mipi 技术及物理层测试的挑战 -...

77
MIPI 技术及物理层测试的挑战 Page 1 是德科技(Keysight)携手MIPI联盟和 Synopsys共同推动MIPI技术发展

Upload: others

Post on 09-Apr-2020

45 views

Category:

Documents


0 download

TRANSCRIPT

MIPI 技术及物理层测试的挑战

Page 1

–是德科技(Keysight)携手MIPI联盟和Synopsys共同推动MIPI技术发展

内容安排

–第一部

• MIPI 联盟简介、中国成员、规范框架以及未来走向

–第二部

• Synopsys 的 MIPI相关IP技术及其与UFS/SSIC/M-PCIe的

互操作性

–第三部

• MIPI物理层发展规划以及电气特征测试方案

MIPI联盟—移动及相关产业的接口规范

演讲人

MIPI联盟-总经理皮特.莱弗金

Copyright © 2013 MIPI Alliance. All rights reserved.

MIPI 概述• MIPI联盟是致力于发展移动及相关产业接口规范的国际组织

– MIPI规范为移动手机及其他设备的运行提供基础的接口解决方案

– 现代的移动生态系统包括平板电脑、笔记本电脑、以及其他设备

• MIPI联盟成立于2003年,目前在世界范围内有275家企业成员

– 企业成员包括:手机设备制造商、外围设备制造商、软件提供商、半导体公司、应用程序处理器开发人员、知识产权提供商、测试和测试设备公司、相机、平板和笔记本电脑制造商。

• MIPI有14个活跃的工作组

– 模拟控制接口、电池接口、相机、调试、展示、低延迟接口、LML、市场营销、实体、无线电频、前端、传感器、软件及其同类、测试工作组以及UniPro

• 联盟已经推行了超过45项移动生态系统规范

• MIPI联盟的战略合作伙伴包括:

– JEDEC, PCI-SIG®, MEMS Industry Group®, USB-IF, VESA

Copyright © 2014 MIPI Alliance. All rights reserved.

MIPI联盟的15家中国(包括香港)的成员包括

Copyright © 2014 MIPI Alliance. All rights reserved.

还有36家来自台湾的公司没有列出

我们将在上海举行年度会议

• MIPI联盟开放与演示日将于10月9日(09:00 – 15:00)在上海举行

– 向所有的非会员、会员、媒体和分析师免费开放

– 关于MIPI规范的演讲(涉及物理层、传感器、SoundWire、CSI以及DSI)

– 演示日将与开放日同期举行,现场将演示各种MIPI产品

• 如果您对该活动感兴趣,可通过以下网址在线注册:http://www.cvent.com/d/n4q5sq

Copyright © 2014 MIPI Alliance. All rights reserved.

Copyright © 2014 MIPI Alliance. All rights reserved.

MIPI系统图

MIPI规范架构包括:多媒体、数据/控制、跟踪调试、芯片间的通信

Copyright © 2014 MIPI Alliance. All rights reserved.

RFFE - RF Front End

eTrak - Envelope Tracking

SPMI - Power Mgmt

BIF - Battery

UFS - Storage

DSI - Display

CSI - Camera

SLIMbus, SoundWire - Audio

SPP - SneakPeek Protocol

NIDnT - Narrow Interface for Debug & Trace

TWP - Trace Wrapper Protocol

STP - System Trace Protocol

UniPort-M (UniPro on M-PHY)

LLI – Low Latency Interface (on M-PHY)

M-PCIe – Mobile PCI Express (PCIe on M-PHY)

SSIC – SuperSpeed InterChip (USB3 on M-PHY)

关于MIPI实体规范的新闻稿将于9月17日发布

• MIPI联盟推出MIPI C-PHY与D-PHY的更新——新规范的发布将扩展MIPI联盟为移动及相关产业应用所提供物理层级规范的家族

• 今天MIPI推出新的MIPI C-PHY

– 扩展了MIPI联合会 的物理层级规范,拓宽了生产商们的接口选择,同时也为公司基于特定商业策略或技术要求的差异化产品设计,提供了新的机遇

– 专为程序处理器连接相机和显示模块设计

• 更新了1.2版本的D-PHY以及3,1版本的M-PHY

• 1.0版本MIPI C-PHY 、1.2版本的D-PHY以及3,1版本的M-PHY现在对MIPI联合会成员开放

Copyright © 2014 MIPI Alliance. All rights reserved.

