar un candado. Se debe presentar con ropa adecuada

para evitar accidentes: calzar zapatos cerrados o zapatillas, uso de pantalón grueso, no usar calzas ni minifaldas,

no usar bufandas, pañuelos o gorros. Evitar llevar aparatos electrónicos como celulares, iPod, tablets y

notebooks, que puedan distraerlo del trabajo práctico.

El alumno debe llegar al laboratorio habiendo preparado previamente el tema correspondiente al trabajo práctico

que se llevará a cabo. Esto se verificará previamente mediante un control escrito al comienzo del mismo. Una

vez finalizada la sesión de laboratorio se deberá entregar un informe del tema desarrollado de acuerdo a la

PAUTA DE INFORME que se encuentra detallado en la página 6 de este Manual. Este informe deberá ser

entregado al final de cada sesión de laboratorio.

El alumno que no asista a una sesión de laboratorio podrá recuperar sólo un control y un laboratorio

previamente justificados en el Departamento de Ciencias Químicas y al final del semestre.

La Nota Final de Laboratorio (NFL) corresponde al 60% del promedio de los Controles de laboratorio ( C )

y al 40% del promedio de los Informes de Laboratorio ( I ). Es decir:

NFL = 0.6 C + 0.4 I

La nota final de laboratorio (NFL) corresponde al 40% de la nota de presentación (NP) del curso QUIM

210.

Page 4: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

4

MEDIDAS DE SEGURIDAD EN EL LABORATORIO

PRECAUCIONES PARA EVITAR INCENDIOS:

1.- Siempre que use un mechero tenga en cuenta lo siguiente:

- No caliente nunca un disolvente inflamable de punto de ebullición menor de 100°C (metanol, éter etílico,

acetona, benceno, etanol, etc.) en un recipiente abierto.

- Si calienta un disolvente a reflujo cerciórese de que todas las conexiones estén bien ajustadas.

- No trasvase líquidos inflamables cerca de una llama.

- No reciba un destilado en un recipiente muy retirado del condensador o cerca de la llama del mechero de su

vecino. Por norma general, los recipientes deben quedar lo más alejados posible de los mecheros.

2.- No caliente nunca un sistema cerrado aunque vaya provisto de un condensador.

3.- Siempre que realice una operación exotérmica tenga preparado un baño de hielo o de agua fría para poder

controlarla.

4.- No guarde disolventes en vasos abiertos y manténgalos lejos de la llama del mechero.

5.- No deje los recipientes de disolventes en el mesón de trabajo sino en una estantería lateral o en la campana.

6.- No deje ningún objeto ajeno al trabajo en el mesón de trabajo (libros, cuadernos, carteras, mochilas, etc.).

7.- Tenga siempre presente la ubicación de los extintores del laboratorio y aprenda a usarlos.

Si por desgracia se produce un accidente con fuego siga las siguientes normas:

1.- Apague todas las llamas y retire todos los productos inflamables de las proximidades del fuego.

2.- Si el fuego es pequeño sofóquelo con un paño mojado. Si el fuego es mayor use un extintor.

3.- Si se inflaman las ropas de alguna persona:

- Evite que corra

- Hágala rodar por el suelo para que el fuego no llegue a la cabeza.

- Cúbrala con una manta o cualquier prenda que tenga a mano.

- Trate las quemaduras pequeñas con un ungüento. Las quemaduras mayores deben ser atendidas por un

médico.

PRECAUCIONES EN EL MANEJO DE PRODUCTOS QUÍMICOS:

1.- No permita que se pongan en contacto con la piel o ropa.

2.- No pruebe ningún sólido, líquido o disolución al menos que se le especifique hacerlo.

3.- Evite inhalar, en lo posible, vapores de disolventes. Si quiere tomar el olor de algún producto como criterio de

identificación, hágalo con cuidado y colocando el recipiente a 15 cm de la nariz.

Page 5: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

5

4.- Limpie cualquier porción de líquido que derrame. Si se trata de un ácido, lave con agua, neutralice con una

disolución de bicarbonato o carbonato de sodio al 5% y vuelva a lavar con agua. Si es un álcali, lave con agua y

neutralice con una disolución de ácido acético al 5%. En lo posible use guantes para realizar esta operación.

5.- NO VIERTA RESIDUOS ORGÁNICOS O INORGÁNICOS EN LOS LAVADEROS. En cada

Laboratorio encontrará recipientes para desechos de residuos químicos que se hallan en las campanas de cada

laboratorio con un número distintivo de acuerdo al tipo de residuo.

PRECAUCIONES EN EL MANEJO DE MATERIAL DE VIDRIO:

Para evitar cortaduras al tratar de introducir una varilla de vidrio o un termómetro en un orificio de un tapón:

1.- Trate de que el orificio tenga un tamaño adecuado.

2.- Lubrique la varilla con agua, disolución jabonosa o glicerina.

3.- Proteja sus manos con un paño.

4.- Sostenga la varilla lo más cerca de un extremo y aplique suavemente presión hasta pasarla completamente.

5.- Si se trata de una varilla con ángulo, tómela desde la parte más próxima al corcho o tapón para hacer presión.

6.- No mantenga el tapón o corcho en la palma de su mano ni lo dirija hacia su mano o cuerpo. Sosténgalo entre

el pulgar y el dedo índice.

7.- No olvide ablandar en corcho antes de horadarlo.

QUEMADURAS CON PRODUCTOS QUÍMICOS:

Las áreas de la piel que estén en contacto con productos químicos corrosivos deben lavarse bien con abundante

agua. Si el producto es un ácido, lave con una disolución saturada de bicarbonato de sodio y nuevamente con

agua. Si se trata de un álcali, lave con agua y con una disolución de ácido acético al 1% y finalmente, con agua.

Si saltan trozos de sodio a la piel, saque los pedazos con una pinza, lave con alcohol y luego con una disolución

de ácido acético al 1%. Finalmente, coloque una gasa con un ungüento apropiado.

Las quemaduras con bromo son especialmente delicadas. Debe lavar primero con agua y empaparse con una

disolución de tiosulfato de sodio al 10%.

Si el producto químico, corrosivo o caliente, salta a sus ojos, lave con abundante agua de la llave más próxima

tanto el globo ocular como el párpado. Nunca se restriegue los ojos o se introduzca las manos a la boca sin antes

de lavar prolijamente sus manos.

ENVENENAMIENTOS:

a.- Sólidos y líquidos:

Ácidos: beber mucha agua y luego leche de magnesia. También se puede tomar leche pero nunca provocar el

vómito manualmente o con eméticos.

Álcali: beber mucha agua y, después, vinagre, jugo de limón o de naranja o disolución de ácido cítrico. Se puede

tomar leche pero nunca provocar el vómito manualmente o con eméticos.

Page 6: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

6

Sales de metales pesados: beber leche o clara de huevo.

Arsénico o mercurio: dar un emético inmediatamente (sulfato de zinc en un vaso de agua tibia).

b.- Gases:

Sacar a la persona al aire libre y aflojarles las ropas del cuello. Si ha inhalado vapores de bromo o cloro hacerle

inhalar vapores de amoniaco.

NORMAS GENERALES DE TRABAJO EN EL LABORATORIO

Para evitar accidentes en el laboratorio debe seguir ciertas recomendaciones:

1.- Mantenga siempre las llaves de agua y de gas cerradas cuando no las esté utilizando.

2.- Nunca tire desechos insolubles como papeles filtro, fósforos o similares a los lavaderos.

3.- Nunca trabaje solo en el laboratorio.

4.- No eche trozos de sodio metálico en los lavaderos o recipientes de la basura. Sumérjalos en parafina y

pregunte dónde y cómo deshacerse de ellos.

5.- El trabajo con productos irritantes o disolventes cancerígenos (benceno, cloroformo, diclorometano,

tetracloruro de carbono) debe hacerse en campana.

6.- No mire por la boca de los matraces o tubos de ensayo cuando esté llevando a cabo una reacción.

7.- Evite inundaciones sobre el mesón dando la presión suave de agua al refrigerante.

8.- Siempre lleve puestas sus antiparras y delantal en el laboratorio.

9.-Todo equipo armado por el o los estudiantes deberá ser revisado por el profesor antes de usarlo.

10.- Los reactivos de uso general deberán permanecer en los lugares asignados a ellos. Todo reactivo, luego de

ser usado, debe ser tapado inmediatamente.

11.- Las balanzas deben permanecer limpias y sin tara. Su uso exige protección del plato así que utilice vidrio de

reloj o cualquier otro recipiente adecuado.

12.- No ingiera alimentos ni bebidas en el laboratorio.

13.- No utilice los materiales de laboratorio para beber agua.

14.- Lave prolijamente sus manos antes de retirarse del laboratorio.

15.- Entregue sus bandejas al final de laboratorio y deje limpio su lugar de trabajo.

Page 7: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

7

MATERIALES DE USO COMÚN EN EL LABORATORIO DE QUÍMICA ORGÁNICA I.

Aro Nueces Pinzas de tres dedos Soporte universal

Manto calefactor Placa calefactora con agitación magnética Barra magnética

Desecador Pipetas Propipetas Escobilla Pinza de madera

Page 8: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

8

Matraz de fondo redondo Cabezal de destilación Adaptador de destilación Matraz Erlenmeyer

Embudo analítico Embudo Büchner Matraz Kitasato Piceta o frasco lavador

Embudo de decantación Gradilla con tubos de ensayo Mortero

Page 9: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

9

Espátula Trampa de gases Probeta Termómetro simple y con adaptador

Condensador Allihn o de bolas Condensador Liebig Vaso de precipitados

Bagueta o varilla de vidrio Pipetas Pateur Gotario

Page 10: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

10

TÉCNICAS UTILIZADAS EN LOS PRÁCTICOS DE QUÍMICA ORGÁNICA I.

1.- Filtración por gravedad. (Prácticos Nº 1, 3, 4 y 5)

Este tipo de filtración se utiliza cuando se necesita obtener un filtrado libre de impurezas sólidas. En general, se

filtra la disolución caliente, quedando las impurezas insolubles retenidas en el papel filtro plegado. Para esto se

necesita un matraz Erlenmeyer, un embudo analítico y un papel filtro plegado los cuales han sido previamente

mantenidos en la estufa a alta temperatura para evitar que el sólido precipite en el papel o en el vástago del

embudo durante la filtración por cambios bruscos de temperatura. Para ver el proceso de filtración por gravedad

y la preparación de un papel filtro plegado, revise los videos de la siguiente página web:

https://www.youtube.com/watch?v=OaKaKkdiYrk (Video de Filtración por gravedad)

https://www.youtube.com/watch?v=v_a5HIAxrdk (Video de preparación de un papel filtro plegado)

Fig. 1: Equipo de filtración por gravedad. Fig. 2: Preparación de un papel filtro plegado.

2.- Filtración al vacío (Prácticos Nº 1 y 4)

Se utiliza para separar un sólido desde una suspensión. Para esto se necesita un matraz Kitasato y un embudo

Büchner con un papel filtro redondo cuyo diámetro permita cubrir toda la superficie interna del embudo Büchner.

El embudo, junto con el filtro, se ajusta al matraz Kitasato con un adaptador de goma o de caucho, y el montaje,

sujetado con una pinza unida a un soporte con una nuez, se conecta a una bomba de vacío. El filtro se moja con

el mismo disolvente que contiene la suspensión hasta que quede bien asentado en el embudo. Luego, se vierte

lentamente la suspensión sobre el filtro con la ayuda de una varilla de vidrio, de forma que no se produzca el

derramamiento de líquido. El sólido retenido en el filtro puede lavarse con pequeñas porciones de disolvente (el

mismo que contiene el líquido filtrado), y se dejará un tiempo conectado al vacío hasta que quede lo más seco

posible. Para ver el proceso de filtración al vacío revise el video en la siguiente página web:

Page 11: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

11

https://www.youtube.com/watch?v=lrMfP4I6GWw (Video de filtración al vacío)

Figura 3: Equipo de filtración al vacío.

