michiru nishiwaki - knuchep.knu.ac.kr/ecloud07/upload/10th_april/ecloud07_nishi... · 2007. 4....

19
1 ECLOUD 07 Measurement of Secondary Electron Yields from Bulky and Coated Materials for Beam Ducts Michiru Nishiwaki *1 and Shigeki Kato *1*2 *1 KEK *2 The Graduate University for Advanced Studies 9-12 Apr. 2007

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    ECLOUD 07

    Measurement of Secondary ElectronYields from Bulky and Coated Materials

    for Beam Ducts

    Michiru Nishiwaki*1 and Shigeki Kato*1*2

    *1 KEK*2 The Graduate University for Advanced Studies

    9-12 Apr. 2007

  • 2

    Contents

    • Introduction

    • Experimental Setup

    • Results —SEY & XPS—– Air Exposure

    – Sputter Cleaning

    – Electron Irradiation

    – Heating Treatment

    • Summary

  • 3

    Secondary Electron Yields (SEY)

    Materials, Surface States

    AirEnergetic Particles

    (Electron, Ion, Photon)Heat

    Introduction

    For proper understanding of the relation,the measurements of SEY and the surface analyses

    should be carried outin one vacuum experimental setup.

    In-situ Experiment

  • 4

    Surface Analysis with XPS(X-ray Photoelectron Spectroscopy)

    Measurements of Secondary Electron Yields(Primary Electron Energy and Incident Angular Dependence)

    ElectronIrradiation

    SputterCleaning

    Heating

    In-situ Experiment of Our Study

    in UHV

    As-received (Air Exposed) Sample

  • 5

    In-situ Experiment ;SEY Measurement, Surface Analyses (XPS, AES, SIMS), Surface Conditioning (Electron Irradiation, Sputtering, Heating)

    Base Pressure: 5××××10-9 Pa

    Experimental Setup

  • 6

    ultra fine particles of graphite deposited on copper with a film thickness of some tensµm

    highly oriented pyrolytic graphite

    single crystal of diamond (110) doped with boron

    amorphous carbon film on Si with a thickness of 100nm formed by ECR plasmadeposition

    diamond like carbon film with a thickness of 3µm formed by plasma CVD method ona type 304 stainless steel (Shinko Seiki)

    high grade of isotropic graphite purified with halogen gas

    non-evaporable getter (TiZrV) film coating on a type 304 stainless steel (SAESGetters S.p.A.)

    black nickel plating on a type 304 stainless steel (KEK)

    chromium suboxide plating on a type 304 stainless steel (KEK)

    oxidized pure titanium at 720K (KOBELCO)

    titanium nitride prepared by ion plating with a film thickness of 1.5µm (TiGold) and bymagnetron sputtering with a film thickness of 0.1∼ 0.2µm (P. He et al, BNL) on a type304 stainless steel

    lathed in Ar environment and treated with corona discharge (EXP) for high-purityaluminum (99.99%)

    type 304 stainless steel (substrate of TiN) (BNL)

    oxygen free copper (C10100) treated with a water solution of H2O2 and H2SO4

    Aquadag

    HOPG

    Diamond (110)

    AmorphousCarbon

    DLC

    IsotropicGraphite

    NEG

    Ni

    CrOx

    Ti

    TiN

    Al

    SS

    CuM

    etal

    Nitr

    ide

    & O

    xide

    Allo

    yC

    arbo

    n M

    ater

    ials

    Tested Materials

  • 7

    Air Exposed SurfaceThe surfaces were covered with carbon,oxygen, metal oxide, carbon oxide, etc,according to XPS results.

    Cu, SS, NEG, TiN

    19800

    20000

    20200

    20400

    20600

    20800

    21000

    928930932934936938����������������������Binding Energy [eV]

    CuO Cu2OCu

    5at%

    Air Exposed CuCu

    CuOx

    2800

    3000

    3200

    3400

    3600

    3800

    4000

    280282284286288290Cu#20040122-2-XPS-C-AR2���

    C 1s

    81at%

    Binding Energy [eV]

    Air Exposed

    C-Ox, C-(OH)x, etc

    CCu

    Inte

    nsity

    [a.

    u.]