MIPI联盟的未来——超越移动产业

• 移动产业影响社会中的一切

• 一切都变得更快、更小和更节能

– MIPI联盟将继续研发规范,以充分利用移动设备技术的发展。

Copyright © 2014 MIPI Alliance. All rights reserved.

总结

• 在2014~2015这两年里,中国将成为MIPI联盟的最新战略重点地区,为更多想加入MIPI联盟的中国公司提供机会,同时希望中国公司能够在MIPI未来发展方向上做出贡献。

• MIPI联盟将于10月9日在上海举办首个中国开放和演示日。

― 届时,将对所有提前在线注册的MIPI会员和非会员,媒体,分析师以及相关企业、个人和业界专业人士免费开放。

― 开放日将为MIPI的会员们提供一个公开交流的平台和机会,并针对非会员和媒体设置了问答环节。

• 我相信在未来,MIPI联盟将会研发出更多先进的、更创新的标准和规范。

Copyright © 2014 MIPI Alliance. All rights reserved.

谢谢

如需了解更多关于MIPI联盟的常见问题以及会员申请等详情,请按照以下方式联系MIPI联合会总经理皮特.莱弗金先生。

Peter Lefkin – Managing Director [email protected]

Telephone: +1 732 562 3802

www.mipi.org

Copyright © 2014 MIPI Alliance. All rights reserved.

–第一部

• MIPI 联盟简介、中国成员、规范框架以及未来走向

–第二部

• Synopsys 的 MIPI相关IP技术及其与UFS/SSIC/M-PCIe的

互操作性

–第三部

• MIPI物理层发展规划以及电气特征测试方案

内容安排

Synopsys DesignWare MIPI IP

Haopeng Liu

September, 17, 2014

14

Application ProcessorBaseband IC

DesignWare MIPI IPConnectivity IP Between Various ICs

DS

I2G/3G RF IC

DigRF 3G

Slave

DigRF 3G

DigRF v4

Master4G RF IC

DigRF v4

SlaveDigRF v4

M-P

HY

LLI

M-P

HY M

-PH

Y

M-P

HY

3G

PH

Y

CSI-2

Host

DSI

Host

D-PHY D-PHY

LLILLI

DigRF 3G

Master

3G

PH

Y

SS

IC \

M-P

CIe

Ho

st

M-P

HY

Companion IC

M-P

HY

SS

IC \

M-P

CIe

D

evic

e

M-P

HY

Storage IC

SSIC

M-PCIe

UFS

Un

iPro

UF

S H

ost

CS

I-2

Un

iPro

UF

S

Devic

e

Ima

ge

Se

ns

or

D-PHY

CSI-2

Device

Dis

pla

y

D-PHY

DSI

Device

M-P

HY

Current portfolio

M-P

HY

SS

IC /

M-P

CIe

D

evic

e

SS

IC /

/M-P

CIe

Ho

st

M-P

HY SSIC

M-PCIe

M-P

HY

ARA Module

UniPort-M

Un

iPro

Un

iPro

Ap

plicati

on

M-P

HY

Ap

plicati

on

Optimized and Flexible D-PHYSupports 2.5G speeds, ½ the area and power

– D-PHY v1.2 specification

• 2.5Gbps/lane

• Power, Area and Performance Optimized

• Variety of configurations

• DSI Host, CSI2 Device

• CSI2 Host, DSI Device

• Different # of data lanes available

• Interoperable and Integrated with Synopsys

CSI2 and DSI controllers

• Low risk and quick time to market

• Available in 16nm and 28nm

Rx

D-PHY PP

I

Inte

rfac

e

Blo

ck

PP

I

Inte

rfac

e

Blo

ckD-PHY

w/ PLL

Tx D-PHY

Rx D-PHY

DSI Host

CSI2 Device

CSI2 Host

DSI Device

DesignWare UFS v2.0 for Mobile AppsFuture Proof, Interoperable Host and Device Solution

CDinDoutC

UniPro v1.60

Fully Verified, Flexible

RMMI

Silicon-Proven M-PHY HS-Gear3 B

UFS Host v2.00

Fully Verified, Gear3

UFS Software Drivers

Linux, OS-less

Future Proof

M-PHY, UFS IP

Power Modes

Compact and Configurable

Host and Device Customers

Prototyping System

Deployed

Source: Samsung

presentation, JEDEC

Mobile Forum May 2013

Synopsys M-PHY Interoperablew/ UFS, SSIC, M-PCIe

• M-PCIe Controller and

MIPI Gear3 M-PHY

• Compliant USB SSIC

with M-PHY

• Interoperable with

TWO different UFS

devices

内容安排

–第一部

• MIPI 联盟简介、中国成员、规范框架以及未来走向

–第二部

• Synopsys 的 MIPI相关IP技术及其与UFS/SSIC/M-PCIe的

互操作性

–第三部

• MIPI物理层发展规划以及电气特征测试方案

MIPI 物理层测试的挑战

–李凯

Page 20

测试主题的内容安排

MIPI 物理层的发展

MIPI 物理层的电气特点

物理层测试的挑战以及测试方案

• 发送端的测试

• 接收端的测试

• 回波损耗的测试

总结

• Our solutions are driven and supported by Agilent expertsinvolved in international standards committees:

• Joint Electronic Devices Engineering Council (JEDEC)• PCI Special Interest Group (PCI-SIG® )• Video Electronics Standards Association (VESA)• Serial ATA International Organization (SATA-IO)• Serial Attached SCSI Committee (T10)• USB-Implementers Forum (USB-IF)• Mobile Industry Processor Interface (MIPI) Alliance• Optical Communications• And many others

• We’re active in standard meetings, workshops, plugfests, and seminars.

• We get involved so you benefit with the right solutions when you need them

Keysight的标准跟踪和应用项目计划

Jim Choate

USB-IF Compliance Committee

USB 3.0 Electrical Test Spec WG

Rick Eads

PCI-SIG Board

Member

Brian Fetz

DisplayPort Phy CTS Editor

VESA Board Member

Keysight maintains engagement in the top high tech

standards organizations

Perry Keller

JEDEC Board

Member

Thomas Dippon

HDMI Forum Board

Member

Min-Jie Chong

SATA PHY/LOGO, SAS T10,

MIPI PHY/CTS Contributor

Keysight的专家团队-我们理解您未来的需求

UniPro

UFS

Physical

Standard

Protocol

Standard

DigRF

v3

D-PHY

C-PHY

CSI-2 DSI-1DigRF

v4

M-PHY

Application

DSI-2CSI-3

MIPI 的物理层、协议层以及承载的应用

LLI SSIC M-PCIe

MIPI 物理层标准的最新变化

• M-PHY Gear 4

• Double the data rate of M-PHY Gear 3 (~5.8Gbps)

• Data rate will increase to ~11.6Gbps

• Variable M-PHY data rate

• Current fixed rate is inefficient and high overhead

• D-PHY 1.2 and 2.0

• Increase data rate from 1.5Gbps up to 3.5Gbps

• Add RX deskew (burden at RX)

• Support up to 8 lanes per clock

• C-PHY (previously known as 3-Phase D-PHY)

• 3-wire signal architecture, vs. 2-wire differential used in D-PHY

• Increase the number of bits per symbol (~2.28 bit/symbol)

• Projected rate at 2.5GSym/s (effective data rate of ~5.7Gbps)

测试主题的内容安排

MIPI 物理层的发展

MIPI 物理层的电气特点

物理层测试的挑战以及测试方案

• 发送端的测试

• 接收端的测试

• 回波损耗的测试

总结

High speed mode,

Differential signaling, 100 ohm termination,

source synchronous with double data rate clocking

Low power mode

Unterminated, not differential, clock embedded within data

D-PHY 物理层的特点高速模式和低功耗模式

M-PHY 物理层的特点高速模式和低速模式

• High Speed NRZ (HS) and Lower Speed (LS) modes

- Common LS mode: Pulse Width Modulation (PWM)

• Always differential and 8b/10b coded

• High and low voltage swing operations

• Terminated (100 ohm) or not terminated operation

PWM Scheme

RT

RT

TXDP

TXDN

RXDP

RXDN

ZHI

ZHI

VLD

RT

RT

TXTerminations

RX

C-PHY 物理层的特点曾被称为 3相 D-PHY

• 3-wire (trio A, B, C) signal represents a lane vs. 2-wire in D-PHY

• New encoding scheme to increase the number of bits per symbol

(~2.28bit/symbol)

• Embedded clock recovered from each symbol transition

• Signal is transmitted single-ended but received using differential receivers

• Reuse LP mode defined in D-PHY

D-PHY 10-wire signals C-PHY 9-wire signals (3-trios)

C-PHY 的信号特点高速信号的波形

Transmit: A, B and C

Receive: A-B, B-C and C-A

C-PHY 的眼图和模板高速信号测试

3

1

• Clock is recovered from the earliest edge of a symbol transition.

• A delay circuit with negative hold time is used to sample data. Supposed to be more resistant to noise and jitter on the system.