3.- Sistema de destilación simple (Prácticos Nº 3 y 5)

Esta técnica se utiliza cuando se desea separar dos o más disolventes con puntos de ebullición muy diferentes.

Por ejemplo, agua (p. eb. 100 ºC) y acetona (p. eb. 56 ºC). Para la destilación simple se necesita una manta o

placa calefactora, un matraz de fondo redondo, un cabezal de destilación, un termómetro con adaptador, un

condensador tipo Liebig y un matraz Erlenmeyer, además de dos soportes universales y dos pinzas de tres dedos

con sus nueces respectivas.

Figura 4: Equipo de destilación simple.

Page 12: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

12

Cuando se hace una destilación se debe tener en cuenta lo siguiente: a) antes de iniciar el calentamiento hay que

añadir 2 a 3 trozos de porcelana o plato poroso; b) el termómetro debe colocarse de forma que el bulbo esté

justamente en la salida del vapor; c) la entrada del agua de refrigeración debe conectarse a la parte inferior del

condensador; d) todas las piezas del montaje deberán estar perfectamente ajustadas y convenientemente

engrasadas (utilice una pequeña cantidad); e) las pinzas de sujeción nunca se pondrán en las uniones de las piezas

y f) el calentamiento debe ser tal que se recojan de 2 a 4 gotas de destilado por segundo.

Para ver el proceso de destilación simple revise en video en la siguiente página web:

https://www.youtube.com/watch?v=pJ2jm2J41bw (Video de destilación simple)

4.- Extracción líquido-líquido (Prácticos Nº 3, 4 y 5)

Esta técnica se utiliza para extraer un soluto disuelto en un disolvente con otro disolvente en que el soluto es más

soluble. Estos disolventes tienen que ser inmiscibles entre sí. Los disolventes más utilizados en las extracciones

de este tipo se encuentran en la siguiente tabla:

Tabla de disolventes de extracción comúnmente utilizados.

Nombre Fórmula Densidad (g/mL)* Punto de ebullición (ºC) Peligrosidad

Disolventes de extracción menos densos que el agua

Éter dietílico (CH3CH2)2O 0,7 35 Muy inflamable, tóxico

Hexano C6H14 ≈ 0,7 > 60 Inflamable

Benceno C6H6 0,9 80 Inflamable, tóxico

Tolueno C6H5CH3 0,9 111 Inflamable

Acetato de etilo CH3CO2CH2CH3 0,9 78 Inflamable, irritante

Disolventes de extracción más densos que el agua

Diclorometano CH2Cl2 1,3 41 Hepatotóxico

Cloroformo CHCl3 1,5 61 Hepatotóxico

Tetracloruro de carbono CCl4 1,6 77 Hepatotóxico

* La densidad del agua es 1,0 g/mL, y la de la disolución acuosa saturada de NaCl es 1,2 g/mL.

Para esta técnica se necesita un embudo de decantación, matraces Erlenmeyer y un soporte universal con un aro

con nuez.

Es una extracción discontinua y se lleva a cabo en el embudo de decantación. El volumen de ambos líquidos no

debe ocupar más de la mitad del embudo para favorecer una mejor agitación. Se debe verificar que la llave del

embudo esté en buenas condiciones y no haya pérdida de material.

Page 13: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

13

Figura 5: Extracción con embudo de decantación.

Se agrega la disolución a extraer y una pequeña porción del disolvente inmiscible. Se tapa el embudo y se

invierte, dirigiendo el vástago hacia arriba y con el tapón bien sujeto con una mano. Se abre la llave para eliminar

la presión interna, puesto que al mezclar los disolventes se desprende calor y se evaporan los disolventes. Se

cierra la llave y con una mano se apoya el tapón y con la otra se toma el vástago por la parte de la llave. Se debe

comenzar con una agitación suave y abrir inmediatamente la llave para permitir la salida de gases producidos,

hasta que no haya gases en el interior. Luego, se debe agitar vigorosamente durante un cierto tiempo para

permitir el mayor contacto del soluto con el disolvente de extracción.

Figura 6: Modos de tomar el embudo de decantación durante la agitación.

En seguida, debe ponerse el embudo en su posición normal y observar si se forma algo de emulsión; en este caso

la agitación debe ser muy suave porque las emulsiones son difíciles de eliminar. Terminada la agitación se pone

el embudo en el aro, se quita el tapón, se espera que los líquidos decanten y por medio de la llave se separan.

Page 14: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

14

Si no se observa nítidamente la separación de las fases se agrega un poco del disolvente más denso y se observa

la separación de las fases. Para determinar la naturaleza de cada fase se agrega una pequeña cantidad del

disolvente a uno de los líquidos separados; si se mezcla con él es porque se trata de la capa del disolvente.

La extracción se debe llevar a cabo unas dos o tres veces, juntando las fases del mismo disolvente. Si el

disolvente ha estado en contacto con una fase acuosa, se debe agregar un desecante (sulfato de magnesio anhidro

o cloruro de calcio anhidro) para eliminar los restos de agua.

Para ver el proceso de extracción líquido-líquido revise el video en la siguiente página web:

https://www.youtube.com/watch?v=Q3QxStCFDUo (Video extracción líquido-líquido)

5.- Calentamiento por reflujo (Práctico Nº 1)

El reflujo es una técnica experimental de laboratorio para el calentamiento de reacciones que transcurren a

temperatura superior a la ambiente y en las que conviene mantener un volumen de reacción constante.

Un montaje para reflujo permite realizar procesos a temperaturas superiores a la ambiente (reacciones,

recristalizaciones, etc), evitando la pérdida de disolvente y que éste salga a la atmósfera. Se necesita una manta o

placa calefactora, un matraz de fondo redondo, un condensador tipo Allihn o de bolas (también se puede utilizar

un condensador de serpentín) y un soporte universal con dos pinzas de tres dedos con sus respectivas nueces. En

los casos que se debe evitar la presencia de agua se debe utilizar una trampa de humedad acoplada en la parte

superior del condensador.

Figura 7: Equipo de reflujo.

Se efectúa acoplando un condensador de bolas o serpentín a la boca (o a una de las bocas) del matraz que

contiene la mezcla de reacción. A medida que se procede a la calefacción del matraz, la temperatura aumenta

Page 15: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

15

evaporando parte del disolvente. Los vapores del mismo ascienden por el cuello del matraz hasta el condensador,

donde se condensa (por acción del agua fría que circula por la camisa exterior) volviendo de nuevo al matraz.

Esto establece un reflujo continuo de disolvente que mantiene el volumen de la reacción constante.

Para ver el proceso de calentamiento a reflujo revise el video en las siguientes páginas web:

https://www.youtube.com/watch?v=YUKGLbAEtCo o https://www.youtube.com/watch?v=3diTdagF-6U

6.- Destilación al vacío con evaporador rotatorio (Prácticos Nº 3 y 4)

El evaporador rotatorio o rotaevaporador o rotavapor es un equipo de destilación al vacío que permite eliminar el

disolvente de una disolución que contiene solutos que generalmente son termolábiles. Debido a que la menor

presión interna hace disminuir el punto de ebullición del disolvente, esta eliminación se hace a más bajas

temperaturas, manteniendo estables las características físicas y químicas del soluto.

Para ver el proceso de destilación al vacío con evaporador rotatorio o rotavapor revise el video en la siguiente

página web: https://www.youtube.com/watch?v=FCW9fRjt8CA

7.- Extracción sólido-líquido o Soxhlet. (Práctico Recuperativo)

La extracción con el aparato Soxhlet tiene mucha aplicación en la extracción de productos naturales desde tejidos

animales o vegetales con alto contenido de agua, sistemas que forman emulsiones muy persistentes o compuestos

orgánicos más solubles en agua que en disolventes orgánicos. Para esta técnica de extracción se necesita un

Page 16: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

16

extractor Soxhlet, un matraz de fondo redondo, un condensador tipo Allihn o de bolas, un manto o placa

calefactora, un cartucho de papel filtro y un soporte universal con dos pinzas de tres dedos con sus respectivas

nueces.

Figura 8: Extractor Soxhlet y equipo de extracción continua.

El disolvente, inicialmente puro, ebulle suavemente en el matraz de fondo redondo. Sus vapores pasan al

contenedor superior por el brazo exterior donde condensan en el refrigerante y caen sobre el material sólido que

se encuentra en un cartucho de papel filtro.

El contenedor posee un tubo lateral en forma de sifón que al alcanzar el disolvente cargado la altura crítica lo

evacua en el matraz de fondo redondo. Al reevaporarse (redestilar) el disolvente y comenzar un nuevo ciclo, la

sustancia extraída enriquece el extracto en el matraz. Esto permite tener la muestra en contacto permanente con

el disolvente de extracción puro.

En la adición de los disolventes de extracción se debe evitar caer en los extremos. Es tan perjudicial tanto la falta

como el exceso de disolvente. Sin embargo un exceso es siempre menos perjudicial, debido a que el disolvente

puede ser volatilizado.

En extracción, un aumento de temperatura del proceso, lleva implícito un incremento del poder extractante hasta

alcanzar un estado de máxima saturación en el cual el disolvente ya no es capaz de disolver una mayor cantidad

de soluto. Si esta saturación se ha logrado a alta temperatura, bastará solo un enfriamiento para que se separe

este exceso en forma de una masa cristalina fácilmente purificable.

Page 17: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

17

Si un disolvente está saturado de una sustancia es inútil mantenerlo en contacto con la muestra para lograr una

mayor extracción. El disolvente tendrá una mayor capacidad de extracción en tanto menos soluto haya extraído.

Es decir, su máximo poder extractante estará en el disolvente puro.

Para ver el proceso de extracción Soxhlet o sólido-líquido revise el video en la siguiente página web:

https://www.youtube.com/watch?v=5gOFZT2UVEA

PAUTA PARA CONSTRUIR EL INFORME DE LABORATORIO

En todo trabajo experimental es de mucha utilidad contar con un cuaderno de laboratorio en el cual se registran

todos los datos y resultados de la experiencia realizada en una forma clara, ordenada y legible. Para sacar el

máximo provecho de los datos puestos en su cuaderno se pueden adoptar las siguientes normas:

a) Anote la fecha y el nombre de la experiencia llevada a cabo. En lo posible anote los datos experimentales

tan pronto como sea posible, incluyendo los cálculos respectivos y las posibles modificaciones hechas al

trabajo experimental en curso. Anote todas las observaciones por insignificantes que parezcan.

b) Registre claramente los datos obtenidos y si es posible construya una Tabla de Datos, para mayor

claridad.

c) Realice todos los cálculos de rendimiento teórico y porcentaje de reacción.

Para escribir el Informe de Laboratorio tenga presente los siguientes criterios:

a) El informe debe ser entregado al final de cada práctico. Recuerde que el Informe es responsabilidad de

todos los miembros del grupo de trabajo.

b) Para la escritura del Informe debe usar una letra legible. Recuerde que el informe debe ser lo más formal

posible.

c) Revise concienzudamente la ortografía y la redacción. Debe indicar claramente las constantes físicas de

los productos y reactantes, las cuales debe averiguarlas con anticipación al práctico e indicar la fuente

bibliográfica de éstas.

d) Anote clara y ordenadamente los datos obtenidos y los cálculos realizados. Indique las unidades de

medición de cada valor obtenido. Para los cálculos utilice preferentemente el análisis dimensional.

El siguiente formato es el que deberá seguir para hacer sus futuros informes de laboratorio de Química

Orgánica. Entre paréntesis se indica el puntaje de cada parte del informe que se considerará para la

evaluación.

