mechanics of metal hydrides for hydrogen storage

20
Proceeding of Fuel Cells Final Project MAE 528 Fall 2014, Miami, Florida, USA The Mechanics of Metal Hydride Hydrogen Storage Systems for Portable Applications Jordan Suls Department of Mechanical Engineering University of Miami

Upload: jordan-suls

Post on 14-Apr-2017

769 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Mechanics of metal hydrides for hydrogen storage

Proceeding  of  Fuel  Cells  Final  Project    MAE  528  

Fall  2014,  Miami,  Florida,  USA    

     

               

The  Mechanics  of  Metal  Hydride  Hydrogen  Storage  Systems  for  Portable  Applications  

           

Jordan  Suls  Department  of  Mechanical  Engineering  

University  of  Miami    

       

 

Page 2: Mechanics of metal hydrides for hydrogen storage

 Introduction       With  the  escalating  needs  for  sustainable  energy  in  today’s  society,  many  

researchers  turn  to  hydrogen  as  the  hope  for  a  clean,  renewable  energy  source.  The  

main  problems  being  faced  with  this  energy  source  is  the  need  for  efficient  and  cost-­‐

effective  methods  for  production,  storage  and  utilization  of  this  gas.  

  The  development  of  safe  and  reliable  hydrogen  storage  technologies  is  one  

major  barrier  that  must  be  overcome  to  achieve  the  implementation  of  hydrogen-­‐

based  fuel  systems  into  today’s  society.  One  of  the  main  priorities  is  finding  a  way  to  

supply  hydrogen  in  portable  applications  ranging  from  cars  to  mobile  phones.  

Therefore,  the  focus  of  this  research  will  be  on  finding  practical  hydrogen  storage  

techniques  that  can  be  utilized  with  a  PEM  fuel  cell  to  provide  the  necessary  energy  

for  a  wide  range  of  mobile  applications.  Currently,  there  are  three  main  methods  

being  employed  for  hydrogen  storage,  each  having  its  own  limitations.    

  Hydrogen  can  be  stored  as  a  high  pressure  compressed  gas,  which  involves  

the  use  of  large,  heavy  tanks.  The  size  and  weight  involved  in  storing  compressed  

hydrogen  gas  make  this  method  undesirable  for  mobile  applications.  Cryogenic  

liquid  hydrogen  storage  has  a  greater  volumetric  storage  density  than  compressed  

hydrogen  gas  but  further  complicates  the  system  needed  for  storage.  The  process  of  

liquefying  the  hydrogen  gas  and  insulating  the  tank  requires  energy  and  a  greater  

cost.  The  operating  conditions  needed  for  this  method  only  make  it  another  

impractical  application  for  mobile  uses.  Finally,  there  are  hydrogen  storage  

materials,  such  as  high  surface  area  carbon-­‐based  materials  and  metal  hydride  

Page 3: Mechanics of metal hydrides for hydrogen storage

alloys.  Hydrogen  gas  can  be  stored  in  materials  either  by  adsorption  or  absorption.  

Adsorption  is  the  process  of  hydrogen  attaching  to  the  surface  of  a  material  as  a  gas  

(H2)  or  as  atoms  (H).  In  absorption,  the  hydrogen  gas  dissociates  into  hydrogen  

atoms  that  are  then  incorporated  into  the  solid  lattice  framework  of  the  material.  

The  process  of  absorption  with  the  use  of  metal  hydrides  is  particularly  interesting  

because  it  offers  the  ability  to  store  large  amounts  of  hydrogen  at  low  pressure  and  

temperature.  Figure  1  gives  an  approximate  operational  temperature  for  several  

different  hydrogen  storage  methods  (some  of  which  are  outside  the  scope  of  this  

research)  [1].  

 

Figure  1:  Temperature  Requirements  for  Different  Hydrogen  Storage  Methods  [1]  

  The  potential  presented  by  metal  hydrides  in  their  gravimetric  and  

volumetric  storage  capability  makes  this  method  the  most  appealing  for  the  ability  

to  be  used  in  mobile  applications.  Similarly,  the  required  operating  conditions  are  

easy  to  manage  and  maintain.    