Strong-1

Weak-1

Weak-0

Strong-0

0V threshold

C-PHY 测试中还有待解决的一些问题

• What are the jitter and eye mask definitions?

• Availability of dynamic termination board required

for TX test and calibration of the RX stress signal.

• What are the test patterns to use for test?

• How is error detection achieved since no 3-wire

ED (error detector) is available?• Implement error counter in DUT and provide side-band

interface for error read-out

• What is the right figure of merit instead of BER for

RX test?

内容安排

MIPI 物理层的发展

MIPI 物理层的电气特点

物理层测试的挑战以及测试方案

• 发送端的测试

• 接收端的测试

• 回波损耗的测试

总结

发送端测试的挑战

• Test board design for chipset

• Dynamic terminations between operation modes

• Probe noise, response and loading

• Huge list of conformance test requirement

• Multilane testing with oscilloscope limited channels

• Removing test setup loss from measurement

• Correlating physical and protocol issues

适用于芯片、模组测试的测试板Test Vehicle Board (TVB)

Page

35

https://members.mipi.org/mipi-

testing/workspace/StartPage

PHY

Chip

TVB

不同工作模式下的动态端接Reference Termination Board (RTB)

Reference Termination Board

(RTB) terminates the signals

dynamically according to the

operation termination

requirement.

D-PHY and C-PHY RTB, as well

as fixed M-PHY load board are

available.

https://www.iol.unh.edu/services/

testing/mipi/fixtures.php

PHY

Chip

TVB

RTB

SMA

Probe

探头的噪声、频响和负载影响

P

a

g

• Probes with low noise and loading (as low as 70 fF) are available.

• S-parameter stored in the probe amplifier.

• PrecisionProbe can be used for AC calibration.

• Flexible probe accessories:

o Solder-in probe head

o ZIF probe and tips

o Socket head

o Browser

o 2.92mm/SMA head

Example 25 GHz ZIF probe and tip

InfiniiMax Probes

MIPI 信号的探测方法

– D-PHY and C-PHY probing option:

1. Solder down on dynamic load (50-ohm and open)

– M-PHY probing options:

1. Solder down on 100-ohm differential load

2. Direct connection into scope

3. SMA probe head

– Notes: Direct DC connection is recommended if it doesn’t

impact transmitter performance by comparing results

between DC (without cap) and AC (with cap) connections. If

performance decreases, use SMA probe head.

M-PHY HS-G3 的信号测试对比测试条件:发送端没有预加重,没有传输通道

Direct AC-coupled into scope

front-end

Direct DC-coupled into scope

front-end

InfiniiMax II 1169A SMA

Probe

InfiniiMax III N2800A SMA

Probe

M-PHY HS-G3 的信号测试对比测试条件:发送端没有预加重,经过CH1参考通道

InfiniiMax III N2800A SMA Probe

Direct AC-coupled into scope

front-end

Direct DC-coupled into scope

front-end

InfiniiMax II 1169A SMA Probe

大量的一致性测试项目Signal Group Test Parameters

High-Speed Clock

Electrical Transmitter

Characteristics

Static Common Mode Voltage (Vcmtx)

Vcmtx Mismatch

Differential Voltage (VOD)

Differential Voltage Mismatch

Single-Ended Output High Voltage (VOHHS)

Common-Level Variations Above 450MHz (VCMTX(HF))

Common-Level Variations Between 50-450MHz (VCMTX(LF))

20%-80% Rise Time (tR)

20%-80% Fall Time (tF)

High-Speed Data

Electrical Transmitter

Characteristics

Static Common Mode Voltage (Vcmtx)

Vcmtx Mismatch

Differential Voltage (VOD)

Differential Voltage Mismatch

Single-Ended Output High Voltage (VOHHS)

Common-Level Variations Above 450MHz (VCMTX(HF))

Common-Level Variations Between 50-450MHz (VCMTX(LF))

20%-80% Rise Time (tR)

20%-80% Fall Time (tF)

Signal Group Test Parameters

LP TX Electrical

Characteristics

Thevenin Output High Voltage Level (VOH)

Thevenin Output Low Voltage Level (VOL)

30%-85% Post-EoT Rise Time (TREOT)

15%-85% Fall Time (TFLP)

15%-85% Rise Time (TRLP)

Pulse Width of LP TX Exclusive-OR Clock (TLP-PULSE-TX)

Period of L TX Exclusive-OR Clock (TLP-PER-TX)

