miec* access device for 3d-crosspoint nonvolatile … access device for 3d-crosspoint nonvolatile...

41
© 2012 IBM Corporation MIEC* Access Device for 3D-Crosspoint Nonvolatile Memory Arrays IBM Almaden Research Center, San Jose, CA * Mixed-Ionic-Electronic-Conduction

Upload: truongxuyen

Post on 15-Mar-2018

224 views

Category:

Documents


4 download

TRANSCRIPT

© 2012 IBM Corporation

MIEC* Access Device for 3D-Crosspoint Nonvolatile Memory Arrays

IBM Almaden Research Center, San Jose, CA

* Mixed-Ionic-Electronic-Conduction

© 2012 IBM Corporation2

Storage Class Memory (SCM)

A new class of storage/memory devices that blurs the distinction between …

Memory (fast, expensive, volatile) and Storage (slow, cheap, nonvolatile)

• Solid-state no moving parts• Nonvolatile retains data on power-off• Fast access speed approaching DRAM• High endurance many program/erase cycles• Low cost per bit approaching hard disk

(Wilcke, USENIX FAST tutorial, 2009)

© 2012 IBM Corporation3

3D multi-layer crosspoint memory array

Effective cell size: 4F2Effective cell size: 4F2/L

Stack ‘L’ layers in 3D

F = minimum litho. feature size

As a result of the cost-basis of semiconductor manufacturing, memory cost is inversely related to bit density

Since they effectively store more bits per 4F2 footprint,

3D crosspoint (XPT) arrays path to low cost memory

(adapted from Burr, EIPBN 2008)

© 2012 IBM Corporation4

Nonvolatile Memory (NVM) candidates

• NAND Flash- very dense ( low bit cost) - currently at sub-20nm, but- endurance/retention get worse as scaling limits approached

• Phase Change Memory (PCM)

• Magnetic RAM (MRAM)- Spin-Torque-Transfer (STTRAM) arrays- Racetrack

• Resistive RAM (RRAM)- Oxide-based, or- Solid-electrolyte Conductive-Bridge RAM

Several NVM technology options for SCM

© 2012 IBM Corporation5

Phase Change Memory (PCM)Top Electrode (TE)

Bottom Electrode(BE)

Dielectric

crystalline amorphous

Top Electrode (TE)crystalline

RESET stateHigh Resistance

SET stateLow Resistance

SET (heat to crystallize)

RESET (melt + quench)(Burr et al, JVST B 2010)

• Mature (for emerging NVM)• Multiple-Level Cell capable• Scalable• Resistance drift• High reset current (density)

~10 MA/cm2 needed even for scaled PCM

© 2012 IBM Corporation6

Resistive RAM (RRAM)

RESET

“Forming”step

SET

Top electrode

Bot. electrode

insulator

Conductivefilament

(Burr: CMOS ET 2011)

V and I-driven creation & removal of conducting regions in insulator

Low resistance High resistance

RRAM examples

• Simple cell structure, usually fab-friendly• Low programming current (~10-100uA)• Good high temperature retention• High speed switching (sub-ns shown)• High endurance• Less mature (limited large array studies)• Intra- and inter-device variability

• TiN / HfOx/TiOx / TiN

H.Y. Lee et al, IEDM 2008, 2009, 2010 (ITRI)

• Pt / TaOx/ Pt

Z. Wei et al, IEDM 2008 (Panasonic)

Based on O-vacancy motion

Based on metal ion motion

• W / AgGeS / Ag

M.N. Kozicki et al, NVMTS 2005 (Arizona State Univ.)

The best RRAM candidates require bipolar operation

Typically, the best RRAM devices have SET and RESET voltages of opposite polarity

© 2012 IBM Corporation7

Need for access device

Memory Element (PCM, RRAM etc.)Access Device (Selector)

V

Sense I

Current ‘sneak path’ problem

Access device needed in series with memory element

• Cut off current ‘sneak paths’ that lead to incorrect sensing and wasted power• Typically diodes (rectifiers) used as access devices• Could also use devices with highly non-linear I-V curves

© 2012 IBM Corporation8

Access device wish list - 3D XPT memory

• High ON-state current density>10 MA/cm2 for PCM RESETSlightly lower (~MA/cm2) for RRAM

• Low OFF-state leakage current>107 ON/OFF ratio, andwide low-leakage voltage zone to accommodate half-selected cells in large arrays

• Back-End process compatible<400C processing to allow 3D stacking

• Bipolar operationneeded for optimum RRAM operation

IBM’s MIEC-based access device satisfies all these criteria

© 2012 IBM Corporation9

• Basic characteristics

• Switching speed

• Cycling endurance

• Scalability

© 2012 IBM Corporation10

MIEC device operation

Bottom Electrode (BE)

Top Electrode (TE)