Metal  Hydrides  Overview  

A  metal  hydride  consists  of  finely  ground  powders  that  absorb  large  

quantities  of  hydrogen  gas  by  dissociating  the  gas  into  hydrogen  ions.  Metal  

hydrides  use  hydrogenation  to  absorb  hydrogen  gas  into  the  lattice  of  the  metal  

hydride.  Similarly,  they  use  dehydrogenation  to  release  the  stored  hydrogen  ions  

from  the  surface  to  produce  hydrogen  gas  again  [2].    

Page 4: Mechanics of metal hydrides for hydrogen storage

Metal  hydrides  typically  use  iron,  titanium,  manganese,  nickel  and  chromium  

alloys  but  new  research  is  exploring  new  complex  materials  such  as  alanates,  

amides  and  borohydrides  [2].    

The  focus  for  metal  hydrides  is  the  thermodynamic  and  kinetic  properties  of  

the  materials  used.  The  kinetics  of  the  reaction  between  the  metal  hydride  and  the  

hydrogen  gas  can  influence  the  rate  at  which  hydrogen  gas  is  absorbed  and  

desorbed.  Faster  reactions  translate  to  shorter  refuel  times  of  the  metal  hydride,  

which  is  beneficial  in  mobile  applications  [3].    

Similarly,  the  thermodynamics  of  the  reactions  can  determine  which  metal  

hydride  materials  can  be  used  in  a  PEM  fuel  cell  system.  The  enthalpy  and  entropy  

can  change  the  temperature  at  which  dehydrogenation  occurs.  The  implementation  

of  additives  and  catalysts  are  used  to  ensure  that  the  necessary  temperature  and  

pressure  for  the  hydrogenation/dehydrogenation  reactions  are  within  reasonable  

ranges  for  the  PEM  fuel  cell.  These  processes  will  be  further  discussed  in  following  

sections  [3].    

Process  of  Hydrogen  Absorption  

  The  process  involved  with  hydrogen  absorption  into  the  metal  lattice  of  the  

hydrides  consists  of  four  steps.  First,  the  hydrogen  molecules  are  attracted  to  the  

metal  surface  by  Van  Der  Waal  forces  and  form  a  physisorbed  state.  Next,  before  the  

hydrogen  can  diffuse  through  the  metal,  the  hydrogen  gas  must  dissociate  into  two  

hydrogen  atoms.  A  chemisorbed  state  is  formed  as  the  hydrogen  atoms  form  new  

bonds  at  the  metal’s  surface.  Finally,  the  chemisorbed  hydrogen  atoms  can  jump  to  

Page 5: Mechanics of metal hydrides for hydrogen storage

subsurface  layers  and  diffuse  at  the  interstitial  sites.  These  four  steps  are  shown  

below  in  Figure  2  [4].  

 

Figure  2:  Dissociation  and  Diffusion  Processes  of  Hydrogen  in  Metal  Hydrides  [4]  

For  diffusion,  hydrogen  atoms  form  a  metal-­‐hydrogen  (M-­‐H)  solid  solution,  which  is  

the  referred  to  as  the  α-­‐phase.  The  formation  of  this  α-­‐phase  leads  to  an  expansion  

of  the  metal  lattice.  As  the  pressure  increases  as  diffusion  progresses,  the  nucleation  

of  a  hydrideβ-­‐  phase  occurs.  The  process  of  hydrogen  diffusion  is  demonstrated  in  

Figure  3  [4].  

 

Figure  3:  Formation  of  a  Hydride  Phase  as  Hydrogen  Diffuses  [4]  

Metal  Hydride  Compositions  

Page 6: Mechanics of metal hydrides for hydrogen storage

There  are  three  main  types  of  metal  hydride  materials:  light,  intermetallic,  

and  complex  metal  hydrides.  Light  metal  hydrides  usually  consist  of  Li,  Be,  Na,  Mg,  B  

or  Al.  The  advantage  of  this  type  is  the  light  weight  of  the  materials,  which  allows  for  

better  gravimetric  storage  density  [3].  