Page 18: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

18

UNIVERSIDAD ANDRÉS BELLO

FACULTAD DE CIENCIAS EXACTAS

DEPARTAMENTO DE CIENCIAS QUÍMICAS

LABORATORIO DE QUÍMICA ORGÁNICA I QUIM 210

NOMBRES: ________________________________________________________ FECHA: ______________________

_________________________________________________

PRÁCTICO Nº …: ………………………………………………………………………………………………………………………….

Objetivos: (1 punto)

2.- Ecuaciones químicas (cuando sea necesario): (1 punto)

3.- Constantes físicas de productos y reactantes (sólo de los compuestos orgánicos involucrados en la

reacción): (1 punto)

……………………………………

Fórmula molecular:……..………..

MM: ……………………………..

p.f.:……………………………….

p.eb.:…………………………….

Densidad:…………………………

Pureza:…………………………….

……………………………………

Fórmula molecular:……..………..

MM: ……………………………..

p.f.:……………………………….

p.eb.:…………………………….

Densidad:…………………………

Pureza:…………………………….

……………………………………

Fórmula molecular:……..………..

MM: ……………………………..

p.f.:……………………………….

p.eb.:…………………………….

Densidad:…………………………

Pureza:…………………………….

4.- Bibliografía: (fuente bibliográfica de las constantes físicas): (1 punto)

Page 19: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

19

Resultados y cálculos: (3 puntos)

Page 20: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

20

PRÁCTICO N° 1: PURIFICACIÓN DE SÓLIDOS POR RECRISTALIZACIÓN.

La recristalización es el procedimiento por el cual se separan las impurezas de un compuesto sólido mediante el

uso de disolventes puros o mezclas de disolventes basándose en la diferencia de solubilidades de ambos

productos a diferentes temperaturas. En general, la solubilidad de un producto en un disolvente determinado

aumenta con la temperatura. Si en una mezcla de sólidos uno de ellos es más soluble en frío que el otro, a

temperatura ambiente uno cristalizará mientras que el otro quedará disuelto en el líquido sobrenadante. Una

posterior filtración permitirá obtener el producto de alta pureza, lo cual se verifica mediante el punto de fusión

(p.f.). Se debe recristalizar el producto tantas veces como sea necesario hasta que el p.f. se mantenga constante.

El método de purificación de un sólido por recristalización comprende los siguientes pasos:

1.- Selección del disolvente adecuado: El disolvente ideal para la purificación de un sólido debe reunir ciertas

características:

- No debe reaccionar con el soluto.

- La temperatura de ebullición del disolvente debe ser menor al punto de fusión o de descomposición del

soluto.

- Debe ser capaz de disolver una cantidad significativamente mayor del sólido a una alta temperatura

que a temperatura ambiente.

- No debe disolver los contaminantes en caliente o bien disolverlos significativamente en frío.

- Debe tener una presión de vapor alta para facilitar el secado de los cristales filtrados.

Cuando dos o más disolventes sean adecuados para la purificación se elegirá aquel que sea de más fácil

eliminación, menor inflamabilidad, menor toxicidad y menor costo.

2.- Disolución del sólido impuro en el disolvente caliente: El sólido debe ser disuelto en la mímina cantidad de

disolvente caliente para favorecer al máximo la recuperación del sólido a purificar al enfriarse la disolución. Se

debe armar un aparato para calentamiento a reflujo y eventualmente se calentará en un baño de agua. Si debe

agregarse más disolvente, esto se hará en pequeñas proporciones por la parte superior del refrigerante retirando

previamente el manto calefactor o mechero. Se agrega tantas veces como sea necesario para disolver el producto

al punto de ebullición del disolvente (cada vez que se agrega una porción de disolvente se debe llevar a

ebullición y evaluar la disolución). El calentamiento a reflujo asegura que no se pierda disolvente al calentarlo,

especialmente cuando se usan mezclas de disolventes.

3.- Decoloración de la disolución: A veces las impurezas de algunos sólidos dan disoluciones coloreadas. Estos

se eliminan agregando, generalmente, una porción de carbón activo (las impurezas se adsorben en la superficie

del carbón permitiendo eliminarlas de la disolución). El carbón activado se agrega sobre la disolución tibia para

evitar proyecciones del disolvente y luego se lleva a ebullición. Se debe agregar no más de un 2% en peso de

Page 21: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

21

carbón respecto al sólido ya que éste también puede adsorberse sobre el carbón disminuyendo el rendimiento.

Una vez calentada la disolución a ebullición en presencia de carbón activo se filtra en caliente para separar el

adsorbente.

4.- Separación de las impurezas insolubles por filtración en caliente: La filtración se realiza con un embudo

analítico, preferentemente de vástago corto, usando un papel filtro plegado para aumentar la velocidad de

filtrado. Conviene calentar el embudo, el filtro y el recipiente en que se recibirá la disolución caliente para evitar

la cristalización en ellos. Una vez filtrada en caliente, la disolución se deja enfriar a temperatura ambiente. El

enfriamiento debe ser paulatino para evitar la formación de cristales muy pequeños que pueden adsorber

impurezas. Si el sólido no cristaliza a temperatura ambiente se deben seguir los siguientes pasos:

- Agregar un cristal de producto puro (siembra). Si no se tiene producto puro se pude obtener mediante

la evaporación del disolvente de una alícuota de la disolución.

- Raspar las paredes del recipiente con una varilla de vidrio por debajo del nivel de la disolución.

- Enfriar la disolución en hielo o mezcla hielo-sal cuidando que la temperatura sea mayor al punto de

congelación del disolvente.

5.- Recolección de los cristales por filtración al vacío: Una vez que ha recristalizado el producto y la

disolución ha alcanzado la temperatura ambiente, los cristales se filtran en un equipo de filtración al vacío. Los

cristales que quedan en el recipiente deben ser arrastrados con las aguas madres de cristalización contenidas en el

matraz Kitasato. Los cristales deben ser luego lavados en el mismo embudo Büchner ya sea con una pequeña

cantidad de disolvente utilizado en la recristalización previamente enfriado para evitar pérdidas por disolución o

con otro disolvente que sea muy volátil y en el cual el producto sea muy insoluble. Para lavar se debe quitar el

vacío, agregar la porción de disolvente, agitar cuidadosamente los cristales con una varilla de vidrio evitando

romper el papel filtro y luego aplicar vacío. Este paso se debe repetir tantas veces como sea necesario para hasta

obtener cristales de un color homogéneo. Luego, los cristales se dejan secar ya sea en el mismo sistema al vacío

o a temperatura ambiente.

6.- Determinación de la pureza del sólido: Un método aceptable para la determinación de la pureza de un

sólido es el punto de fusión (PF). Generalmente, se informa como un intervalo el cual no debe ser mayor a 2°C.

Este intervalo comienza desde que se aprecia la primera gota de líquido hasta que la fusión sea completa.

7.- Cálculo del rendimiento de recristalización: El rendimiento de la recristalización corresponde a la razón

entre el peso de sólido puro obtenido y el peso del sólido impuro de partida: si X es el peso de sólido

recristalizado e Y el peso del sólido de partida, entonces el rendimiento será:

Rendimiento (%) = (X / Y) x 100

Esto es sólo cierto si sabemos el porcentaje de impurezas del sólido impuro. Si tomamos como peso de sólido

impuro el peso total inicial estamos asumiendo que las impurezas no existen y tendremos un valor de

Page 22: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

22

rendimiento por defecto. Sin embargo, la cantidad de impurezas, en general, son mínimas y el error en el

rendimiento es muy bajo.

RECRISTALIZACIÓN EN MEZCLAS DE DISOLVENTES

A menudo un compuesto orgánico es muy soluble en un determinado disolvente e insoluble o muy poco soluble

en otro. Aprovechando esta diferencia de solubilidad se puede llevar a cabo la recristalización en una mezcla de

ambos disolventes, siempre y cuando sean miscibles y tengan un punto de ebullición muy similar. El

procedimiento en estos casos es el siguiente:

1.- El sólido se disuelve en caliente y a reflujo en la mínima cantidad de disolvente en que es soluble.

2.- Una vez disuelto se agregan pequeñas cantidades del otro disolvente a través del refrigerante. Se agrega

lentamente hasta que se observa una turbidez permanente en la disolución.

3.- Luego se agrega una cantidad de disolvente en que es soluble hasta volver a tener una disolución transparente.

De este modo se asegura tener una disolución saturada del producto en cuestión.

4.- Se sigue con el procedimiento normal de recristalización.

Las mezclas de disolventes más utilizadas son etanol-agua, cloroformo-hexano, etanol-benceno, éter-hexano.

TRABAJO EXPERIMENTAL

1.- PRE-LABORATORIO

a.- Averigüe por qué el punto de fusión es un factor que indica la pureza de un sólido.

b.- Busque en The Merck Index o en Handbook of Chemistry and Physics las constantes físicas, especialmente

los puntos de fusión, de los siguientes compuestos:

- ácido benzoico

- ácido o-nitrobenzoico o ácido 2-nitrobenzoico

- acetanilida

- p-nitroacetanilida o 4-nitroacetanilida

- dibenzalacetona

- ácido salicílico

- ácido acetilsalicílico

c.- Averigüe cómo está relacionada la polaridad de un disolvente con su estructura química.

d.- Ordene de mayor a menor polaridad los siguientes disolventes: hexano, agua, etanol, acetato de etilo y

diclorometano.

e.- Averigüe cual es la solubilidad de los compuestos en b en los disolventes listados en d.

2.- MATERIALES Y REACTIVOS

MATERIALES REACTIVOS

gradilla con 6 tubos de ensayos hexano o éter de petróleo

Page 23: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

23

1 espátula acetato de etilo

2 pinzas de madera diclorometano

1 matraz de fondo redondo de 100 mL etanol

1 condensador Allihn o para reflujo ácido benzoico

1 soporte universal ácido o-nitrobenzoico

2 pinzas de tres dedos con nuez p-nitroacetanilida

1 manto calefactor ácido salicílico

1 embudo analítico de vástago corto ácido acetilsalicílico

papel filtro rápido dibenzalacetona

1 matraz Erlenmeyer de 100 o 125mL acetanilida

1 aro pequeño carbón activo

1 balanza granataria

1 vidrio de reloj

1 equipo de punto de fusión

capilares para punto de fusión

1 piceta con agua destilada

piedras de porcelana

3.- PRÁCTICO

Ud. recibirá una muestra impura de un sólido conocido y deberá elegir un disolvente para la recristalización de

este sólido. Luego, determinará la pureza del mismo y el rendimiento de la recristalización.

4.- PROCEDIMIENTO EXPERIMENTAL

Rotule 5 tubos de ensayo como etanol, agua, hexano, diclorometano y acetato de etilo. Agregue una punta de

espátula del sólido puro que se le ha asignado a cada tubo de ensayo y agregue unos 5 mL del disolvente

respectivo. Agite los tubos y descarte aquellos en que se ha disuelto el sólido en frío. Caliente los tubos en que no

se ha disuelto el sólido en un manto calefactor hasta ebullición y elegir el disolvente en que se ha disuelto

totalmente en caliente. Si hay más de un disolvente, elija uno de acuerdo a los criterios expuestos anteriormente.

Una vez determinado el disolvente para recristalizar pese el producto impuro e introdúzcalo cuidadosamente en

un matraz de fondo redondo de 100 mL. Agregue dos a tres piedras de porcelana y unos 50 mL del disolvente

elegido. Adapte al matraz un condensador Allihn y caliente a reflujo en un manto calefactor durante

aproximadamente 10 min. Observe que el sólido se disuelva totalmente. Si no se disuelve agregue

cuidadosamente alícuotas de 5 mL del disolvente hasta disolución total del compuesto. Tenga cuidado de no

llenar el matraz con disolvente. Si esto ocurriera deberá cambiar a un matraz de mayor volumen. Observe el

color del compuesto puro y el de su muestra. Si observa una coloración distinta debe agregar carbón activo para

decolorar. Filtre en caliente sobre un matraz Erlenmeyer y deje enfriar a temperatura ambiente. Una vez que

aparecen los primeros cristales puede enfriar en un baño de hielo para favorecer la recristalización. Filtre los

cristales en un equipo de filtración al vacío y recíbalos en un vidrio de reloj previamente pesado. Lleve los

cristales a la estufa para secarlos durante unos 15 min (si el disolvente es agua necesitará más tiempo) Tenga

cuidado que la temperatura de la estufa no sea muy próxima al punto de fusión o de descomposición del sólido.