Slew Rate Vs. CLoad

Global Operation for

Data Signals

TLPX

LP Exit: DATA TX THS-PREPARE

LP Exit: DATA TX THS-PREPARE+THS-ZERO

HS Exit: DATA TX THS-TRAIL

HS Exit: DATA TX TEOT

HS Exit: DATA TX THS-EXIT

Global Operation for

Clock

LP Exit: CLK TX THS-EXIT

LP Exit: CLK TX TLPX

LP Exit: CLK TX TCLK-PREPARE

LP Exit: CLK TX TCLK-PREPARE+TCLK-ZERO

LP Exit: CLK TX TCLK-TRAIL

HS Exit: LK TX TEOT

HS Data-Clock Timing

HS Clock Instantaneous (UIinst)

HS Clock Rising Edge Alignments to First Payload Bit

Data-to-Clock Skew (TSKEW(TX))

HS Clock

PHY

HS Data

PHY

LP Clock /

Data PHY

LP-HS Data

Timing

LP-HS Clock

Timing

HS Clock-

Data Timing

D-PHY 物理层测试时间参数测试

MIN: 50ns

MAX:

35ns+4*UI

MIN: 40ns

MAX:

55ns+4*UI

MIN:

max{n*8*UI,

60ns+n*4*UI}

MIN:

100ns

MAX:

105ns+n*12*UI

n=1 forward direction HS mode

n=4 backward direction HS mode

UI: 1GB/s = 1ns

MIN:

40ns+4*UI

MAX:

85ns+6*UI

MIN:

145ns+10*UI-

THS-Prepare

MAX:

35ns

1GB/s: UI=1ns

HS-PREPARE:

MIN: 44ns

MAX: 91ns

HS-ZERO:

MIN: 64ns = 145ns+10*1ns-91ns

M-PHY CTS v3.0r14 要求的高速信号的测试项目

HS-TX TestsHS-G1 HS-G2 HS-G3 Burst

Continuo

us LA SA RT NT

1.1.1 f_OFFSET Yes Yes Yes Yes Yes Yes No Yes No

1.1.2 PSDCM Info No No Yes No Yes Yes Yes No

1.1.3 PREPARE_Length Yes Yes Yes Yes No Yes Yes Yes No

1.1.4 VCM Yes Yes Yes Yes No Yes Yes Yes No

1.1.5 VDIF_DC Yes Yes Yes Yes No Yes Yes Yes No

1.1.6 G1/G2 TEYE_TX,

VDIF_AC Yes Yes No Yes Yes Yes Yes Yes No

1.1.7 G3 TEYE_TX, VDIF_AC No No Yes Yes Yes Yes Yes Yes No

1.1.8 TR_TF_HS Yes Yes Yes Yes No Yes Yes Yes No

1.1.9 L2L_SKEW Yes Yes Yes Yes No Yes No Yes No

1.1.10 SR_DIF[MAX] Yes No No Yes No Yes Yes Yes No

1.1.10 SR_DIF[MIN] Yes No No Yes No Yes Yes Yes No

1.1.11 SR_DIF

Monotonicity Yes No No Yes No Yes Yes Yes No

1.1.12 ∆SR_DIF Resolution Yes No No Yes No Yes Yes Yes No

1.1.13 TINTRA_SKEW Yes Yes Yes Yes Optional Yes Yes Yes No

1.1.14 TPULSE Yes Yes Yes Yes No Yes Yes Yes No

1.1.15 TJ Yes Yes Yes No Yes Yes Yes Yes No

1.1.16 STTJ Yes Yes Yes Info Yes Yes Yes Yes No

1.1.17 DJ Yes Yes Yes No Yes Yes Yes Yes No

1.1.18 STDJ Yes Yes Yes Info Yes Yes Yes Yes No

M-PHY 眼图和抖动的测试

• No de-emphasis in G1 and G2. G3 requires de-emphasis.

• Nominal 3.5dB de-emphasis for LA and SA swing

• Nominal 6dB de-emphasis for LA swing

• G4 requires CTLE and one-tap DFE at receiver.

• Different BER 1E-10 eye mask definition for G1, G2 and G3.

• G4 leverages G3 reference channels and also to include reference package model.

• TJ, DJ, STTJ and STDJ are normative with continuous signal. DJ and STDJ are informative with burst using TIEpp method.

G1 – 0.2UI opening between 0.4-0.9UI

No channel0.2UI eye opening at 0.5UI

No channel

Diamond mask at 0.5UI

Embed CH1 – SA and CH2 – LA swing

C-PHY 物理层的测试大量的时间参数测试– –来源于D-PHY但又不太一样

• Rise/fall time measured between -58mV to 58mV thresholds on S-W transitions. W-

W transitions are slowest, but S-W are critical to eye-opening.