    The  three  most  common  forms  of  intermetallic  metal  hydride  compounds  are  

AB2,  AB5  and  Ti-­‐based  body  centered  cubic  (BCC)  alloys.  Typically,  AB2  type  metal  

hydrides  are  composed  of  Ti-­‐Zr-­‐Mn-­‐V  or  Ti-­‐Zr-­‐Cr-­‐Fe  alloys  and  are  derived  from  

Laves  phase  crystal  structures.  The  hydrogen  storage  capacity  for  this  type  of  metal  

hydrides  is  generally  in  the  1.5  to  1.9  wt.%  range.  The  advantages  of  this  type  of  

intermetallic  metal  hydrides  are  low  cost,  relatively  fast  kinetics  and  long  lifespans.  

AB5  are  mostly  metal  alloys  of  Mischmetal  (Mm)  and  nickel.  The  hydrogen  storage  

capacity  is  lower  than  that  of  AB2  metal  hydrides,  usually  maxing  out  at  1.5  wt.%.  

The  advantage  of  AB5  metal  hydrides  is  their  better  volumetric  energy  storage  and  

cyclic  durability.  These  factors  allow  for  AB5  metal  hydrides  to  generally  be  more  

suitable  as  a  reversible  hydrogen  storage  material  for  small-­‐scale  mobile  

applications,  such  as  a  mobile  phone  fuel  cell  system  that  would  replace  common  

Lithium  Ion  batteries.    The  Ti-­‐based  BCC  alloys  exhibit  the  best  hydrogen  storage  

capacity  of  the  3  types,  although  they  have  limited  practical  applications  due  to  the  

high  cost  of  this  material.  The  vanadium  in  the  Ti-­‐based  alloys  is  what  increases  the  

cost  but  is  essential  in  enhancing  the  hydrogen  absorption  capacity  [3].    

  New  research  is  exploring  the  more  complex  metal  hydrides,  along  with  the  

inclusion  of  catalysts  to  accelerate  the  kinetics  of  the  reactions  between  the  hydride  

materials  and  hydrogen.  Ahluwalia  et  al.  focus  on  the  development  of  new  class  of  

Page 7: Mechanics of metal hydrides for hydrogen storage

hydrides  such  as  destabilized  hydrides  (especially  borohydrides  and  lithium  

hydrides),  amide/imide  materials,  off-­‐board  regenerable  materials  (i.e.  AlH3  and  

LiAlH4)  and  alanates  [3].  The  scope  of  this  research  is  limited  to  on-­‐board  reversible  

metal  hydrides  that  offer  the  potential  to  achieve  the  guidelines  set  by  the  U.S.  

Department  of  Energy,  which  is  discussed  later  on.  Because  of  this,  the  materials  

considered  in  this  research  will  be  a  more  commonly  researched  sodium  alanate  

(NaAlH4),  an  Mg-­‐based  metal  hydrides  (MgH2),  a  borohydrides  (LiBH4),  and  a  high-­‐

pressure  metal  hydride  (Ti1.1CrMn).  

Metal  Hydride  Parameters  of  Performance  

  There  are  certain  factors  that  determine  the  effectiveness  of  the  metal  

hydride  as  a  hydrogen  storage  system.  Volumetric  and  gravimetric  storage  densities  

are  crucial  because  they  quantify  the  amount  of  hydrogen  that  can  be  stored  as  a  

function  of  volume  and  weight,  respectively.  A  large  gravimetric  storage  density  is  

harder  to  achieve  due  to  the  large  weight  associated  with  the  metal  hydride  

materials  [5].  In  the  consideration  of  a  metal  hydride  storage  system  for  a  car,  a  

higher  volumetric  and  gravimetric  storage  density  allows  for  the  driver  to  travel  

farther  distances  without  refueling.    