Page 24: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

24

Luego, pese los cristales y determine el rendimiento de la recristalización. Finalmente, determine la pureza

mediante el punto de fusión del producto recristalizado.

5.- BIBLIOGRAFÍA:

1.- A.I. Vogel, “ Textbook of Practical Organic Chemistry”, Longmans Group UK Limited, Essex, England, 5°

Edición, 1989, pág. 135

2.- R.J. Fessenden, J.S. Fessenden, “ Techniques and Experiments for Organic Chemistry”, Willlard Grant Press,

Boston, 3° Edición, 1983, pág. 36-52.

3.- Ray Q. Brewster, “Curso Práctico de Química Orgánica”, Editorial Alhambra, Madrid, España, 2º Edición,

1977, pág. 22-29.

Page 25: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

25

PRÁCTICO Nº 2: IDENTIFICACIÓN DE FUNCIONES ORGÁNICAS.

El análisis cualitativo y caracterización de compuestos orgánicos desconocidos es importante en Química

Orgánica. El análisis elemental cualitativo nos indicará los elementos que conforman un compuesto orgánico (H,

C, O, N, etc). Sin embargo, este análisis no nos indica el tipo de ordenamiento molecular de estos elementos en el

compuesto y, por tanto, no sabremos qué grupo funcional se encuentra presente en la sustancia en estudio. Un

compuesto de fórmula molecular C3H6O2 puede tener 6 posibles estructuras o isómeros:

CH3

O

O CH3

HOCH2

O

CH3

HOCH2CH

2

O

H

CH3OCH

2

O

H

CH3CH

2

O

OH

H

O

O CH2CH

3

acetato de metilo hidroxipropanona 3-hidroxipropanal

metoxietanal ácido propanoico formiato de etilo

Todos estos compuestos tienen funciones orgánicas diferentes por lo que tendrán propiedades químicas y físicas

diferentes. Conocido el grupo funcional podremos entender o dar cuenta de la reactividad específica de un

compuesto orgánico.

La determinación de los grupos funcionales es un análisis que se puede llevar a cabo a través de pruebas de tipo

químico o por métodos espectroscópicos. En una primera etapa se determina a qué clase de compuesto

corresponde la sustancia a ser analizado mediante un método general. Por ejemplo, determinando su solubilidad

en agua podemos determinar si tiene grupos polares; la medición del pH nos indica si es un ácido o una base

orgánica. Volvamos al ejemplo del compuesto de fórmula molecular C3H6O2: si es soluble en agua pero no tiene

propiedades ácido-base podemos descartar el ácido propanoico que produce soluciones de pH menor que 7.

Después de esta clasificación a priori se realiza un estudio más específico para saber qué tipo de funciones

orgánicas posee. Así, si tomamos como ejemplo el compuesto de fórmula molecular C3H6O2 y da positivo las

pruebas de alcoholes y aldehido podemos identificar el compuesto como el 3-hidroxipropanal.

Las reacciones de clasificación deben efectuarse de acuerdo con la siguiente secuencia: aminas, amidas, ácidos

carboxílicos, fenoles, ésteres, aldehídos y cetonas, alcoholes, alquenos y alquinos, y, finalmente, alcanos. Este

orden garantiza que la presencia de los grupos funcionales que aparecen primero en la lista, harán una mínima

interferencia en las pruebas específicas de otros grupos también presentes.

Page 26: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

26

Como clasificación general se determina el color, aroma y estado físico (Sólido, líquido o gas). Los compuestos

con alto grado de aromaticidad o de conjugación de enlaces múltiples son coloreados (de amarillo a rojo)

Algunos ésteres poseen olor a frutas y flores. Los ácidos se caracterizan por un olor “punzante” y las aminas

tienen olor a pescado. Se debe tener la precaución de inhalar muy levemente, debido a que algunos vapores

pueden ser dañinos para el ser humano.

TRABAJO EXPERIMENTAL

1.- PRE-LABORATORIO

a.- Defina:

-fórmula molecular

- isómeros

- solubilidad

- pH

- polaridad de enlace

- enlace covalente polar

- reacción de óxido-reducción

b.- Indique cuáles son los cuatro criterios para determinar que una reacción química ha ocurrido.

c.- ¿Por qué los compuestos de bajo peso molecular y con funciones orgánicas que poseen enlaces covalentes

polares (alcoholes, aldehidos, cetonas, ácidos carboxílicos) son solubles en agua?¿Y por qué los compuestos con

grupos polares y alto peso molecular como el ácido esteárico son insolubles en agua?

d.- ¿Por qué los ácido carboxílicos solubles en agua producen disoluciones con pH menor que 7?

e.- ¿Por qué las aminas solubles en agua producen disoluciones básicas?

f.- Escriba la ecuación química que da cuenta de la solubilidad de una amina primaria con HCl 5%.

g.- Escriba la ecuación química que da cuenta de la reacción del ácido propanoico con NaHCO3 5%. ¿Cómo

indica que hay una reacción positiva del ácido?

h.- ¿Por qué se puede diferenciar entre un ácido carboxílico y un fenol con una disolución de NaHCO3 5%?

g.- Indique el nombre de las funciones orgánicas encerradas en el círculo.

Page 27: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

27

OH

OH

CHO

OH

OO

O

OMe

NH

O

NO2

O

Cl

OHO

h.- Identifique todas las funciones orgánicas de los siguientes compuestos.

OH

O

O

OOH

OH OOH

N

N

O

O

OH

NH2

N

H O

O

OHNC

N

N

N

H

O

NO2

aspirina genisteína benzaldehido cianhidrina

nicotina aspartame benzonidazol

i.- Indique qué prueba (s) específica (s) usaría para determinar las funciones de las siguientes moléculas. Indique

además si existe alguna interferencia entre ellas:

Page 28: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

28

O

OH

O2N

OH

O

Br

NC

OH CHO

OH O

COOH

Cl

NH2

2.- PRÁCTICO.

Ud. recibirá una muestra problema a la que deberá determinar las funciones orgánicas presentes. Para ello

primero realice las pruebas específicas para cada una de las funciones orgánicas utilizando compuestos patrones

y, luego, haga lo mismo con su muestra. No olvide anotar el número de la muestra, sus características físicas

(color, olor, estado físico, solubilidad en agua) y el pH.

3.- MATERIALES Y REACTIVOS.

MATERIALES REACTIVOS

Gradilla con 20 tubos de ensayo disoluciones de NaOH 5%, 10% y 1M

pinza de madera disolución de NaHCO3 5%

alambre de cobre disoluciones de HCl 5% y concentrado

mechero disoluciones de H2SO4 concentrado y 3N

papel pH disolución de AgNO3 2%

espátula fina etanol

gotario disolución de HNO3 5%.

piceta con agua destilada carbonato de sodio (Na2CO3) sólido

sulfato aminoferroso sólido

disolución metanólica de KOH 2M

tetracloruro de carbono (CCl4)

disolución de Br2 en CCl4 2%*

disolución de KMnO4 2%

disolución saturada de 2,4-DNPH o reactivo de Brady**

disoluciones de Fehling A y B

disolución de K2Cr2O7 5%

disolución de FeCl3 2,5%

cloruro de cinc (ZnCl2) sólido

Amoniaco (NH3) concentrado

* El bromo es muy volátil y tóxico por lo que se recomienda preparar el reactivo no más allá de un día de

anticipación.

** Preparación del reactivo de Brady: disolver 1,0 g de DNPH (2,4-dinitrofenilhidrazina) en 5 mL de

H2SO4 conc. Esta mezcla se añade lentamente y con agitación a una disolución de agua (7 mL) y etanol (25

mL) y, finalmente, se filtra para eliminar sólidos en suspensión.

4.- PROCEDIMIENTO EXPERIMENTAL.

Page 29: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

29

4.1.- PRUEBAS DE SOLUBILIDAD.

Debido a que la solubilidad de una sustancia depende de su polaridad, es decir, el reordenamiento de sus átomos

en las moléculas, una primera instancia para determinar los grupos funcionales presentes en un compuesto

orgánico, podría ser encontrar los disolventes en los cuales dicho compuesto puede ser soluble. El Esquema 1

ilustra un método general para determinar, según los datos de solubilidad, el posible grupo funcional presente en

un compuesto orgánico en estudio.

Se debe tener presente que los compuestos de alto peso molecular son bastante insolubles en agua mientras que

los de bajo peso molecular son solubles en agua. Así, por ejemplo, el ácido esteárico [CH3(CH2)16COOH] es

insoluble en agua mientras que la acetona (CH3COCH3) es muy soluble en agua.

COMPUESTO

Aminas Ác. Carboxílicos

¿soluble en NaOH 5%?

Fenoles Aminas

Alquenos, ésteres

alquinos, amidas,

cetonas, aldehidos,

nitrocompuestos.

Alcanos, Haluros de

alquilo, Compuestos

Aromáticos

Ác. Carboxílicos

¿soluble en H2O?

SI NO

papel pH

azul rojo SI NO

NOSI NO

¿soluble en NaHCO3 5%?

ácido fuerte ácido débil bases

¿soluble en HCl 5%?

SI

NO

¿soluble en H2SO4?

SIcompuestos neutros compuestos inertes

Page 30: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

30

4.2.- PRUEBAS ESPECÍFICAS PARA GRUPOS FUNCIONALES.

4.2.1.- HALÓGENOS

4.2.1.1.- VÍA SECA: PRUEBA DE BEILSTEIN:

Se toma un alambre de cobre y se introduce en HCl concentrado y, luego, se pone al rojo en la llama de un

mechero hasta que no dé coloración verdosa. El alambre aún al rojo oscuro se introduce en la muestra problema

líquida o sólida y se vuelve a calentar en el mechero. Si se produce una llama TOTALMENTE verde la muestra

contiene halógenos.

Interferencias: El procedimiento tiene más valor como ensayo negativo, en caso de no aparecer coloración, ya

que determinados compuestos orgánicos, tales como derivados de piridina, quinoleína, ácidos orgánicos, urea,

etc., pueden dar como positivo el ensayo sin que haya halógenos.

4.2.1.2.- VÍA HÚMEDA: PRUEBA DE NITRATO DE PLATA:

Los halógenos (Cl, Br y I) forman precipitados insolubles en presencia de iones plata de acuerdo a la siguiente

ecuación:

RX

X: Cl, Br, I

+ AgNO3 (ac)AgX (s) + RNO3 (ac)

El AgCl es un sólido blanco que expuesto a la luz se torna gris; el AgBr es un sólido amarillento y el AgI es un

sólido amarillo.

En un tubo de ensayo agregue una gota de la muestra si es líquida o 5 gotas de una disolución etanólica

concentrada si es sólida. Se adicionan 2 mL de una disolución de nitrato de plata al 2% y se espera la formación

de un precipitado. Si transcurridos 5 min no hay formación de un precipitado, la disolución se calienta

suavemente en un manto calefactor. Si se forma el precipitado indica la presencia de halógenos.

Interferencia: Los ácidos carboxílicos también dan la prueba positiva al formarse un precipitado insoluble de

sales de plata. Si al precipitado formado se adicionan 2-3 gotas de HNO3 al 5% y éste se disuelve entonces

estamos en presencia de un ácido carboxílico. Si el precipitado permanece indica la presencia de halógenos.