• Eye mask defined at the receiver.

• Embed 6-port model – IL/RL and CTLE, as well as Xtalk from adjacent channels.

• Jitter still undefined.

• Common point replaces common mode test.

C-PHY 上升/下降时间、眼图和抖动的测试

自动的信号一致性测试软件

Configure the

Device Under Test

Select Tests.

Automatically generate

test report.

多通道测试• Limited oscilloscope channels prevent full automated

testing of multilane MIPI interface.

• Overcome with switch matrix, which automates lane switching and test.

• Switch matrix calibration to remove loss and skew.

DSA 90000 X-Series

16GHz Agilent Oscilloscope

2x6 (1x6 differential)

Switch Matrix

Agilent U3020AS26

4 differential lanes configured

消除测试电缆、探头损耗带来的影响

Computed insertion loss

gain function based on

measured S21 (Yellow)

Original signal

frequency

content (green)

Frequency content with

loss compensation

applied (Blue)

使用示波器和矢网的去嵌入功能(InfiniiSim) 或者示波器的TDT修正功能(PrecisionProbe)

物理层和协议层的联合调试在示波器里进行MIPI的协议解码 (举例: UFS / UniPro)

Simultaneous

show UFS and

UniPro packet

decode on

analog

waveform.

Move back and

forth between

UFS and UniPro

packets

Shows

whether the

bits are

correctly

received with

the CRC

verification.

通过CRC校验进行物理层和协议层的联合调试

Calm color shows the packets are

received correctly with no error when

the computed CRC matches CRC

transmitted in the packet. Signal

integrity and protocol are good.

Bright color warns the packets are

received incorrectly when the

computed CRC and CRC transmitted

in the packet do not match. This could

be related to signal integrity or

protocol issues. User can go in to

debug the issues.

测试主题的内容安排

MIPI 物理层的发展

MIPI 物理层的电气特点

物理层测试的挑战以及测试方案

• 发送端的测试

• 接收端的测试

• 回波损耗的测试

总结

接收端的测试

Stressed Signal Generator

RJDJISI

Rx

ChipTx

Loop BackRJRJ+DJRJ+DJ+ISI

Error Detector

Stressed Signal

Jitter Cocktail

ISI

接收端测试的挑战

• Receiver stress signal generation

- Various timing requirements

- Complex jitter cocktail

• Programming designs into test modes

- No standardization in the PHY spec

- Method varies by the protocol

• Error detection with different protocols

- No standardization

- Specific method defined in protocol spec, not in PHY

spec

- Not mandatory (optional normative / recommendation)

- Asymmetrical lane configuration

Custom

Test Board

TP

ISI Conformance Channel

BERT

Pattern

Generator

w/ TTCs

Breakout Trace

ASICRX

DUT

TX

Ref

Clk

Inte

rnal Loopback

or

Err

or

counte

r

Replica

Trace

M-PHY接收端测试的连接

产生压力信号并根据CTS要求进行校准

535mm

580mm

45mm

100 Ohm

Differential

Probe

RT-Oscilloscope

Test board with Replica Traces

creating test point (TP) for calibration

equivalent to the ASIC-input pins

使用M8020A进行M-PHY接收端测试的连接

• 1:1 match of CTS proposed set-up with actual Agilent J-BERT set-up

• ISI conformance channel relaized through N4915 60001 SATA ISI trace (2)

RT-Oscilloscope

J-BERT M8020A

100 Ohm

Differential

Probe

Err

Ctr

M-

RX

M-TX

loopback

N4915-60001

D-PHY 接收端测试的典型配置需要通过合路的方式同时产生HS和LP的信号

DUT

举例:支持1对时钟线和2对数据线的基于81250的配置

产生D-PHY的压力信号的例子

C-PHY接收测试设置 (One Trio)

• Two M8190A AWG modules + one M8192A sync module is

needed to drive the four signals

• M8190A AWG is flexible enough to support C-PHY

waveforms without external circuitry

A

B

C

D

A B

C D

Only 3 of 4 available channels needed

to drive a C-PHX lane

4th channel available for any aux signal

1Gsym/s的C-PHY信号-LP和HS状态的切换

• Sequence of low power and hi speed signal • separated (offset-shifted, left) and overlaid (same

offset, right)

