mel242-10.ppt

Upload: manu-chakkingal

Post on 08-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 mel242-10.ppt

    1/26

    Geometrical Variations of Heat Conduction Equation

    P M V Subbarao

    Professor

    Mechanical Engineering Department

    IIT Delhi

    Same Physics But Shape Matters..

  • 8/22/2019 mel242-10.ppt

    2/26

    The Heat Conduction Equation

    pC

    trgT

    t

    T

    ),(

    ..

    For Isotropic Material:

    For a homogeneous Isotropic material:

    pC

    txgT

    t

    T

    ),(2

  • 8/22/2019 mel242-10.ppt

    3/26

    Mass Diffusion Equation

    Using the analogy

    ),(.. trCDt

    C

    For a homogeneous & isotropic material:

    ),(2 trCDtC

  • 8/22/2019 mel242-10.ppt

    4/26

    This is a general form of heat conduction equation.

    Valid for all geometries.

    Selection of geometry depends on nature of application.

  • 8/22/2019 mel242-10.ppt

    5/26

    General conduction equation in Cartesian

    Coordinate System

    xq xxq

    yyq

    yqzzq

    zq

    Rate of energy generation

  • 8/22/2019 mel242-10.ppt

    6/26

    ),(. txgTk

    t

    TCp

    For an isotropic and homogeneous material:

    ),(2 txgTktTCp

    ):,,(2

    2

    2

    2

    2

    2

    tzyxgzT

    yT

    xTk

    tTCp

  • 8/22/2019 mel242-10.ppt

    7/26

    General conduction equation based on Polar

    Cylindrical Coordinates

    ):,,(12

    tzrgzTk

    zTk

    rrTkr

    rtTCp

    ),( txgTkt

    TCp

    zrkk ,,

    ),,(

    12 zrgz

    T

    kz

    T

    krr

    T

    krrt

    T

    Cp

  • 8/22/2019 mel242-10.ppt

    8/26

    General conduction equation based on Polar

    Spherical Coordinates

    ):,,(sin

    1sin

    sin

    112

    2

    222

    2

    2trg

    T

    r

    T

    rr

    Tr

    rrk

    t

    TCp

    X

    Y

  • 8/22/2019 mel242-10.ppt

    9/26

    Thermally Heterogeneous Materials

    zyxkk ,,

    ),(. txgTktTCp

    ),,,( tzyxgz

    zTk

    y

    yTk

    x

    xTk

    t

    TCp

  • 8/22/2019 mel242-10.ppt

    10/26

    ),,,(2

    2

    2

    2

    2

    2

    tzyxgz

    Tk

    z

    T

    z

    k

    y

    Tk

    y

    T

    y

    k

    x

    Tk

    x

    T

    x

    k

    t

    TCp

    More service to humankind than heat transfer rate calculations

  • 8/22/2019 mel242-10.ppt

    11/26

    Primitive Pottery Kilns

    Time

  • 8/22/2019 mel242-10.ppt

    12/26

    Thermal Conductivity of Brick Masonry Walls

    1,thR

    1,2, 2 thth RR

    3,thR

    3,4, 2 thth RR

    1pC

    3pC

    12 pp CC 34 pp CC

  • 8/22/2019 mel242-10.ppt

    13/26

    Geographical Applications of Thermal Mapping

  • 8/22/2019 mel242-10.ppt

    14/26

  • 8/22/2019 mel242-10.ppt

    15/26

  • 8/22/2019 mel242-10.ppt

    16/26

    One Dimensional Heat Conduction problems

    P M V Subbarao

    Associate Professor

    Mechanical Engineering DepartmentIIT Delhi

    Simple ideas for complex Problems

  • 8/22/2019 mel242-10.ppt

    17/26

    Desert Housing & Composite Walls

  • 8/22/2019 mel242-10.ppt

    18/26

    ),(. txgTktTCp

    General conduction equation in Cartesian

    Coordinate System

    Assume a homogeneous medium with invariant thermal conductivity ( k

    = constant) :

    For conduction through a large wall the heat equation reduces to:

    ),,,(2

    2tzyxg

    xTk

    xT

    xk

    tTCp

    ),,,(2

    2

    tzyxgx

    Tk

    t

    TCp

    One dimensional Transient conduction with heat generation.

  • 8/22/2019 mel242-10.ppt

    19/26

    General Steady-State One-Dimensional Conduction

    Rate of energy generation

  • 8/22/2019 mel242-10.ppt

    20/26

    Steady Heat transfer through a plane slab

    02

    2

    dx

    TdA

    0),,,(2

    2

    tzyxgx

    T

    k

    No heat generation

    211 CxCTC

    dx

    dT

  • 8/22/2019 mel242-10.ppt

    21/26

    Wall Surfaces with Convection

    2112

    2

    0 CxCTCdx

    dT

    dx

    TdA

    Boundary conditions:

    110

    )0(

    TThdx

    dTk

    x

    22 )(

    TLThdx

    dTk

    Lx

  • 8/22/2019 mel242-10.ppt

    22/26

    Wall with isothermal Surface and Convection Wall

    2112

    2

    0 CxCTCdx

    dT

    dx

    TdA

    Boundary conditions:

    1)0( TxT

    22 )( TLThdxdT

    kLx

  • 8/22/2019 mel242-10.ppt

    23/26

    Wall Surfaces with Convection

    2112

    2

    0 CxCTCdx

    dT

    dx

    TdA

    Boundary conditions:

    110

    )0(

    TThdx

    dTk

    x

    22 )(

    TLThdx

    dTk

    Lx

    Rconv,1 Rcond Rconv,2

    T1 T

    2

  • 8/22/2019 mel242-10.ppt

    24/26

    Heat transfer for a wall with dissimilar materials

    For this situation, the total heat flux Q is made up of the heat flux

    in the two parallel paths:

    Q = Q1

    + Q2

    with the total resistance given by:

  • 8/22/2019 mel242-10.ppt

    25/26

    Composite Walls

    The overall thermal resistance is given by

  • 8/22/2019 mel242-10.ppt

    26/26

    Desert Housing & Composite Walls