4.2.2.- ÁCIDOS CARBOXÍLICOS.

En un tubo de ensayo coloque 6 gotas del ácido (si es líquido) o 0,1 g (si es sólido). Agregue 1,0 mL de agua

destilada y agite. Agregue luego una punta de espátula de carbonato de sodio (Na2CO3) o bicarbonato de sodio

(NaHCO3) Si se observa desprendimiento de gases o burbujas, la prueba se considera positiva.

Interferencia: Existen algunos compuestos orgánicos como fenoles, aldehidos, cetonas, anhídridos o ésteres que

poseen grupos fuertemente atractores de electrones (halógenos, grupos nitro o carbonilos) que pueden presentar

una alta acidez y dar positivo la reacción con carbonato de sodio.

Page 31: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

31

4.2.3.- NITROCOMPUESTOS.

En un tubo de ensayo se colocan una punta de espátula de sulfato aminoferroso [Fe(NH3)4SO4] y 10 mg del

compuesto si es sólido o 3 gotas si es líquido. Se mezclan bien y luego se adicionan 2 mL de una disolución de

ácido sulfúrico 3N y 1 mL de una disolución de hidróxido de potasio 2M en metanol. La formación de un

precipitado rojo-marrón (café) indica la presencia de grupo nitro (-NO2).

RNO2 + 4 H2O + 6 Fe(OH)2 (ac) RNH2 + 6 Fe(OH)3 (s)

4.2.4.- CIANODERIVADOS

El grupo ciano (-CN) puede ser hidrolizado en medio ácido formando ácido carboxílico y una sal de amonio.

También es hidrolizado en medio alcalino formando carboxilato y desprende amoniaco. Esta última reacción se

aprovecha como un test de identificación del grupo CN.

RCN + H2O + NaOH (ac)RCOONa (ac) + NH3 (g)

Especial cuidado debe tener en este test puesto que existe la posibilidad de salpicaduras de NaOH en

caliente muy corrosivo. No olvide utilizar sus antiparras y guantes. Pídale ayuda a su profesor.

En un tubo de ensayo se coloca una pequeña cantidad de muestra y se agregan 2 mL de una disolución de NaOH

1M. Se calienta vigorosamente hasta ebullición en la llama del mechero. El amoniaco formado se detecta por el

olor característico y por medio de un papel pH humedecido que se torna azul al contacto de los vapores de

amoniaco. El papel pH debe ponerse a unos 5cm de la boca del tubo para evitar que el NaOH de las paredes del

tubo o gotas de la disolución en caliente lo tornen azul y dé un falso positivo.

4.2.5.- ALQUENOS

Los alquenos sufren reacciones de adición al doble enlace produciendo compuestos totalmente saturados. Esta

propiedad química es utilizada para determinar la presencia de dobles enlaces.

4.2.5.1.- PRUEBA DE INSATURACIÓN:

En un tubo de ensayo disuelva alrededor de 50 mg o dos gotas de líquido del compuesto en 1 mL de CCl4, y

adicione 2 gotas de una disolución al 2 % de Br2 en CCl4. La desaparición del color rojizo de la disolución de

bromo indica una reacción positiva. Si hay desprendimiento de vapores de HBr (vapores irritantes) indica que la

prueba es negativa ya que es una reacción de sustitución y no de adición.

Debe tomar en cuenta que el Br2 es muy volátil por lo que debe asegurarse que el reactivo tenga una coloración

anaranjada.

Page 32: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

32

Tenga precaución con este reactivo puesto que tanto el bromo como el CCl4 son tóxicos. Maneje el reactivo

siempre en campana.

Br2

Br

BrCCl

4

+

Anaranjado Incoloro

Interferencias: El Br2 puede dar reacciones de sustitución con compuestos aromáticos (compuestos que poseen

anillos bencénicos o similares con grupos activantes) con decoloración de la disolución. El Br2 también es un

agente oxidante y puede reaccionar con grupos reductores como los aldehidos dando falsos positivos.

4.2.5.2.- TEST DE BAEYER

Se disuelven 25 mg o 2 gotas del compuesto en 2 mL de agua. Lentamente adicione gota a gota una disolución

de permanganato de potasio 2%. El test es positivo si el color púrpura desaparece con formación de un

precipitado café.

OH OH

KMnO4 (ac)+ +

Violeta Incoloro Café

MnO2 (s)

Interferencias: El KMnO4 es un agente oxidante y puede reaccionar con grupos reductores como los alcoholes

primarios y aldehidos transformándolos en ácidos carboxílicos. Los alcoholes secundarios pueden ser oxidados a

cetonas.

4.2.6.- ALDEHÍDOS Y CETONAS

El grupo carbonilo de aldehidos y cetonas sufren reacciones de adición-eliminación con derivados del amoniaco

e hidracina. La 2,4-dinitrofenilhidracina (2,4-DNPH) es un derivado de la hidracina que reacciona con carbonilos

produciendo compuestos sólidos llamados fenilhidrazonas de color amarillo o anaranjado. Mientras mayor es la

conjugación de enlaces múltiples, mayor es el tono anaranjado de la fenilhidrazona.

Se colocan 6 gotas del compuesto o disolución acuosa o etanólica de la muestra problema en un tubo de ensayo y

se adicionan 4 gotas del reactivo de 2,4-DNPH. Agite vigorosamente. La prueba es positiva cuando se forma un

precipitado color amarillo o anaranjado. La reacción con aldehidos es mucho más rápida que con cetonas por lo

que en algunos casos la formación de precipitado requiere de un tiempo apropiado de formación (máximo 15

minutos) y/o calentamiento en baño maría.

Page 33: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

33

O

NH2

N

O2N

NO2

H

N

N

O2N

NO2

H

H2O+ +

2,4-DNPH fenilhidrazona

amarillo-anaranjado

La reacción de la 2,4-DNPH no nos permite diferenciar entre aldehidos y cetonas. Para eso se pueden llevar a

cabo las siguientes reacciones:

4.2.6.1.- TEST DE TOLLENS:

En un tubo de ensayo coloque 10 gotas de una disolución al 2% de nitrato de plata (AgNO3) Agregue 2 gotas de

NaOH al 10% para que se forme un precipitado negro. Disuelva este precipitado con adiciones gota a gota de

amoniaco concentrado. Añada 3 gotas del compuesto y caliente en baño María por 3 minutos. Enfríe y observe

las paredes del tubo. La presencia de un espejo de plata, indica que el compuesto es un aldehído. La formación de

un precipitado blanco indica test negativo.

R H

O

R ONH4

O

+ 2 Ag(NH3)2+ + +2OH- NH3 H2O 2 Ag (s)+ +

espejo de plata

Interferencias: Las hidroximetil alquil cetonas son capaces de isomerizar a aldehidos en medio alcalino dando

positivo el Test de Tollens.

4.2.6.2.- PRUEBA DE FEHLING: En un tubo de ensayo coloque 1 mL de disolución de Fehling A y 1 mL de

disolución de Fehling B. Agregue 3 gotas del compuesto y caliente a baño María por 5 minutos. Un precipitado

rojo indica la presencia de un aldehído

R H

O

R ONa

O

+ 2 Cu(O2CCHOHCHOHCO2) + +5OH - Cu2O 3H2O+ + 2 (O2CCHOHCHOHCO2)2-

precipitado rojo

Estas pruebas son muy utilizadas en la química de los carbohidratos.

4.2.7.- ALCOHOLES.

Los alcoholes sufren reacciones de oxidación en presencia de oxidantes fuertes con el KMnO4 y el K2Cr2O7 y

reacciones de sustitución. Este tipo de reacciones se utilizan para su identificación.

Page 34: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

34

Los alcoholes pueden ser clasificados en primarios si el grupo OH está unido a un CH2, secundario si está unido

a un CH y terciario si está unido a un C sin hidrógenos. Estos tienen distinta reactividad la cual se usa para su

diferenciación.

4.2.7.1.- TEST DEL DICROMATO DE POTASIO

Los alcoholes primarios son oxidados rápidamente a ácidos carboxílicos en presencia de K2Cr2O7 en medio ácido

mientras que los alcoholes secundarios se oxidan más lentamente a cetonas. El dicromato de potasio es de color

anaranjado tornándose de un color verde cuando se reduce a Cr3+. Este cambio de color es un indicador de la

reacción positiva. Los alcoholes terciarios no reaccionan en estas condiciones.

En un tubo de ensayo coloque 10 gotas de una disolución de dicromato de potasio (K2Cr2O7) al 5%, 3 gotas del

compuesto y 3 gotas de ácido sulfúrico concentrado (H2SO4). Observe el cambio de color y la velocidad de

reacción.

Asegúrese que el compuesto esté en medio acuoso. NO UTILICE ETANOL O METANOL EN LA

REACCIÓN ya que éstos disolventes reaccionan con el K2Cr2O7 en medio ácido generando ácidos carboxílicos

y dando un falso positivo.

C

H

H

R OH

C

R

H

R OH

C

R

R

R OH

C

O

R OH

C

R

R O+ K2Cr2O7 +

alcohol 1º ácido carboxílico

alcohol 2º cetona

alcohol 3º

N.H.R.

Cr3+

anaranjado verde

Interferencias: Los aldehidos son compuesto reductores por lo que reaccionan con el K2Cr2O7 en medio ácido

generando ácidos carboxílicos.

4.2.7.2.- TEST DE LUCAS

El Test de Lucas es una reacción de sustitución en que el grupo OH es reemplazado por Cl catalizada por un

ácido de Lewis como el Zn. Mientras mayor es la sustitución del átomo de carbono unido al grupo OH, más

favorecida es la reacción de sustitución. Así, los alcoholes terciarios reaccionan rápidamente y los secundarios

más lentamente mientras que los primarios no reaccionan.

Page 35: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

35

En un tubo de ensayo coloque 15 gotas del compuesto, 1 mL de ácido clorhídrico concentrado (HCl) y 0,1g de

cloruro de cinc (ZnCl2). Observe el tiempo de reacción. Si en 5 minutos o menos la mezcla se enturbia indica la

presencia de un alcohol 3º; si se demora más de 5 min indica un alcohol 2º. Si la muestra no cambia después de

10 min el alcohol es 1º.

4.2.8.- FENOLES

Los fenoles, a pesar de tener un grupo OH, no tienen la misma reactividad que los alcoholes y, por ello, se

clasifican y estudian aparte.

En un tubo de ensayo coloque 1 mL de disolución del compuesto y adicione 2 a 3 gotas de disolución acuosa de

tricloruro de hierro al 2,5%. Se debe observar una fuerte coloración violeta, azul o verde. La formación del color

azul se debe a la formación de un complejo entre el fenol y el ión Fe3+.

Los fenoles también pueden dar disoluciones de pH menores que 7, especialmente si tienen grupos muy

electronegativos en su estructura.

5.- BIBLIOGRAFÍA:

Pavia, D., “Introduction to Organic Laboratory Techniques”, Editorial Brooks & Cole-Thomson Learning,

Belmont, USA, (2005), 4º edition, pág. 468

Page 36: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

36

PRÁCTICO N° 3: EXTRACCIÓN DE EUGENOL A PARTIR DE CLAVOS DE OLOR

(Eugenia spp)

El eugenol es el compuesto natural extraído de algunos aceites esenciales como de aceite de clavo de olor, de

canela y nuez moscada. Es el componente mayoritario (70-90%) del aceite de clavo de olor y le da el aroma

característico. Otros componentes son el cariofileno y otros terpenos.

El clavo de olor corresponde a las flores secas del gran árbol perennifolio Eugenia caryophyllata procedente de

Indonesia. Hoy en día se produce en la isla de Zanzíbar en África, India, Brasil y las Antillas. Su uso culinario ha

sido reportado desde la Antigüedad. También se utiliza como antiséptico y analgésico bucal, como saborizante y

en perfumería.