  Another  key  parameter  is  the  rate  of  hydrogenation/dehydrogenation.  The  

rate  of  hydrogen  absorption  into  the  metal  hydride  determines  the  time  it  would  

take  to  refuel  the  metal  hydride.  Dehydrogenation  involves  the  desorption  of  

hydrogen  from  the  metal  hydride  and  plays  a  crucial  role  in  providing  the  fuel  cell  

with  sufficient  amounts  of  fuel  [5].    

Page 8: Mechanics of metal hydrides for hydrogen storage

  The  optimum  hydrogen  storage  should  also  contain  the  following  properties;  

high  reversibility,  limited  energy  loss  during  charging  and  discharging,  high  stability  

against  oxygen  gas  and  moisture  to  ensure  long  life  cycles,  and  high  safety.  [3]      

  Table  1  gives  the  U.S.  Department  of  Energy  guidelines  for  metal  hydride  

storage  in  fuel  cell  cars.  The  target  values  are  rough  estimates  of  the  required  metal  

hydride  performance  to  be  able  to  compete  with  the  current  automobile  standards.  

Current  metal  hydride  materials  are  unable  to  reach  these  standards  but  further  

research  is  being  performed  to  attempt  to  meet  the  guidelines  by  improving  the  

interaction  between  the  metal  hydrides  and  hydrogen  by  including  additives  and  

catalysts.    

Table  1:  U.S.  Department  of  Energy  Guidelines  [6]  

 

Thermodynamics  and  Kinetics  

It  is  important  that  the  metal  hydride  storage  system  is  compatible  with  the  

PEM  fuel  cell  being  used.  The  main  consideration  is  the  operating  temperature  and  

Page 9: Mechanics of metal hydrides for hydrogen storage

pressure  of  the  fuel  cell.  Rate  and  amount  of  hydrogen  absorption/desorption  are  

dependent  on  the  temperature  of  the  system.  PEM  fuel  cells  generally  operate  at  50  

to  100°C  and  near  ambient  pressures.  Increasing  the  operating  temperature  of  the  

fuel  cell  can  generate  significant  problems  and  efficiency  losses.  Therefore,  it  is  

necessary  to  find  materials  that  react  with  gaseous  hydrogen  at  lower  temperatures.  

This  can  be  calculated  by  finding  the  enthalpy  and  entropy  of  the  reactions.  

Equation  (1)  demonstrates  the  dependence  of  temperature  on  enthalpy  and  entropy  

                                                                                                                                                     Δ𝐻 = 𝑇Δ𝑆                        (1)  

Züttel  et  al.  [7]  approximated  that  the  entropy  of  most  metal  hydride-­‐hydrogen  

reactions  is  130  J  K-­‐1  mol-­‐1.  If  the  entropy  can  be  estimated  and  the  desired  

temperature  is  known,  the  necessary  enthalpy  can  be  found  [8].  An  example  of  this  

process  is  discussed  by  Alapatti  et  al  [8].  for  the  reaction  of  a  LiBH4  metal  hydride.  

The  reaction,  which  demonstrates  the  desorption  of  hydrogen,  is  shown  in  equation  

(2).  

                                                                                                                           𝐿𝑖𝐵𝐻!  → 𝐿𝑖𝐻 + 𝐵 +  !!𝐻!                                                                                            (2)  

Here,  the  entropy  is  estimated  to  be  95 ≤ ∆𝑆   ≤ 140  𝐽  𝐾!!  𝑚𝑜𝑙!!.  If  the  desired  

temperature  is  between  50  and  150°C,  then  the  enthalpy  must  be  between  30  and  

60  kJ/mol.  If  the  enthalpy  is  above  60  kJ/mol,  then  the  amount  of  hydrogen  

delivered  to  the  fuel  cell  will  be  small  unless  the  temperature  is  increased.  If  the  

enthalpy  is  less  than  the  30  kJ/mol,  the  reaction  will  not  be  easily  reversible  [8].  

Therefore,  the  metal  hydride  will  not  be  able  to  easily  absorb  hydrogen  gas.    

  To  change  the  enthalpy  of  the  reaction  between  metal  hydride  materials  and  

hydrogen  gas,  the  concept  of  destabilization  is  explored  by  new  research.  