    650

    700

    750

    800

    850

    900

    950

    1000

    1050

    280282284286288290���� ����������Binding Energy [eV]

    49at%

    C 1s TiC

    Air Exposed

    C-Ox, C-(OH)x, etc

    CTiN

    800

    850

    900

    950

    1000

    1050

    1100

    450452454456458460462464

    TiO2 Ti 2p3/2

    ���� ����� ������Binding Energy [eV]

    11at%

    Ti2O3TiN

    Air Exposed TiTiN

    Ti2O3

    TiNx

    Inte

    nsity

    [a.

    u.]

    0

    0.5

    1

    1.5

    2

    2.5

    0 1000 2000 3000 4000 5000Primary Energy [eV]

    ����������������������������������������

    Cu

    SS

    TiN

    NEG

    �� �� ��� ��� ��!���"����

    Normal Incidence

    Air Exposed

    δδδδmax=1.8~2.2

  • 8

    Sputter Cleaned Surface

    * The carbon and oxygen,oxide, etc, were removed byAr+ sputtering.

    * SEY values decreaseddepending on the materialelements.

    * TiN coating showed low SEYsand δδδδmax was less than 0.9.

    All Samples

    However, it is difficult toobtain completely cleansurface in a practicalconditions of accelerator.

    0

    0.5

    1

    1.5

    2

    2.5

    0 1000 2000 3000 4000 5000Primary Energy [eV]

    ����������������������#$��������%

    �� �� ���������"��&�

    Cu

    SS

    TiN

    Normal Incidence

    Ar+, 5 keV

    After Sputter Cleaning

  • 9

    Electron Irradiation to Air Exposed Surface

    * δδδδmax ≈1* Reduction of metal oxide occurred.* The amount of oxygen decreased. * Large amount of carbon remained.

    All Samples

    ElectronIrradiated

    SputterCleaned

    δδδδmax of Cu

  • 10

    0

    0.5

    1

    1.5

    2

    2.5

    1018 1019 1020

    Electron Dose [e-/cm2]Air

    Exposed

    1.34

    Cu#20040122-2_Dose-dmax3-2.qpc

    1.011.05

    1.00

    2.14

    Electron Dose Dependence of SEY and Surface State of Cu

    * δδδδmax decreased to 1.* Peak energy shifted to lowerbinding energy.

    Electron Beam Induced Graphitization

    2000

    2500

    3000

    3500

    4000

    4500

    280282284286288290�������������������! �'����

    C 1sCO

    81at%

    Binding Energy [eV]

    1x1020e-/cm2

    1x1018e-/cm2

    1x1019e-/cm2

    82at%

    82at%84at%

    ElectronIrradiated

    Air Exposed

    CCu

    δδδδmax=1

    Carbon Oxide and HydroxideChanged into GraphiticCarbon.

    0

    20

    40

    60

    80

    100

    Graphite component increased with electron dose.

  • 11

    Electron Beam Induced Graphitization in Other Materials

    Electron Beam Induced Graphitization resulted the decrease of SEY for any materials !!

    300

    400

    500

    600

    700

    800

    280282284286288290��������! �'���Binding Energy [eV]

    79at% 81at%

    C 1sCO

    SS

    ElectronIrradiated

    Air Exposed

    CSS

    1x1020e-/cm2

    1600

    2000

    2400

    2800

    3200

    280282284286288290����(� ��������Binding Energy [eV]

    35at% 44at%

    CarbideC 1s

    ElectronIrradiated

    Air Exposed

    CNEG1x1020e-/cm2

    300

    350

    400

    450

    500

    550

    600

    650

    700

    280282284286288290������������! �'����Binding Energy [eV]