El eugenol (C10H12O2) es un compuesto fenólico derivado del guaiacol (o-metoxifenol) con un grupo alilo en

posición 4. En un líquido oleoso de color amarillento, insoluble en agua y soluble en disolventes orgánicos.

El aceite de clavo de olor es obtenido a partir de los clavos de olor por destilación por arrastre de vapor de

agua.

La destilación es una técnica que permite la purificación de un líquido, la remoción de un disolvente o la

separación de mezclas de líquidos. En la destilación el líquido se calienta en un recipiente adecuado (matraz,

balón, etc.) hasta su punto de ebullición y luego se condensan los vapores producto de la ebullición en otro

recipiente.

Existen variadas modalidades de destilación:

La destilación simple se utiliza cuando se desea purificar o eliminar un disolvente o cuando hay mezclas de

disolventes con puntos de ebullición (p.eb.) muy diferentes. Por ejemplo, una mezcla de acetona (p.eb.=56 ºC) y

agua (p.eb.=100 ºC)

La destilación fraccionada se utiliza para purificar disolventes de una mezcla cuyos puntos de ebullición son

muy similares, como una mezcla de etanol (p.eb.= 78 ºC) y agua.

La destilación al vacío es la técnica elegida cuando se desea purificar o eliminar un disolvente con un punto de

ebullición muy elevado o cuando es muy termolábil (se descompone a altas temperaturas). Esta destilación es la

utilizada por los evaporadores rotatorios o “rotavapores” para la eliminación de disolventes que contienen

compuestos naturales.

La destilación por arrastre de vapor de agua se utiliza para extraer sustancias orgánicas con un alto punto de

ebullición y que forma mezclas inmiscibles con el agua y ligeramente volátiles de otras no volátiles como resinas

OHCH

CH2

CH2

CH3

CH3

CH3

CH3O

eugenol cariofileno

Page 37: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

37

y sales inorgánicas. Este es el caso de los aceites esenciales y sus fuentes naturales. Se utiliza especialmente para

extraer productos naturales como esencias de flores y hojas y ocasionalmente como alternativa a la destilación al

vacío.

Cuando se tienen mezclas de líquidos que no son miscibles entre sí, se tiene un tipo de destilación que sigue la ley de

Dalton sobre las presiones parciales. Según este Principio la presión total de vapor de una mezcla de líquidos

inmiscibles es igual a la suma de las presiones de vapor de los componentes individuales. La presión de vapor se

define como la presión en la cual la fase líquida y gaseosa de una sustancia a una determinada temperatura se

encuentra en equilibrio. La presión total de la mezcla se iguala a la presión atmosférica y la mezcla ebulle a una

temperatura mucho menor que el punto de ebullición de cualquiera de los componentes de la mezcla. Así, para

mezclas inmiscibles se tiene:

Ptotal = P°A + P°B

donde P°A y P°B son las presiones de vapor de los componentes puros.

Este comportamiento es diferente a aquel de los líquidos miscibles en que la presión total de la mezcla depende

de la composición de la mezcla a una temperatura dada.

Ptotal = AP°A + BP°B

donde P°A y P°B son las presiones de vapor de los componentes puros y A y B son las fracciones molares de los

componentes de la mezcla.

El único inconveniente de esta técnica es que para compuestos con una presión de vapor muy baja se necesitan

grandes volúmenes de agua para poder destilarlos. Es por ello que esta técnica es muy útil en el caso de

compuestos con una presión de vapor alta como son los aceites esenciales de las plantas.

El equipo de destilación por arrastre de vapor no difiere mucho del equipo de destilación simple. Si se tiene un

balón pequeño y un producto de presión de vapor baja es conveniente ajustar un embudo de decantación para

reponer el agua que se va evaporando.

TRABAJO EXPERIMENTAL.

1.- PRE-LABORATORIO.

a.- Identifique las funciones químicas del eugenol y el cariofileno. ¿Qué prueba (s) específica (s) podría utilizar

para diferenciar ambos compuestos?

b.- Clasifique las funciones químicas del eugenol y del cariofileno de acuerdo a sus características ácido-base.

c.- De acuerdo a las características ácido-base escriba la ecuación química del eugenol y del cariofileno en

presencia de:

- bicarbonato de sodio 5%

- NaOH 5%

- HCl 5%

d.- ¿Por qué es posible separar el eugenol del cariofileno mediante tratamiento con KOH?

Page 38: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

38

e.- Determine el porcentaje de eugenol de una muestra de 6,3 g de clavos de olor si se extraen 250 mg de la

esencia.

f.- Calcule la masa de eugenol que se puede extraer de 5,5 g de clavos de olor si se sabe que éste contiene un

10% del aceite. Calcule el porcentaje de rendimiento de la extracción si se obtienen 350 mg de eugenol de la

muestra.

g.- Busque las constantes físicas del eugenol y del cariofileno.

2.- PRÁCTICO

Ud. recibirá un sobre de clavos de olor comercial al cual debe determinar el porcentaje de eugenol presente en la

muestra.

3.- MATERIALES Y REACTIVOS.

MATERIALES REACTIVOS

1 matraz de fondo redondo de 250 mL Diclorometano (100mL aproximadamente)

1 matraz de fondo redondo de 50 mL disolución de KOH 5%

2 matraz Erlenmeyer de 125 mL disolución de HCl concentrado

2 vasos de precipitados de 100 mL sulfato de sodio (Na2SO4)anhidro

1 embudo de decantación de 250 mL

1 condensador Liebig

1 cabezal de destilación

1 termómetro esmerilado

1 adaptador de destilación

1 manto calefactor

1 soporte universal

2 pinzas de tres dedos con nuez respectiva

1 piceta con agua destilada

Piedras de porcelana

1 embudo analítico de vástago corto

papel filtro rápido

Evaporador rotatorio

1 balanza granataria

1 balanza analítica

4.- PROCEDIMIENTO EXPERIMENTAL:

Pese aproximadamente 5g de clavos de olor e introdúzcalos enteros en un matraz de fondo redondo de 250 mL.

Agregue aproximadamente 150 mL de agua destilada y dos a tres piedras de porcelana y caliente hasta recibir

unos 100 mL de destilado. Vierta el destilado en un embudo de decantación con tapa y extraiga el destilado con

dos porciones de 20 mL de diclorometano. Luego, extraiga la disolución de diclorometano con dos porciones de

10 mL de una disolución de KOH al 5%. El eugenol quedará en la fase acuosa (fase superior ya que el agua es

menos densa que el diclorometano). Acidifique la disolución acuosa agregando gotas de una disolución de HCl

concentrado hasta total opalescencia y extraiga con dos porciones de 20 mL de diclorometano. Vierta la fase

Page 39: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

39

orgánica en un matraz de Erlenmeyer y agregue sulfato de sodio anhidro para eliminar el agua residual. Luego,

filtre con un papel filtro simple sobre un matraz de fondo redondo previamente tarado. Elimine el diclorometano

calentando el matraz casi hasta sequedad en un evaporador rotatorio. No debe sobrecalentar el matraz para evitar

la descomposición del eugenol. Pese el matraz con el producto y calcule el porcentaje de eugenol a partir de los

clavos de olor.

5.- BIBLIOGRAFÍA:

Fessenden, R.J., Fessenden, J.S., “Techniques and Experiments for Organic Chemistry”, 3° Edición, Willlard

Grant Press, Boston, (1983), págs. 344-348.

Page 40: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

40

PRÁCTICO N° 4: SEPARACIÓN DE LOS COMPONENTES DE UNA TABLETA

ANALGÉSICA

Los comprimidos son formas farmacéuticas sólidas generalmente discoideos o lenticulares, aunque en la

actualidad existe una enorme gama de formas. Se obtienen por la compresión de principios activos solos o

asociados a excipientes. Los métodos de elaboración, ordenados de menor a mayor complejidad son compresión

directa, granulación vía seca y granulación vía húmeda. La selección de uno u otro método dependerá de las

características tanto del principio activo como de los excipientes.

Los excipientes son aditivos que se utilizan para transformar la sustancia farmacológicamente activa en una

forma farmacéutica y, por lo tanto, pueden influir en las propiedades químicas y/o físicas del principio activo.

Estos excipientes deben ser inertes y estar aprobados por los organismos regulatorios. De acuerdo a la función

que ejercen son clasificados en nueve grupos principales, dentro de los cuales se encuentran los aglutinantes

como son el almidón, la celulosa microcristalina y la sílicagel. Todos estos componentes son insolubles en agua y

en algunos disolventes orgánicos comunes.

Los analgésicos son compuestos utilizados para el tratamiento del dolor y la inflamación. Se clasifican en dos

grandes grupos: los antiinflamatorios no esteroidales (AINE) y los opiáceos. Dentro de los primeros se encuentra

la aspirina o ácido acetilsalicílico. Muchas compuestos se han sintetizados a partir de la estructura de la aspirina

para mejorar sus propiedades analgésicas y antiinflamatorias. Otras estructuras, como el paracetamol o

acetaminofeno, fueron descubiertos por casualidad. El paracetamol se encontró en la orina como un metabolito

de la acetanilida, un antipirético utilizado a finales del siglo XIX, el cual se aisló y se comprobó su efecto

antipirético y analgésico. Por otro lado, la cafeína, un alcaloide del grupo de las xantinas, es un estimulante del

sistema nervioso central y se utiliza como adyuvante en mezcla con otros analgésicos. Clínicamente se ha

determinado que reduce las dosis de paracetamol en el tratamiento de cefaleas y migrañas.

Inspeccionando las estructuras del paracetamol, de la aspirina y de la cafeína nos damos cuenta que corresponden

a un ácido orgánico débil, a un ácido orgánico fuerte y a una especie básica, respectivamente.

NH

O

CH3

OH

O OH

O

O

CH3

N

N

N

N

O

CH3

O

CH3

CH3

paracetamol aspirina cafeína

Page 41: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

41

De acuerdo a sus estructuras tan diversas y sus funciones orgánicas tienen diferentes solubilidades en agua y

disolventes orgánicos, cualidad que es de suma importancia para su separación y purificación. Es así que el

paracetamol no es soluble en éter, cloroformo y diclorometano y es muy soluble en etanol mientras que la cafeína

y la aspirina son muy solubles en diclorometano. A su vez, tanto el paracetamol como la aspirina reaccionan con

disoluciones básicas y forman sales solubles en agua mientras que la cafeína no reacciona.

TRABAJO EXPERIMENTAL

1.- PRE-LABORATORIO

a.- Identifique las funciones orgánicas de los tres componentes y clasifíquelos de acuerdo a sus propiedades

ácido-base.

b.- Escriba las reacciones de los tres componentes con:

- bicarbonato de sodio 5%

- NaOH 5%

- HCl 5%

c.- Si a la mezcla de los tres componentes se agrega KOH 5% ¿cuántas fracciones se obtienen y qué

componentes contienen? Si agregamos NaHCO3 5% ¿cuántas fracciones se obtienen? ¿Y si agregamos HCl 5%?

d.- Indique qué prueba (s) específica (s) podría utilizar para diferenciar estos tres compuestos.

e.- Busque las constantes físicas de los tres compuestos.

2.- PRÁCTICO

Ud. recibirá dos tabletas de un analgésico que contiene paracetamol, aspirina y cafeína y deberá separar los tres

componentes de acuerdo a sus propiedades de solubilidad en distintos disolventes además de determinar el

porcentaje de extracción de los mismos.