众多的的接收容限测试项目CTS chapter Title AT

HS-

mode

2.1.1 HS-RX Differential DC Input Voltage Amplitude Tolerance

2.1.2 HS-RX Accumulated Differential Input Voltage Tolerance

2.1.3 HS-RX Common Mode Input Voltage Tolerance

2.1.4 HS-RX Differential Termination Enable Time

2.1.5 HS-RX Differential Termination Disable Time

2.1.6 HS-RX Lane-to-Lane Skew (TL2L-SKEW-HS-RX) -

2.1.7 HS-RX Receiver Jitter Tolerance

2.1.8 HS-RX Frequency Offset Tolerance

2.1.9 HS-RX PREPARE Length Capability Verification

2.1.10 HS-RX Sync Length Capability Verification

LS-

mode

(PWM)

2.2.1 PWM-RX Differential DC Input Voltage Amplitude Tolerance

2.2.2 PWM-RX Accumulated Differential Input Voltage Tolerance

2.2.3 PWM-RX Common Mode Input Voltage Tolerance

2.2.4 PWM-RX Differential Termination Enable Time

2.2.5 PWM-RX Differential Termination Disable Time

2.2.6 PWM-RX Lane-to-Lane Skew (TL2L-SKEW-PWM-RX) -

2.2.7 PWM-RX Receive Bit Duration Tolerance

2.2.8 PWM-RX Receive Ratio, PWM-G1 and Above

2.2.9 PWM-RX Receive Minor Duration in PWM-G0 -

• Parameters of selected item

• Calibrations

- HS, NRZ (RT)

- LP, PWM (NT)

• RX tests

- HS, NRZ (RT)

- LP, PWM (NT)

N5990A接收容限自动测试软件

M-PHY

packet

framing

把被测件设置成测试模式的方法

Page

63

使用芯片厂商方法或通过总线协议 (带帧结构)

M-PHY 的数据帧生成软件

支持81250并行误码仪和N4903B串行误码仪

基于M-PHY协议的错误检查

– Challenges with different protocols:

- No standardization

- Specific method defined in protocol spec, not in PHY spec

- Not mandatory (optional normative / recommendation)

- Asymmetrical lane configuration (e.g. 2x HS upstream / 1x LS

downstream)

– Various error detection methods:

- IBER (=Internal Bit Error Ratio)

- PPI (=Parallel Processor Interface i.e. parallel data output)

- Line Loopback (i.e. bit level loopback)

- Logic Loopback (i.e. protocol layer loopback)

- Visual display inspection (backup solution for display testing)

– Not all MIPI applications have settled on preferred test option

no

错误检查方法的选择• Use BERT ED for bit comparison and error counting when loopback is implemented

• Use BERT ED (for capture, upload, postprocess) or Oscillospe (w/ serial decode)

- For reading counters provided by protocol

- When testmode with built in TPV is provided

• Use external PC to read customer provided IBERReader DLL with counter results

How can

error

counting be

realized?

yes

Loop-

back Mode

supported?

Connect BERT ED

for error counting

Use IBERReader

DLL to

communicate to

computer

Error

counter (TPV)

implemented

?

Result

transmitted

via TX ?

yes

no

Connect BERT-ED

for capture, upload

& post-processing

(LLI)

Read protocol’s

Packet- and

ErrorPacket-

Counter’s (UniPro)

yesno

Loopback is not always possible

• not all MIPI links are symmetrical, i.e. mode and gear settings for the involved M-RX and M-TX are not commonly supported.

• applications (protocols) residing on M-PHY optimize their support for testing and therefore mandatory requirements for testing may not include a support for loopback mode

Getting results of internal TPV

• either through a (low speed) M_TX

• or IBERReader DLL or (proprietary) programming interface of the DUT

不同应用中进行M-PHY接收端测试的方法

DigRF 4 UniPro LLI SSIC

Test

configuration

Single lane and multi

lane test possible

In a multi-lane

configuration all lanes

must be tested

simultaneously

Test one lane at a time Test one lane at a time

DUT

Error Detection

Method

Loopback, options:

• BERT error detector

can only be used if

there is no re-timing

• DigRF 4 Exerciser

• Custom method,

either internal error

counter (IBER) or

golden receiver

Internal error counter

(IBER): oscilloscope to

capture counter

readings

Internal error counter

(IBER): oscilloscope to

capture counter

readings

Internal error counter (IBER) and

Loopback (both needed for full

test coverage)

The internal error counter can be

read either with BERT error

detector or with oscilloscope

Loopback requires

J-BERT B SER mode

Instrument

recommendatio

n

ParBERT,

J-BERT B (1 or 2

lanes)

ParBERT,

J-BERT B (1 or 2

lanes)

ParBERT,

J-BERT B

J-BERT B

Err

Ctr

M-

RX

M-TX

loopback

Err

Ctr

M-

RX

M-TXErr

Ctr

M-

RX

M-TX

M-

RX

M-TX

loopback

C-PHY接收端测试方法的进展

• Signal calibration still to be determined.