    49at%

    C 1s

    44at%

    Graphite

    Air Exposed

    C-Ox,

    CTiN

    C-(OH)x, etcElectronIrradiated1x1020e-/cm2

    1500

    2000

    2500

    3000

    280282284286288290���������������������

    C 1s81at%

    Binding Energy [eV]

    Cu

    84at%

    1x1020e-/cm2

    ElectronIrradiated

    Air Exposed

    CCu

    GraphiteC-Ox,C-(OH)x, etc

  • 12

    0

    0.5

    1

    1.5

    2

    2.5

    0 1000 2000 3000 4000 5000Primary Energy [eV]

    Cu

    Sputtered Cu

    5 keV, 1x1020 e-/cm2���������������������������#$��������%������������

    �� �� ��� �# �����'���"����

    Electron Irradiation

    Electron Iraddiatedto Sputtered Cu

    Normal Incidence

    1600

    2000

    2400

    2800

    280282284286288290��������������������������������' �� �'���

    C 1s

    C

    Binding Energy [eV]

    1x1020e-/cm2

    84at%

    Cu

    23at%

    6at%After SputterCleaning (150nm)

    Electron Irradiated to Sputtered Surface

    Electron Irradiated to Air Exposed Surface

    Electron Beam Induced Graphitization at Sputter Cleaned Cu Surface

    * δmax decreased to 1.2.* The amount of carbon increased.* Carbon showed graphite state.

    What is the origin of the carbon?

  • 13

    100

    101

    102

    103

    104

    105

    106

    0 5 10 15 20 25

    Depth [µµµµm]

    Sample 2

    Sample 1

    Sample 3

    GD-MS Cu DepthProfile-C3.plot

    C

    GD-MS

    XPS

    OCu

    C

    The amounts of carbon were10 times larger than that of

    oxygen in bulk of Cu.

    Origin of Carbon in Cu

    The carbon atomsdiffused from the bulkof Cu and graphitized

    with electronirradiation.

    zoom

    < 20N.D.ASTM

    Standardof OFC

    1.5913.1Sample 3

    2.2210.4Sample 2

    0.9112.3Sample 1

    OC[at.ppm] at 25µm

    100101102103104105106

    0 0.1 0.2 0.3 0.4 0.5

    Depth [µµµµm]

    CuGD-MS Cu DepthProfile-C4.plot

    XPSCO

    GD-MSC

    * Oxygen Free Copper (OFC)* Surface Treated with CP

    (1.1µm removed)

  • 14

    � The origin of the carbon was found to be thecarbon impurities at the surface and diffusedfrom the bulk.

    � The graphitization influenced SEY values.

    � δmax decreased to ≈1 by the graphitization atthe air exposed surfaces due to the existenceof large amount of carbon for any materialsour measured.

    � Even cleaned Cu surface, the graphitizationoccurred and δδδδmax decreased.

    Electron Beam Induced Graphitization

  • 15

    Heat Treated Cu and NEG (no gas saturation)

    InsufficientGraphitization

    Cu

    High SEY

    NEG coating on beam duct is effective.

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    280282284286288290���������%�������! )����

    88at%

    Binding Energy [eV]

    70at%

    Peak Energy after ElectronIrradiationAir Exposed

    CCu

    C-Ox, C-(OH)

    x, etc

    After Heating

    1600

    2000

    2400

    2800

    3200

    280282284286288290����(�������! )����Binding Energy [eV]

    35at% 31at%

    Carbide

    Graphite

    Air Exposed

    CNEG

    C-Ox, C-(OH)

    x, etc

    After Heating

    0

    0.5

    1

    1.5

    2

    2.5

    0 1000 2000 3000 4000 5000Primary Energy [eV]

    �� ����)����"����

    Cu

    NEG

    ���������%�������������

    200 degrees C x 24 hrs

    Normal Incidence

    After Heating

    Metal CarbideFormation

    NEG(no gas saturation)

    Low SEY

  • 16

    1600

    2000

    2400

    2800

    3200

    3600

    4000

    280282284286288290NEGLT+CO-XPS-C-HT2.��Binding Energy [eV]