Page 10: Mechanics of metal hydrides for hydrogen storage

Destabilization  involves  the  inclusion  of  additives  that  form  compounds  or  alloys  in  

the  dehydrogenated  state.  These  compounds  help  stabilize  the  dehydrogenated  

state  and  therefore  destabilize  the  hydrogenated  state.  The  effect  of  these  additives  

can  be  demonstrated.  Consider  the  reaction  shown  in  equation  (2).  In  the  

estimations  of  Alapatti  et  al.,  by  adding  MgH2  to  LiBH4,  the  total  reaction  becomes:  

                                                                                       𝐿𝑖𝐵𝐻! +  !!𝑀𝑔𝐻! → 𝐿𝑖𝐻 + !

!𝑀𝑔𝐵! +  2𝐻!                                                                  (3)  

The  formation  of  MgB2  stabilizes  the  right  side  of  the  equation  (the  dehydrogenated  

state),  which  decreases  the  enthalpy  of  the  reaction  from  69  kJ/mol  to  44  kJ/mol  [9].  

This  allows  the  reaction  to  take  place  at  significantly  lower  temperatures  (around  

250°C  less).  The  downside  of  using  additives  is  that  the  hydrogen  storage  capacity  of  

the  metal  hydride  is  marginally  decreased  [9].    

  Research  for  metal  hydrides  is  focused  on  finding  new  additives  that  can  

reduce  the  enthalpy  of  the  reaction  while  maintaining  the  desirable  volumetric  and  

gravimetric  energy  density.    

Improving  Metal  Hydride  Kinetics  

  By  introducing  catalysts  or  dopants,  the  kinetics  involved  with  the  

hydrogenation/dehydrogenation  rates  can  be  theoretically  improved  in  hopes  to  

achieve  the  standards  set  by  the  DOE.    

  Consider  one  of  the  more  promising  potential  metal  hydrides,  sodium  alanate  

(NaAlH4).    The  Van’t  Hoff  plot  shown  in  Figure  2  shows  that  at  a  dissociation  

pressure  of  0.1  MPa,  sodium  alanate  is  one  of  the  few  metal  hydride  materials  that  

do  not  require  a  high  temperature  for  hydrogen  desorption  [6].  

Page 11: Mechanics of metal hydrides for hydrogen storage

 

Figure  4:  Van’t  Hoff  plot  for  various  metal  hydride  materials  [6]  

In  the  1990’s,  it  was  hypothesized  that  sodium  alanate  could  not  be  a  practical  

hydrogen  storage  material  due  to  the  slow  kinetics  and  high  temperature  

requirements.  This  changed  when  Bogdanovic  and  Schwickardi  doped  the  sodium  

alanate  with  small  amounts  of  a  titanium  catalyst  [8].  The  new,  doped  sodium  

alanate  was  able  to  achieve  rehydrogenation  under  much  milder  conditions  (just  

above  100°C).  The  experiments  run  showed  that  a  highly  dispersed  Ti  in  the  Al  

surface  improved  the  hydrogen  uptake  and  release  processes  [10].  TiAl3  is  most  

likely  to  form  during  the  dehydrogenation  process.  It  was  concluded  that  Ti  doping  

can  effectively  lower  the  dissociation  pressure  for  hydrogen  absorption  [8].  

A  similar  experiment  was  performed  by  Schuth  et  al.  [6]  to  study  the  affects  

of  ball-­‐milling  on  NaAlH4  with  catalyst  TiCl3  under  various  conditions.  In  Figure  3,  it  

is  apparent  that  the  volume  capable  of  being  desorbed  from  the  metal  hydride  

Page 12: Mechanics of metal hydrides for hydrogen storage

increased  with  both  the  amount  of  the  catalyst  used  and  the  size  ball  used  in  the  

ball-­‐milling  process.  