3.- MATERIALES Y REACTIVOS

MATERIALES REACTIVOS

1 matraz de fondo redondo de 50 mL diclorometano (50mL aproximadamente)

1 matraz Erlenmeyer de 125 mL disolución de KOH 3M

1 vaso de precipitados de 100 mL disolución de HCl concentrado

2 tubos de ensayo con gradilla sulfato de sodio (Na2SO4) anhidro

1 pinza de madera etanol absoluto p.a.(10 mL proximadamente)

1 bagueta

1 piceta con agua destilada

1 mortero

1 manto calefactor

Page 42: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

42

1 soporte universal

3 embudos analíticos de vástago corto

1 espátula fina

1 pipeta Pasteur

1 vidrio de reloj

papel filtro rápido

1 barra magnética

1 placa calefactora con agitación magnética

1 embudo Büchner

1 matraz Kitasato

Evaporador rotatorio

1 balanza analítica

4.- PROCEDIMIENTO EXPERIMENTAL:

Disgregue las tabletas en un mortero y pulverice. Una vez obtenido un polvo fino y homogéneo traspáselo a un

tubo de ensayo o matraz Erlenmeyer pequeño y agregue 8 mL de CH2Cl2. Agite y caliente suavemente la mezcla

sobre un manto calefactor con agitación constante hasta ebullición. No permita que se evapore el disolvente.

Deje enfriar y filtre sobre otro tubo de ensayo. Rotule la disolución orgánica como disolución 1.

Coloque el precipitado obtenido en el tubo de ensayo anterior y luego adicione 4 mL de C2H5OH y caliente a

ebullición sobre un manto calefactor. Filtre la mezcla en caliente sobre un vaso de precipitados previamente

tarado. Complete la transferencia de la disolución etanólica arrastrando con etanol caliente. Evapore el etanol por

calentamiento suave sobre un manto calefactor y constante agitación. Evite el sobrecalentamiento puesto que el

paracetamol se descompone a altas temperaturas. Si la disolución toma un color amarillento retire del calor y

baje la temperatura. Una vez que se ha evaporado todo el etanol aparecen unos cristales blancos ene l fondo del

vaso de precipitados. Deje enfriar y pese. Con la diferencia de peso obtendrá la masa de paracetamol extraída.

A la disolución 1 agregue 4 mL de una disolución de NaOH 3 M y agite. Remueva la fase acuosa

cuidadosamente con una pipeta Pasteur y llévela a un matraz Erlenmeyer de 125 mL. Repita la extracción con

NaOH y junte ambas fases acuosas. Después de la extracción con álcali adicione 1 mL de H2O y agite para luego

remover la fase acuosa, la que debe combinar con las anteriores. Esta disolución acuosa rotúlela como disolución

2 y la disolución orgánica rotúlela como disolución 3.

A la disolución 3 adicione Na2SO4 anhidro para eliminar los restos de agua. Agite la disolución unos minutos y

deje reposar tapado ± 2 min, para completar el proceso de secado. Decante, filtre sobre un matraz de fondo

redondo previamente tarado y lave el agente secante con pequeñas porciones de CH2Cl2 y filtre. Elimine el

Page 43: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

43

diclorometano en el evaporador rotatorio. Pese en balanza analítica y por diferencia de peso obtendrá la cantidad

de cafeína extraída.

A la disolución 2 adicione gota a gota una disolución de HCl concentrado hasta obtener un precipitado blanco.

Agregue un poco de agua y caliente en una placa calefactora con agitación magnética hasta que se disuelva

totalmente el precipitado. Evite el sobrecalentamiento puesto que si calienta a ebullición por demasiado tiempo

se puede hidrolizar la aspirina al respectivo ácido salicílico y ácido acético haciendo disminuir el rendimiento y

la pureza. Deje enfriar a temperatura ambiente hasta que aparezcan los primeros cristales para luego enfriar en un

baño de hielo. Filtre al vacío los cristales lavándolos con pequeñas porciones de agua. Los cristales de aspirina se

colocan en un vidrio de reloj previamente tarado y se llevan a la estufa para secarlos. Pese los cristales secos y

por diferencia de peso obtendrá la masa de aspirina extraída.

Calcule el rendimiento de extracción de cada componente tomando en cuenta los valores informados por el

fabricante.

5.- BIBLIOGRAFÍA

Fieser, L. F., Williamson, K. L., “Organic Experiments”, D. C. Heath and Company, Lexington, USA (1992), 7ª

Ed., págs. 189-193.

Page 44: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

44

PRÁCTICO N° 5: REACCIÓN DE SUSTITUCIÓN NUCLEOFÍLICA.

SÍNTESIS DE CLORURO DE t-BUTILO A PARTIR DE t-BUTANOL.

El grupo –OH de los alcoholes es un grupo saliente pobre y no sufre un desplazamiento directo por un nucleófilo.

Así, los alcoholes son inertes a nucleófilos tales como Br- o Cl- si las condiciones de reacción son neutras o

alcalinas. En una disolución fuertemente ácida, sin embargo, la sustitución puede ocurrir. La razón es que, en

soluciones ácidas, el grupo –OH puede ser protonado y salir como agua que es un buen grupo saliente.

La reactividad de los distintos alcoholes es diferente en estas condiciones. Un alcohol 1º reacciona a través de un

mecanismo de sustitución nucleofílica bimolecular (SN2) mientras que un alcohol terciario, como el terc-

butanol, sufre un mecanismo de sustitución nucleofílica unimolecular (SN1) Los alcoholes 2º, dependiendo de su

estructura, reaccionan mediante mezcla de los dos mecanismos.

El mecanismo SN1 se caracteriza por la formación de un carbocatión intermediario que es el responsable de la

velocidad de la reacción. Mientras mayor es la estabilidad de este carbocatión, mayor será la velocidad de la

reacción de sustitución. Este mecanismo SN1 para el t-butanol se caracteriza por tres etapas:

TRABAJO EXPERIMENTAL

1.- PRE-LABORATORIO

a.- Averigüe cuáles son las características estructurales que debe tener un alcohol para reaccionar a través de un

mecanismo SN1 o SN2

CH3

CH3

CH3

OH

CH3

CH3

CH3

OH2

CH3

CH3

CH3

OH2

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

Cl

+ H+

¨

¨¨

¨¨

¨

¨

+rápido

+

¨+lento

+ H2O

+ + Cl: :- rápido

terc-butanol

2-cloro-2-metilpropano ( cloruro de terc-butilo)

1° etapa: protonación

2° etapa: ionización

3° etapa: ataque nucleofílico

Page 45: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

45

b.- Indique por qué el t-butanol genera un carbocatión más estable que el isopropanol (2-propanol)

c.- Escriba el mecanismo detallado del mecanismo SN1 para el isopropanol en presencia de HCl.

d.- Averigüe por qué el cloruro de t-butilo se puede purificar mediante destilación simple en presencia de agua y

t-butanol como impurezas.

e.- ¿Cómo las impurezas afectan el punto de ebullición de un líquido?

f.- ¿Cómo la presión atmosférica afecta el punto de ebullición de un líquido?

g.- Averigüe qué se entiende por “punto de ebullición corregido.”

h.- ¿Qué prueba (s) específica (s) podría utilizar para determinar que ha obtenido cloruro de t-butilo?

i.- Busque las constantes físicas del t-butanol y del cloruro de t-butilo.

j.- Calcule el rendimiento teórico de la reacción si se hacen reaccionar 25 mL de t-butanol al 98% de pureza con

un exceso de HCl concentrado. ¿Cuál es el rendimiento de la reacción si se obtienen 15 mL de cloruro de t-butilo

puro?

k.- ¿Cuántos mL de t-butanol al 97% (d = 0,75 g/mL) debe medir para obtener 50 mL de cloruro de t-butilo puro

si la reacción tiene un 87% de rendimiento?

2.- PRÁCTICO

Ud. deberá sintetizar y purificar cloruro de t-butilo a partir de t-butanol y HCl concentrado para, posteriormente,

determinar el porcentaje de rendimiento de la reacción.

3.- MATERIALES Y REACTIVOS

MATERIALES REACTIVOS

1 matraz de fondo redondo de 100 mL disolución de HCl concentrado

1 embudo de decantación de 250 mL disolución de NaHCO3 5%

2 matraz Erlenmeyer de 125 mL

1 probeta de 100 mL

sulfato de sodio (Na2SO4) o cloruro de calcio

(CaCl2) anhidro

2 vasos de precipitados de 100 mL t-butanol anhidro p.a.

1 condensador Liebig

1 cabezal de destilación

1 termómetro esmerilado

1 adaptador de destilación

1 manto calefactor

1 soporte universal

2 pinzas de tres dedos con nuez respectiva

1 piceta con agua destilada

piedras de porcelana

1 embudo analítico de vástago corto

papel filtro rápido

1 balanza analítica

1 aro para embudo de decantación

4.- PROCEDIMIENTO EXPERIMENTAL

Page 46: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

46

En un embudo de decantación de 250 mL se colocan 25 mL de t-butanol anhidro al 98% (PM= 74,12 g/mol; d=

0,79 g/mL) y 65 mL de ácido clorhídrico concentrado. La mezcla se agita suavemente al principio y más

enérgica después, durante 20 min. Después de las primeras agitaciones se debe aflojar la llave del embudo para

aminorar la presión interna. Se deja reposar la mezcla durante unos minutos para que se separen las fases. Se

descarta la fase acuosa (fase inferior) y la fase orgánica se lava con 20 mL de una disolución de bicarbonato de

sodio al 5% y después con 20 mL de agua. Se vierte sobre un matraz Erlenmeyer y se seca la fase orgánica con

sulfato de sodio o cloruro de calcio anhidro. Se filtra a través de papel filtro plegado a un balón de destilación, se

agregan 1-2 piedras de porcelana y se destila en un aparato de destilación simple. Se recoge la fracción que

destila entre 49-51°C en un matraz Erlenmeyer previamente tarado. Pese el matraz que contiene el cloruro de t-

butilo (PM: 92,57 g/mol; d= 0,84 g/mL) y determine el rendimiento de la reacción (no olvide anotar la pureza

del t-butanol para hacer los cálculos) El rendimiento de la reacción es de 90%

5.- BIBLIOGRAFÍA

1.- Vogel, A.I., “ Vogel’s Textbook of Practical Organic Chemistry”, Longman Group UK Limited, Londres,

England, 5° Edición, (1989), págs. 255-256

Page 47: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

47

PRÁCTICO N° 6: REACCIÓN DE ADICIÓN-ELIMINACIÓN.

PREPARACIÓN Y PROPIEDADES DEL JABÓN

La manufactura del jabón es una de las síntesis más antiguas de las que tiene conocimiento el hombre. Los

sumerios en el siglo XXX a.C. ya lo fabricaban hirviendo grasa de cabra con cenizas y utilizando su residuo para

el lavado. Los egipcios utilizaban una mezcla de agua, aceites y ceras vegetales con función desengrasante. Los

romanos utilizaban el residuo del tratamiento de la cenizas de haya y cebo de cabra que adoptaron de los galos en

la época de Julio César. Ya en el siglo VI se conocía en toda Europa meridional y se expandió su uso en las

épocas siguientes para uso personal. La reacción así generada es similar a la que hoy en día realizan a gran escala

los modernos fabricantes de jabón: la hidrólisis de los triglicéridos.

Desde sus inicios la obtención de jabones ha sufrido refinamientos considerables que han permitido la obtención

de un mejor producto. Con el desarrollo del amoniaco por el químico belga Solvay, el costo de producir jabones

con amoniaco y no con sosa, bajo considerablemente el costo de obtención del jabón al igual que mejoro la

cantidad y calidad del producto, lo cual permitió el florecimiento de la industria de jabones. Así mismo se pudo

observar que con hidróxido de sodio se obtiene un jabón más fuerte en cambio con hidróxido de potasio se

producen jabones más suaves. Del mismo modo se puede decir que el empleo de aceites en lugar de grasas

permite la obtención de jabones líquidos.