    MetalCarbideGraphite

    CNEG

    C-Ox, C-(OH)

    x, etc

    After Heating

    CO GasSaturated

    No GasSaturation

    0

    0.5

    1

    1.5

    2

    2.5

    0 1000 2000 3000 4000 5000Primary Energy [eV]

    NEGLT+LTCO-HT-SEY4.qpc

    ����(� (��*

    200 degrees C x 24 hrs

    Normal Incidence

    After Heating

    NEG (No Gas Saturation)

    NEG (CO Gas Saturated)

    NEG without and with Gas Saturation

    We need to pay attention to the increase of SEYwith the decrease of pumping speed in use ofNEG film coated beam duct.

    * Exposed to CO Gas until

  • 17

    Measured Materials and Results. 1

    after e-

    BeamIrradiation

    afterSputtering(90 nm)

    after e-

    BeamIrradiation

    afterSputtering(60 nm)

    after e-

    BeamIrradiation

    afterHeating(200°C)

    E max 200 eV 500 eV 250 eV 300 eV 375 eV 350 eV?max 1.1 1.2 1.0 0.97 1.0 1.0E max 400eV 700eV 400 eV 425eV 475 eV?max 1.6 1.5 1.3 1.1 1.2

    C 79 81 9 C 81 84 C 26 < 1 C 35 44 31O 19 16 2 O 14 6 O 42 3 O 47 21 17Fe

  • 18

    Measured Materials and Results. 2

    after e-Beam

    Irradiation

    afterSputtering

    (4 nm)

    as-received

    SlightSputtering

    as-received

    after e-Beam

    Irradiation

    afterSputtering

    (4 nm)

    Emax 325 eV 225 eV 225 eV 200 eV 250 eV 250 eV 200 eVδδδδ

    max 0.78 0.72 1.31 0.98 1.53 1.1 1.0Emax 400 eV 275 eV 350 eVδδδδ

    max 0.86 0.80 1.83C 99 > 99 > 99 99 99 90 97 > 98O 1 < 1 < 0.5 1 1 10 3 < 2

    afterSputtering(20 nm)

    Non-Sputtered

    Area

    SputteredArea

    afterAdditionalSputtering(+20 nm)

    Non-Sputtered

    Area

    SputteredArea

    (40 nm)

    SlightSputtering

    SlightSputtering

    Emax 250 eV 250 eV 250 eV 250 eV 250 eV 250 eV 175 eV 175 eVδδδδ

    max 1.3 1.2 1.2 0.84 0.88 0.84 1.07 0.99Emax 300 eV 300 eV 300 eV 300 eV 300 eV 300 eV 275 eVδδδδ

    max 1.5 1.5 1.3 0.94 1.1 0.94 1.48C 77 95 91 93 100 100 100 95 96O 23 5 9 7 0 0 0 5 4

    XPS [at%]

    0°200 eV

    1.8

    60°250 eV

    2.3

    Diamond(110)before Baking after Heating (250°C, 48h)

    after Re-Heating(500°C)

    XPS [at%]

    θθθθ

    AquaDag / Cu (pre-heated in vacuum)Amorphous

    Carbon

    beforeSputtering

    0°275 eV

    1.0

    60°350 eV

    1.2

    θθθθ

    Isotropic Graphite HOPG DLC

    as-received

  • 19

    Summary� We measured SEYs from Cu, SS, NEG film, TiN

    coating, etc with in-situ XPS surface analyses.

    � Even TiN and NEG film, SEYs were high for the airexposed surfaces due to the existence of thecarbon impurities and the metal oxide.

    � Electron Beam Induced Graphitization occurred atany materials surface even cleaned surface.

    � δmax decreased to ≈1.0 by electron beam inducedgraphitization of air exposed surfaces due to theexistence of large amount of carbon.

    � In NEG film without gas saturation, δmax ≈1.0 wasobtained with heating in the practical bakingtemperature due to the metal carbide formation.