 

Figure  5:  Volume  of  hydrogen  desorbed  from  a  ball-­‐milled  NaAlH4  with  a  TiCl3  catalyst  under  various  conditions  [6]  

    Most  catalyst  materials  being  explored  in  current  research  are  titanium,  iron  

and  zirconium.  One  major  downside  of  the  inclusion  of  dopants  is  the  reduction  in  

the  reversible  hydrogen  storage  capacity.  The  reason  for  this  is  that  the  dopant  adds  

weight  to  the  metal  hydride  system.  Doping  levels  are  usually  around  2  to  4  mol%.  

The  dopants  add  weight  that  is  not  being  used  to  store  hydrogen  so  the  overall  

storage  capacity  is  reduced  [8].    

Metal  Hydride  Surface  Structures  

  A  metal  hydrides  ability  to  dissociate  hydrogen  gas  is  dependent  on  the  

materials  surface  structure.    When  considering  Mg-­‐based  metal  hydrides,  improving  

the  surface  properties,  with  the  use  of  ball-­‐milling,  is  essential  in  improving  the  rate  

of  hydrogen  diffusion  through  the  metal  hydride  layers  [3].    

Page 13: Mechanics of metal hydrides for hydrogen storage

  As  the  reaction  of  hydrogenation  progresses,  hydrogen  diffusion  occurs  and  

the  hydride  layer  grows.  This  creates  an  almost  impermeable  layer,  which  limits  the  

rate  of  hydride  formation.    Along  with  forming  a  compact  hydride  layer,  exposure  to  

oxygen  can  form  highly  stable  oxide  layers  on  the  hydride,  which  severely  lower  the  

hydrogen  absorption  rate  [3].    

  To  avoid  these  issues,  ball-­‐milling  is  used  to  increase  the  surface  area,  and  

create  defects  on  the  surface  and  interior  of  the  hydride.  The  lattice  defects  created  

are  areas  of  low  activation  energy  of  diffusion,  which  aids  the  hydrogen  absorption  

[11].  The  greater  surface  area  allows  for  larger  surface  contact  with  catalysts,  which  

leads  to  faster  kinetics  [11].  The  process  of  ball-­‐milling  can  be  controlled  to  alter  

grain  size,  microstructure  or  surface  properties  of  the  material  in  the  hopes  of  

achieving  faster  absorption/desorption  times.  Figure  4  shows  the  variation  of  

desorption  time  for  unmilled  and  ball-­‐milled  MgH2.  As  one  can  see,  the  ball-­‐milled  

MgH2  (white  symbols)  had  a  much  faster  desorption  rate  than  the  unmilled  MgH2  at  

the  same  hydrogen  content  [3].  

Page 14: Mechanics of metal hydrides for hydrogen storage

 

Figure  6:  Hydrogen  desorption  for  unmilled  (black  symbols)  and  ball-­‐milled  (white  symbols)  MgH2  at  a  pressure  of  0.15  bar  [3]  

   Heat  Management  for  Metal  Hydride  Systems  

  A  study  performed  by  Sandrock  et  al.  [12]  on  a  one  hundred  gram  bed  of  

sodium  alanate  found  that  during  the  rehydrogenation  process,  large  amounts  of  

heat  were  produced  during  this  exothermic  reaction.  Within  one  minute,  the  heat  of  

the  system  increased  from  155°C  to  234°C,  which  caused  several  problems  such  as  

sintering  and  decreased  performance.  The  need  for  a  heat  exchanger  can  further  

complicate  the  system  but  severely  increase  the  durability  and  efficiency  of  the  

metal  hydride  under  cyclic  operating  [13].    

Page 15: Mechanics of metal hydrides for hydrogen storage

Similarly,  since  the  desorption  of  hydrogen  gas  is  an  endothermic  reaction,  

the  metal  hydrides  temperature  will  decrease  as  hydrogen  is  released.  This  will  lead  

to  a  continuous  reduction  in  the  hydrogen  release  rate  as  the  temperature  drops  

[10].  Therefore  the  required  operating  temperature  needs  to  be  maintained  through  

the  use  of  a  heat  exchanger.  In  an  ideal  setup,  the  heat  produced  by  the  operations  of  

the  PEM  fuel  cell  can  be  enough  to  cause  the  metal  hydride  to  continually  release  

hydrogen  gas  until  all  the  hydrogen  is  consumed  [13].    