• Error counting always done with internal counter

• No loopback mode

• No need to have a C-PHY conformant ED

• No CTS available yet (work has not yet started)

• No automation SW available yet

测试主题的内容安排

MIPI 物理层的发展

MIPI 物理层的电气特点

物理层测试的挑战以及测试方案

• 发送端的测试

• 接收端的测试

• 回波损耗的测试

总结

Transmitter Impedance MatchedTransmitter Impedance NOT Matched

Transmitter Termination Effects

回波损耗对信号的影响A portion of the transmitted signal is reflected due to impedance mismatches. If the

signal path is not impedance matched, reflections can cause eye closure.

t

Tx Rx

S参数测和阻抗、回波损耗测试发送和接收设备的回波损耗要在上电状态下测试

t

t

The TX is required to transmit a repetitive pattern

when characterizing its return loss.

用带TDR选件的ENA矢网进行回波损耗例子

TDR application

helps trouble

shooting with

the simple and

intuitive user-

interface.

VBA Macro

automatically

sets the limit

lines, based on

your input

parameters.

All Measurements in One Screen

Single-ended Impedance 1

Single-ended Impedance 2

Differential Impedance

Differential Return Loss

Common-mode Return Loss

测试主题的内容安排

MIPI 物理层的发展

MIPI 物理层的电气特点

物理层测试的挑战以及测试方案

• 发送端的测试

• 接收端的测试

• 回波损耗的测试

总结

Keysight公司MIPI测试的整体解决方案Transmitter

Characterization

DSAQ93204A Infiniium

U7238B D-PHY, U7249B

M-PHY, N5467B C-PHY UDA

InfiniiMax Probes

Switch matrix

N5465A InfiniiSim

N2809A PrecisionProbe

Receiver

Characterization

N4903B/M8020A JBERT

M8190 AWG

81250A ParBERT

N5990A Automated characterization

Impedance/Return Loss

Validation

E5071C ENA Option TDR

DCA 86100D Wideband sampling

oscilloscope

N1055A

TDR/TDT

54754A

TDR/TDT

Industry’s highest analog

bandwidth, lowest noise

floor/sensitivity, jitter measurement

floor with unique cable/probe

correction

Precision impedance

measurements and

S-Parameter capability

Highest precision jitter lab source

with automated compliance

software for accurate, efficient, and

consistent measurement

Protocol Stimulus and

Analysis

U4421A D-PHY CSI-2 / DSI

Analyzer and Exerciser

U4431A M-PHY Analyzer (UFS,

UniPro, CSI-3, SSIC, M-PCIe)

Scope Protocol DecoderN8802A CSI-2 / DSI

N8807A DigRF v4

N8808A UniPro

N8818A UFS

N8809A LLI

N8819A SSIC

N8820A CSI-3

N8824A RFFE

Fast upload and display, accurate

capture, intuitive GUI and

customizable hardware. Correlate

physical and protocol layer.

总结

• Mobile applications are driving the needs for higher

performance and lower power usage.

• D-PHY is widely adopted. D-PHY extension and C-PHY

are added to increase performance.

• M-PHY will be widely adopted by different applications,

including standards outside of the MIPI ecosystem.

• Keysight is driving specification and testing dicussions

within MIPI workgroups and the test houses, as well as

other key standard ecosystems.

参考资料

– MIPI total solution page

• www.agilent.com/find/mipi

– Application note:

• How to Test a MIPI M-PHY High-Speed Receiver

• Using Microwave Switches When Testing High

Speed Serial Digital Interfaces

– Method of Implementation:

• D-PHY Return Loss / Cable ENA measurements

• M-PHY Return Loss / Cable ENA measurements

– Published white paper at Microwave Journals:

• Multilane MIPI Testing with MW Switches

– Switch calibration and correction application

notes:

• S-parameter Requirements for Oscilloscope

De-embedding

• PrecisionProbe for Bandwidths up to 33 GHz

– Integrated switch matrix hardware:

• Agilent U3020AS26

• BitifEye 2100 Series

谢谢参加!