MIEC

Cu+ Ion Motion

Cu-containing Mixed Ionic-Electronic Conduction† (MIEC) materials:

• Mobile Cu transport in E-field• Cu interstitials/vacancies can act as dopants relationship between mobile Cu and local electron/hole concentration

Voltage applied to electrodes leads to …• transient Cu ion drift, followed by• steady-state electron/hole currentOur devices:

BE inert (eg. W, TiN)TE inert or ionizableMIEC can be deposited @ ~200C

Exploit non-linear I-V relationship in MIEC devices for selector functionality

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

†Ref: I. Riess, Solid State Ionics, 157, 1 (2003) for an overview of MIEC models

© 2012 IBM Corporation11

Wide-area TEC device – DC sweeps

10A

1A

100nA

10nA

1nA

100pA

10pA

|Cur

rent

|

-0.6 -0.4 -0.2 0 0.2 0.30.1-0.1-0.3-0.5Applied TEC voltage [V]

VB(-0.355V)

VA(0.255V)

Voltage margin|VB| + VA

(0.61V)

~80 nm BEC ionizable TEC

Exponential DC I-V curve for negative TEC bias

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

© 2012 IBM Corporation12

High current-density capableVo

ltage

[V]

0 1 2Time [sec]

0

0.4

0.8

1.2

1.6

~3k

ArbitraryWaveformGenerator

DUT

Rs

3 4

~40 nm BEC ionizable TEC

~ 200 A 15 MA/cm2

Time [sec]

Volta

ge [V

]

Time [sec]

Volta

ge [V

]

Turn-on speeds and their temp. dependence suggest ionic transport

MIEC-based access device can deliver high current pulses

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

© 2012 IBM Corporation13

Bipolar I-V curves100A

1A

100nA

10nA

1nA

100pA

10pA

0.30.1-0.1-0.3-0.5

|Cur

rent

|

AppliedVoltage

[V]1pA

10A

0.5

W

gapoverlap

W

gapoverlap

W=200nmGap=100nmOverlap=250nm

200nminert TEC

80nm BEC

10A

1A

100nA

10nA

1nA

100pA

10pA

1pA

100A

|Cur

rent

|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Voltage [V]

MIEC

TEC

ILDBEC

poly-Si series resistor

MIEC

TEC

ILDBEC

poly-Si series resistor

Lateral (bridge) device Vertical device with scaled TEC

• Similar TEC and BEC areas, along with reduced MIEC volume eliminates abrupt ‘filamentary’ switching symmetric I-V curves

• Suitable (desirable) for bipolar memory elements such as RRAM

MIEC access devices can operate in both polarities

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

© 2012 IBM Corporation14

Integration into 200 mm wafer process

As-deposited

Post-CMP

TEM x-section

180 nm CMOS Front-End 1T1S

(1 transistor + 1 selector)

CMP process for MIEC material with modified commercial Cu slurry

self-aligned MIEC Diode-in-Via (DIV) in a 200 mm process(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation15

DIV – Low leakage current

~10 pA leakage currents near 0V & wide range with <100pA(Burr et al, 2012 VLSI Tech. Sym.) (Virwani et al, 2012 IEDM)

© 2012 IBM Corporation16

DIV – High current capable

Scope

Pulsegenerator

V

t

Current

t50

100’s of uA pulse currents ON/OFF ratio >107

(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation17

DIV – Small array characterization

5x10 arrays of FET-connected DIVs

• Voltage margin (Vm) ~1.1V • Low inter-device variability

Integrated small arrays of MIEC DIVs with high yield

(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation18

Large array integration

100% yield and tight distributions in 512 kbit 1T-1S array(Burr et al, 2012 VLSI Tech. Sym.)

© 2012 IBM Corporation19

MIEC + PCM integrated on 200mm process

Demonstrated > 105 cycles of PCM SET/RESET through stacked MIEC access device

(Burr et al, 2012 VLSI Tech. Sym.)

© 2012 IBM Corporation20

• Basic characteristics

• Switching speed

• Cycling endurance

• Scalability

© 2012 IBM Corporation21

Switching speed at high currents (WRITE)

MIEC access device can supply >150uA in 15ns …… sufficient to RESET PCM

(Virwani et al, IEDM 2012)

0

100

200

300

400

500

Time

Current[uA]

5 ns/division15ns

a)Increasing pulseamplitude

RESET current [uA]100 150 200 300 400

30nA

100nA

300nA

1uA

Rea

d C

urre

nt@

660m

V

post-SET

RESETPost-

© 2012 IBM Corporation22

Switching speed at low currents (READ)

MIEC access device can drive ~5uA in <<1us

(Virwani et al, IEDM 2012)

MIEC 1T-1S array structures with integrated sense amplifiers (SA)

Turn-on is slower at low currents ….