Certain  heat  exchanger  systems  have  been  explored  for  metal  hydride  

heating/cooling.  Pasini  et  al.  [1]  describe  the  use  of  a  shell-­‐and-­‐tube  heat  exchanger  

with  the  metal  hydride  packed  in  the  shell  and  coolant  flowing  through  the  tubes.  

The  schematic  of  such  a  system  is  shown  in  detail  in  Figure  5.  

 

Figure  7:  Fuel  Cell  System  with  Sodium  Alanate  Metal  Hydride  [1]  

Pasini  et  al.  [1]  also  explored  a  Ti1.1CrMn  metal  hydride  system  as  a  means  of  

comparison  with  the  more  popular  Sodium  Alanate.  The  benefit  of  using  Ti1.1CrMn  is  

that  the  desorption  reaction  only  requires  a  temperature  of  85°C.  The  waste  heat  

produced  by  a  PEM  fuel  cell  is  enough  to  satisfy  this  condition.  Radiator  fluid  can  be  

Page 16: Mechanics of metal hydrides for hydrogen storage

heated  with  the  waste  heat  of  the  fuel  cell  and  used  to  keep  the  Ti1.1CrMn  system  at  

the  desired  temperature.  And  for  cooling,  the  same  shell-­‐and-­‐tube  heat  exchanger  

can  be  used  during  hydrogen  absorption.  The  new  system  design  is  shown  in  Figure  

6.    

 

Figure  8:  Fuel  Cell  System  with  Ti1.1CrMn  Metal  Hydride  [1]  

For  a  sodium  alanate  system,  on-­‐board  hydrogen  combustion  is  required  to  

heat  the  metal  hydride  to  the  necessary  temperature  for  desorption  (130°C).  The  

disadvantage  of  the  Ti1.1CrMn  system  is  a  large  decrease  in  the  theoretical  hydrogen  

storage  capacity  (1.9-­‐2.0  wt.%)  when  compared  to  sodium  alanate  (5.5  wt%)  [1].    

Conclusions       With  the  consideration  of  the  effectiveness  of  metal  hydrides  as  a  hydrogen  

storage  method  in  portable  applications,  there  are  currently  no  available  materials  

that  meet  the  guidelines  set  in  place  by  the  DOE  for  on-­‐board  hydrogen  storage.  

Although  that  conclusion  can  definitively  be  made,  the  field  of  metal  hydrides  is  one  

in  need  of  further  research.  Metal  hydrides  offer  the  potential  to  surpass  other  

hydrogen  storage  methods  but  are  greatly  understudied.  There  are  several  nascent  

Page 17: Mechanics of metal hydrides for hydrogen storage

areas  of  research  that  are  still  relatively  untouched  such  as:  complex  metal  hydrides,  

catalyst  and  methods  of  doping,  thermodynamic  and  kinetic  properties  of  metal  

hydrides  and  heat  exchanger  systems  for  metal  hydrides.  

  What  can  be  determined  from  this  study  is  that  certain  metal  hydride  types  

are  simply  not  feasible  for  the  mobile  applications.  The  biggest  deterrent  for  

researchers  is  a  lower  hydrogen  storage  capacity,  because  this  obstacle  is  hard  to  

overcome.  Due  to  this,  intermetallic  hydrides  can  be  considered  undesirable  

because  they  possess  a  minimal  hydrogen  storage  capacity  and  a  high  cost.    

As  for  light  and  complex  hydrides,  the  most  common  problem  faced  is  the  

high  desorption  temperature.  For  example,  Mg-­‐based  metal  hydrides  have  a  

hydrogen  storage  capacity  around  7.6  wt.%  but  need  a  temperature  of  around  

300°C  to  efficiently  desorb  hydrogen.  The  solution  for  this  problem  can  found  in  

three  different  areas  of  study.  One  is  improving  the  thermodynamics  of  the  metal  

hydride-­‐hydrogen  reaction  with  the  use  of  catalysts.  The  second  is  the  integration  of  

a  heat  exchanger  system  with  on-­‐board  hydrogen  combustion  to  raise  the  

temperature  of  the  metal  hydride  system.  The  third  is  the  development  of  a  PEM  

fuel  cell  with  a  higher  operating  temperature  and  comparable  efficiency,  such  that  

there  is  more  waste  heat  present  to  provide  the  metal  hydride.  