La hidrólisis alcalina de los triglicéridos produce sales de ácidos carboxílicos y glicerina. Debido a que es una

reacción para generar jabón (del latín sapo que proviene del germánico saipôn), se conoce químicamente como

saponificación. Así, la saponificación es la hidrólisis alcalina de ésteres. Las grasas y aceites, denominados

generalmente como triglicéridos, son triésteres derivados del glicerol o glicerina y tres ácidos carboxílicos.

O

O

O

O

O

OR

R

RH

H

H

H

H NaOH OH

OH

OHH

H

H

H

H

NaO

O

R+ +

Triglicérido Glicerina o glicerol

3

Jabón

3

Las grasas (de origen animal), se diferencian de los aceites (de origen vegetal), en que las primeras son sólidas a

temperatura ambiente y los segundos son líquidos a la misma temperatura. En general, los aceites tienen ácidos

carboxílicos de cadena insaturada mientras que las grasas poseen cadenas alifáticas saturadas.

Los ácidos carboxílicos que se obtienen de la hidrólisis de las grasas o aceites naturales suelen tener cadenas

hidrocarbonadas no ramificadas, con un número par de átomos de carbono: ácido decanoico (mirístico), ácido

Page 48: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

48

hexadecanoico (palmítico), ácido octadecanoico (esteárico) o ácido ácido cis-9-octadecenoico (oleico), entre

otros.

Los jabones solubles en agua, obtenidos con NaOH se denominan jabones duros, mientras que los que se

obtienen con KOH se denominan jabones blandos. Cuando se emplean hidróxidos de metales de transición o

alcalino térreos los jabones son insolubles en agua y no presentan acción detergente.

TRABAJO EXPERIMENTAL.

1.- PRE-LABORATORIO

a.- Defina ácido graso, triglicérido, jabón y saponificación.

b.- Averigüe por qué la reacción de saponificación es una reacción de Adición-Eliminación.

c.- Escriba el mecanismo detallado de la reacción de saponificación del acetato de etilo con KOH.

d.- Averigüe por qué los jabones tienen acción detergente.

e.- Averigüe en qué consiste la dureza del agua.

f.- ¿Cómo se comportan los jabones en aguas duras y blandas?

2.- PRÁCTICO

Ud. deberá preparar jabón a partir de manteca de cerdo y comprobar sus acción espumante y solubilidad en

distintas disoluciones de electrolitos.

3.- MATERIALES Y REACTIVOS

MATERIALES REACTIVOS

1 vaso de precipitados de 100 mL cloruro de potasio (KCl)

1 vaso de precipitados de 150 mL cloruro de calcio (CaCl2)

1 vaso de precipitados de 500 mL cloruro de sodio (NaCl)

1 placa calefactora con agitación magnética manteca de cerdo o similar (15g aprox.)

1 barra magnética etanol absoluto p.a. (100 mL aprox.)

1 bagueta disolución de NaOH 5%

1 gradilla con 10 tubos de ensayo disolución de HCl 5%

1 piceta con agua destilada hielo

1 balanza granataria tricloruro de hierro (FeCl3)

1 probeta de 100 mL cloruro de magnesio (MgCl2)

1 paño o colador

1 embudo Büchner

1 matraz Kitasato

1 espátula

1 pipeta Pasteur

4.- PROCEDIMIENTO EXPERIMENTAL

4.1.- PREPARACIÓN DE JABÓN

Coloque 12g de manteca en un vaso de precipitados de 150 mL y caliente suavemente hasta que se funda la

grasa. Agregue 5g de hidróxido de sodio disueltos en 15 mL de agua destilada, y finalmente adicione 10 mL de

etanol . Agite la mezcla y caliente la disolución hasta que ebulla suavemente. Mantenga el volumen de la

Page 49: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

49

disolución agua / etanol constante. Para ello prepare una mezcla de 25 mL de etanol y 25 mL de agua destilada.

Agite constantemente la disolución (En caso que la mezcla solidifique, disgréguela con una bagueta). Después de

40 minutos de calentamiento, la saponificación está completa (se comprueba por la ausencia del olor del ácido

graso). Vierta la disolución caliente sobre 300 mL de una disolución saturada de NaCl, y agregue 50 mL de agua.

Filtre el precipitado inicialmente a través de un paño o colador y luego al vacío. Lave cinco veces con una

mezcla de agua / hielo.

Deje secar un poco el producto húmedo obtenido y calcule el rendimiento de la reacción, asumiendo que la grasa

está formada por ácido palmítico y glicerol.

4.2- PROPIEDADES DEL JABÓN

Prepare una disolución al 1% p/p aproximadamente del jabón obtenido en agua destilada y realice las siguientes

pruebas.

1.- En un tubo de ensayo con 10 mL de disolución de jabón agregue 2 a 3 gotas de una disolución de HCl 5%.

Observa tanto la presencia o ausencia de precipitado como la formación de espuma al agitar. A la misma

disolución agregue unas gotas de una disolución de NaOH 5% y registre sus observaciones. Escriba las

ecuaciones químicas correspondientes.

2.- En cuatro tubos de ensayo se colocan las siguientes sales inorgánicas: cloruro de calcio, cloruro de magnesio,

trcloruro de hierro y cloruro de potasio. Añada en cada tubo 5 mL de la disolución jabonosa y registre sus

observaciones. Escriba las ecuaciones químicas correspondientes.

3.- Mezcle 10 mL de la disolución jabonosa con 10 mL de agua de la llave y agite vigorosamente. Explique la

acción del agua dura.

5.- BIBLIOGRAFÍA

1.- Eaton, D.C., “Laboratory Investigations in Organic Chemistry”, Editorial Mc Graw-Hill, USA (1989), págs.

406-412

2.- Landgrave, J.A., “Theory and Practice in Organic Chemsitry”, Editorial Books & Cole, USA (1993), 4º

edición.

3.- Wade, L.G., Jr., “Organic Chemistry”, Editorial Pearson Prentice Hall, USA (2006), 6º edición, pág. 994

Page 50: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

50

PRÁCTICO RECUPERATIVO: EXTRACCIÓN SOXHLET.

EXTRACCIÓN DE ACEITE DE SEMILLAS.

La extracción es una técnica que tiene por objeto separar una sustancia (sólida o líquida) del material (sólido o

líquido) que la contiene mediante el uso de disolvente en que es miscible. Por extracción pueden aislarse y

purificarse numerosos compuestos de origen natural tales como vitaminas, alcaloides, esencias, grasas,

hormonas, colorantes, etc.

Existen diferentes técnicas de extracción en que se utilizan diferentes aparatos según sea la exigencia de la

experiencia, tipo de disolvente a emplear y estado de material a extraer. Las más usadas son:

a.- Extracción líquido-líquido: esta técnica se basa en la diferente distribución de un soluto entre dos disolventes

inmiscibles, tales como agua y éter etílico, etanol y benceno, etc. Es una extracción discontinua y se lleva a cabo

en un embudo de decantación.

b.- Extracción líquido-sólido: se basa en la extracción de un sólido o líquido de una muestra sólida que lo

contiene mediante el uso de un disolvente en caliente. Es una extracción continua y se lleva a acabo en un

aparato denominado Soxhlet

El aparato Soxhlet tiene muchas ventajas:

El disolvente y la muestra están en contacto íntimo y repetido, de modo que se mejora muchísimo la

extracción porque siempre se emplea un disolvente limpio.

El disolvente que extrae está caliente y favorece la solubilidad del analito.

No se requiere filtración posterior puesto que el disolvente orgánico se evapora quedando sólo el analito.

Hay una gran capacidad de recuperación del analito ya que la extracción con disolvente es continua.

Pero como toda técnica también tiene sus desventajas.

Es un proceso extremadamente lento e imposible de acelerar.

Se requiere gran cantidad de disolvente.

Es inaplicable a analitos termolábiles (se descomponen con el calor) o que reaccionan en caliente.

Se necesita una etapa final de evaporación del disolvente.

El método es independiente de la matriz.

TRABAJO EXPERIMENTAL

1.- PRE-LABORATORIO

a.- Investigue la composición del aceite de maravilla, de maní, de almendras y de pepas de zapallo.

b.- Investigue a qué se le llama “ácidos trans”, “ácidos omega-3” y “ácidos omega-6”.

c.- Averigüe la proporción de aceite en semillas de maravilla, de maní, de almendras y de pepas de zapallo.

Page 51: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

51

d.- Averigüe por qué se utiliza específicamente éter de petróleo o hexano en la extracción de lípidos de fuentes

naturales.

2.- PRÁCTICO

Ud. deberá extraer el aceite de una muestra de semillas molidas de maravilla, de maní, de almendras y de zapallo

mediante una extracción con Soxhlet y determinar el porcentaje de éste en la muestra.

3.- MATERIALES Y REACTIVOS

MATERIALES REACTIVOS

1 matraz de fondo redondo de 500 mL Semillas molidas de maravilla (10g)

1 manto calefactor Semillas molidas de maní (10g)

1 soporte universal Semillas molidas de almendras (10g)

2 pinzas de tres dedos con nuez Semillas molidas de zapallo (10g)

1 cartucho de papel filtro poroso Éter de petróleo o hexano (400 mL aprox.)

1 espátula

1 balanza granataria

1 extractor Soxhlet

piedras de porcelana

1 probeta de 250 mL

1 evaporador rotatorio

1 vaso de precipitados de 100 mL

4.- PROCEDIMIENTO EXPERIMENTAL.

Pese un cartucho vacío de papel filtro poroso en la balanza granataria y luego agregue aproximadamente 5,00g

de la semilla molida. No llene completamente el cartucho para poder cerrarlo en la parte superior y evitar la

pérdida de material. Anote exactamente la masa del sólido (Mh) Coloque cuidadosamente el cartucho con la

muestra en el vaso del extractor Soxhlet asegurándose de que no quede demasiado apretado.

En un matraz de fondo redondo de 500 mL agregue dos a tres piedras de porcelana y péselo en la balanza

granataria, anotando la masa exacta (M1) Sujete por el cuello el matraz con una pinza de tres dedos e

introdúzcalo en el manto calefactor. Luego conecte a este matraz el extractor Soxhlet. Agregue al contenedor de

la muestra unos 250 mL de éter de petróleo o hexano hasta que se vacíe por el sifón (el disolvente con algo de

material disuelto caerá en el matraz). Luego ajuste el condensador y comience a calentar suavemente. Con la

ayuda de su profesor verifique que el equipo esté correctamente armado. Una vez que comienza el reflujo del

disolvente desde el condensador sobre la muestra extraiga los lípidos durante al menos 1 hora.

Una vez alcanzado el tiempo de extracción deje enfriar y lleve el matraz de fondo redondo a un evaporador

rotatorio para eliminar todo el disolvente. Deje enfriar y pese el matraz anotando su peso (M2)

Para el cálculo del contenido de grasa en tanto por ciento, se aplica la siguiente fórmula:

% G = x 100 Mh

M2 - M1

Page 52: Manual Laboratrio Orgánica I 2015

Manual de Laboratorio Curso “Química Orgánica I QUIM 210”, Semestre Otoño 2015

52

donde:

%G = Contenido de materia grasa de la muestra

Mh = masa de la muestra de semilla molida

M1 = masa del matraz con las piedras de porcelana

M2 = masa del matraz con las piedras de porcelana y el residuo seco.

5.- BIBLIOGRAFÍA

1.-A.I. Vogel, “ Textbook of Practical Organic Chemistry”, Longmans Group UK Limited, Essex, England, 5°

Edición, 1989, pág. 164

2.-file:///C:/Users/Tomas/Downloads/Dialnet-EvaluacionComparativaDeLosRendimientosObtenidosMed-

3624078.pdf

3.-López, O. D.; Márquez, T.; Salomón, S.; González, M. L.; Extracción de lípidos de las semillas de Cucurbita

pepo L. (calabaza); Rev Cubana Plant Med.14,2 (2009): on-line:

http://scielo.sld.cu/scielo.php?pid=S1028-47962009000200005&script=sci_arttext