… but pulse shaping and overvoltage can be used to accelerate NVM READ

© 2012 IBM Corporation23

• Basic characteristics

• Switching speed

• Cycling endurance

• Scalability

© 2012 IBM Corporation24

Cycling endurance – low current

OFF current at -0.2V100pA

1nA

10nA

100nA

1A

10A

100A

|Cur

rent

|

ON current >5Asufficient for PCM-read

(Rs~30k Vapplied~ -0.8V)

OFF current at -0.3V

Pulse duration ~2s

100 1000 104 105 106 108 109 1010107

Pulses

80 nm BEC Wide-area ionizable TEC

Testing time-limited!

Low current (memory READ) endurance > 1010 cycles

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

© 2012 IBM Corporation25

Cycling endurance – high current

DC I-V curves monitored in between 100uA pulses

Leakage current rises …

… and voltage margin shrinks

After many cycles …

Finite high current (memory WRITE) endurance

(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation26

Cycling endurance trends

Endurance depends inversely on current (exponential) and pulse duration

(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation27

Cycling endurance trends (continued)

>108 endurance for sub-45 nm-node PCM!( IRESET < 150 A )

Strong current-dependence of MIEC access device endurance persists across many different device structures

Expect even higher MIEC endurance for RRAM (IPROG/ERASE <100uA)

(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation28

Cycling failure analysis

Before cycling After cycling

425,000 cycles @ 325 A

TEM/EELS local stoichiometryBEC CD ~ 80 nmWide area TEC

negative voltage on TEC

MIEC endurance failure is related to Cu accumulation(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation29

Cycling failure recovery

Endurance failure correctable by annealing and/or voltage pulses

(Shenoy et al, 2011 VLSI Tech. Sym.)

© 2012 IBM Corporation30

• Basic characteristics

• Switching speed

• Cycling endurance

• Scalability

© 2012 IBM Corporation31

Conductive AFM device characterization

Large thermal process budget window Manufacturable deposition

Process optimization for higher Vm

Rapid learning cycles enabled by cAFM

(Burr et al, 2012 VLSI Tech. Sym.)

Short loop process flows on relevant structures

© 2012 IBM Corporation32

Lateral scaling – BEC size

80nm40nm

1m10A

1A

100nA

10nA

1nA

100pA

|Cur

rent

|

10pA

Vbias-0.50V

-0.35V

-0.30V

-0.25V

Via height:20nm

200 400 600 800

Time [ns]0

0

0.4

0.8

1.2

1.6

Volta

ge [V

]

1000 104 105 106Via height: 40nm

250nm

Via area = CD2 [nm2]

Wide-area Ionizable TEC

19 nm

Current scales well with BEC size over several orders of magnitude

Suggests non-filamentary nature of operation mechanism(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

© 2012 IBM Corporation33

Selector functionality is maintained in fully confined MIEC devices with reduced TEC and BEC size

Lateral scaling – TEC size (1)

Voltage margin increased with smaller TEC CD

(Virwani et al, 2012 IEDM)(Shenoy et al, 2011 VLSI Tech. Sym.)

Consistent with trend seen on earlier devices

© 2012 IBM Corporation34

Ultra-scaled MIEC access devices can still deliver >100uA pulse currents in both polarities

Lateral scaling – TEC size (2)

(Virwani et al, 2012 IEDM)

© 2012 IBM Corporation35

No lower limit to lateral scaling has been found so far

Lateral scaling – TEC size (3)

(Virwani et al, 2012 IEDM)

Sub-30nm lateral CD MIEC device

© 2012 IBM Corporation36

Thickness scaling trends

SiN

Si wafer

BECoxide

C-AFMtip

TEC

MIEC dmin

Cumulative distribution plots of 10nA MIEC voltage margin

MIEC devices are well behaved down to 12nm minimum inter-electrode distance (dmin)

(Virwani et al, 2012 IEDM)

© 2012 IBM Corporation37

Thickness scaling – Failure Analysis (1)

Start to see some failures in arrays of MIEC devices with dmin ~12nm Leakage current increases

(Virwani et al, 2012 IEDM)

© 2012 IBM Corporation38

Thickness scaling – Failure Analysis (2)

Lower limit seen for thickness scaling of this MIEC access device

(Virwani et al, 2012 IEDM)Good

Good

Bad

Use TEM to correlate device failures to MIEC thickness

© 2012 IBM Corporation39

Summary Symmetric MIEC access devices with “bipolar” device characteristics are uniquely

suitable for crosspoint RRAM, yet have sufficient current for PCM as well ... versatile selector for non-volatile memory arrays

MIEC devices can be deposited and processed at BEOL temperatures (and also survive 500C process) ...suitable for 3D multilayer stacking

MIEC device functionality demonstrated down to sub-30 nm CD, and voltage margin is preserved down to at ~11 nm thickness ...scalable

Ultra high current density obtained in pulsed mode for MIEC devices > 50 MA/cm2 @ 20 nm CD – ample current to drive either RRAM or PCM.