In  light  of  the  advancements  and  achievements  in  metal  hydride  studies  thus  

far,  there  is  a  clear  potential  for  the  development  of  hydride  materials  that  exhibit  

high  reversible  hydrogen  storage  capacity  at  reasonable  temperatures.  Similarly,  as  

the  improvement  in  vehicle  design,  PEM  fuel  cells  and  manufacturability  of  hydride  

materials  continue,  the  field  of  metal  hydrides  will  continue  to  progress.  As  metal  

Page 18: Mechanics of metal hydrides for hydrogen storage

hydride  technology  advances,  so  does  the  ability  to  safely  and  efficiently  implement  

hydrogen-­‐based  electrical  systems  into  society.    

                                                                                   

Page 19: Mechanics of metal hydrides for hydrogen storage

References  

[1] Pasini, J. M., Corgnale, C., van Hassel, B. A., Motyka, T., Kumar, S., & Simmons, K. L. (2013). Metal hydride material requirements for automotive hydrogen storage systems. International Journal of Hydrogen Energy, 38(23), 9755-9765.

[2] Ryan O'Hayre, Suk-Won Cha, Whitney Colella. (2009). Fuel cell fundamentals (2nd ed.) Wiley.

[3] Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 32(9), 1121-1140.

[4] Martin  Dornheim.  (2011).  Thermodynamics  of  metal  hydrides:  Tailoring  reaction                enthalpies  of  hydrogen  storage  materials.  In  Juan  Carlos  Moreno-­‐Pirajan              (Ed.),  Thermodynamics-­‐  interaction  studies-­‐  solids,  liquids,  and  gases  (pp.  Chapter                33)

[5] Ahluwalia, R. K., Peng, J. -., & Hua, T. Q. (2014). Bounding material properties for automotive storage of hydrogen in metal hydrides for low-temperature fuel cells. International Journal of Hydrogen Energy,39(27), 14874-14886.

[6] F. Schuth, B. Bogdanovic and M. Felderhoff. (2004). Light metal hydrides and complex hydrides for hydrogen storage Chemical Communications, , 2249–2258.  [7]  Züttel,  A.;  Wenger,  P.;  Rentsch,  S.;  Sudan,  P.;  Mauron,  P.;Emmenegger,  C.  J.  Power                            Sources  2003,  118,  1.  

[8] Sudhakar V. Alapati, J. Karl Johnson, and David S. Sholl. (2006). Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. The Journal of Physical Chemistry, 110(17), 8769–8776.

[9] Yang, H., Adeola Ibikunle, & Goudy, A. J. (2010). Effects of ti-based additives on the hydrogen storage properties of a LiBH4 /CaH2 destabilized system. Advances in Materials Science and Engineering, , n/a.

[10] Satya Sekhar, B., Suresh, P., & Muthukumar, P. (2013). Performance tests on metal hydride based hydrogen storage devices. International Journal of Hydrogen Energy, 38(22), 9570-9577.

[11] Ley, M. B., Jepsen, L. H., Lee, Y., Cho, Y. W., Bellosta von Colbe, J. M., Dornheim, M., et al. (2014). Complex hydrides for hydrogen storage – new perspectives. Materials Today, 17(3), 122-128.

Page 20: Mechanics of metal hydrides for hydrogen storage

[12] Sandrock G, Bowman Jr RC. Gas-based hydride applications: recent progress and future needs. J Alloy Compd 2003;356e357:794e9. http://dx.doi.org/10.1016/S0925-8388(03) 00090-2.

[13] Raju, M., & Kumar, S. (2012). Optimization of heat exchanger designs in metal hydride based hydrogen storage systems. International Journal of Hydrogen Energy, 37(3), 2767-2778.