MIEC devices have very low leakage ~10pA near 0V …ON/OFF ratio > 107

Turn-on speed ~15ns at WRITE-level (150uA) current and <<1us at READ-level current (5uA) … high speed operation

MIEC device cycling endurance > 108 cycles shown @ sub 150 A current. Endurance improves exponentially at lower currents … high endurance

MIEC process demonstrated with 100% yields and low variability on 0.5 Mbit array ... bodes well for manufacturability

© 2012 IBM Corporation40

Acknowledgements – Team members

IBM AlmadenGeoffrey Burr, Rohit Shenoy, Kumar Virwani, Alvaro Padilla, Andrew Kellock, Charles Rettner, Donald Bethune, Robert Shelby, Khanh Nguyen, Amy Bowers, Mark Jurich, Robin King, Dean Pearson, Noel Arellano, Alexander FrizTEM Group: Philip Rice, Teya Topuria, Leslie Krupp, Eugene Delenia

IBM YorktownKailash Gopalakrishnan, Gloria Ho, Matthew BrightSky, Eric Joseph, Michael Lofaro, Simone Raoux, Jing Li, Ravi Dasaka

IBM India (SRDC: Semiconductor Research Development Center)Karthik Venkataraman, Rajan Pandey, Kota Murali

Management SupportBulent Kurdi, Chung Lam, Winfried Wilcke, Chandrasekhar Narayan, Tze-Chiang Chen

IBM Yorktown MRL Fabrication Line support

© 2012 IBM Corporation41

References

K. Virwani, G. W. Burr, R. S. Shenoy, C. T. Rettner, A. Padilla, T. Topuria, P. M. Rice, G. Ho, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, M. BrightSky, E. A. Joseph, A. J. Kellock, N. Arellano, B. N. Kurdi and K. Gopalakrishnan, "Sub-30nm scaling and high-speed operation of fully-confined Access-Devices for 3D crosspoint memory based on Mixed-Ionic-Electronic-Conduction (MIEC) Materials," 2012 IEEE International Electron Devices Meeting (IEDM 2012), T2.7, Dec 2012.

G. W. Burr, K. Virwani, R. S. Shenoy, A. Padilla, M. BrightSky, E. A. Joseph, M. Lofaro, A. J. Kellock, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, C. T. Rettner, B. Jackson, D. S. Bethune, R. M. Shelby, T. Topuria, N. Arellano, P. M. Rice, B. N. Kurdi, and K. Gopalakrishnan, "Large-scale (512kbit) integration of Multilayer-ready Access-Devices based on Mixed-Ionic-Electronic-Conduction (MIEC) at 100% yield," 2012 Symposium on VLSI Technology, T5-4, June 2012.

R. S. Shenoy, K. Gopalakrishnan, B. Jackson, K. Virwani, G. W. Burr, C. T. Rettner, A. Padilla, D. S. Bethune, R. M. Shelby, A. J. Kellock, M. Breitwisch, E. A. Joseph, R. Dasaka, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, A. M. Friz, T. Topuria, P. M. Rice, and B. N. Kurdi, "Endurance and Scaling Trends of Novel Access-Devices for Multi-Layer Crosspoint-Memory based on Mixed-Ionic-Electronic-Conduction (MIEC) Materials," 2011 Symposium on VLSI Technology, T5B-1, June 2011.

G. W. Burr, "Storage Class Memory," 2011 CMOS Emerging Technologies, June 2011.

K. Gopalakrishnan, R. S. Shenoy, C. T. Rettner, K. Virwani, D. S. Bethune, R. M. Shelby, G. W. Burr, A. J. Kellock, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, B. Jackson, A. M. Friz, T. Topuria, P. M. Rice, and B. N. Kurdi, "Highly-Scalable Novel Access Device based on Mixed Ionic Electronic Conduction (MIEC) Materials for High Density Phase Change Memory (PCM) Arrays," 2010 Symposium on VLSI Technology, 19.4, June 2010.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. Shenoy, “Phase change memory technology," Journal of Vacuum Science & Technology B, 28(2), 223-262 (2010).

Richard Freitas, Winfried Wilcke, Bülent Kurdi, and Geoffrey Burr, “Storage Class Memory, Technology, and Uses,” Tutorial T3, 7th USENIX Conference on File and Storage Technologies (FAST’09), February 2009.

G. W. Burr, K. Gopalakrishnan, R. S. Shenoy, C. T. Rettner, and B. N. Kurdi, “Storage Class Memory,” EIPBN 2008 --- The 52nd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, May 2008.