nanoscale simulations laboratory department of mechatronics gwangju institute of science and...

15
Nanoscale Simulations Laboratory Nanoscale Simulations Laboratory Department of Mechatronics Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA Gwangju Institute of Science and Technology (GIST), KOREA 이 이 이 Calculation of optical trapping forces summary Yong-Gu Lee

Upload: annabelle-shields

Post on 01-Jan-2016

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

Nanoscale Simulations LaboratoryNanoscale Simulations LaboratoryDepartment of MechatronicsDepartment of Mechatronics

Gwangju Institute of Science and Technology (GIST), KOREAGwangju Institute of Science and Technology (GIST), KOREA

이 용 구

Calculation of optical trapping forces summary

Yong-Gu Lee

Page 2: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Rayleigh, Mie, and Ray-optics regimes

With Rayleigh scattering, the electric field is assumed to be invariant in the vicinity of the particle

Taken from the course notes of Radar Metrology by Prof. Bob Rauber (UIUC)http://www.atmos.uiuc.edu/courses/atmos410-fa04/presentations.html

Page 3: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Electromagnetic forces

+

S N

Moving + charge

Current flow direction

Electric force Magnetic force

Page 4: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Electromagnetic forces

3 2 2 2

2 2 2 2

coulombs volts kilogram[ ]

meter meter second meter

amperes webers kilogram[ ]

meter meter second meter

: Electric vector

: Magnetic vector

: free charge density

: electric curr

e

V

m

V

E F E

J B F J B

E

B

J ent density

Page 5: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Dielectric material (유전체 )

Dielectric material: poor conductor of electricity but an efficient supporter of electrostatic fields

Examples are: porcelain (ceramic), mica, glass, plastics, and the oxides of various metals. Dry air is an excellent dielectric. Distilled water is a fair dielectric. A vacuum is an exceptionally efficient dielectric.

Metals can be thought as dielectric at their outermost shells

Page 6: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Induced electric field in a dielectric object

E1

Incidentplanewave

DielectricSphere

+

-

-

+

Page 7: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Potential due to dipole

DielectricSphere

22

1 1 cos, higher order terms.

4 4

: Electric permittivity

q: Electric charge

: Charge separation

q qlr

r r r

l

- charge

+ charge2r

r

,r

Page 8: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Electric field inside dielectrics

2 12 1

(1) is continuous everywhere

(2) 0 across a surface bounding two dielectrics;

it is assumed that the interface of the dielectric bears no charge,

(3)

n n

E

21 0 0 0 1

1 2

3ˆ where

2E

E E E e2

1

Image from: Julius Adams Stratton, Electromagnetic theory, McGraw-Hill Book Company Inc. 1941

Page 9: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Gradient force (Rayleigh regime)

1 1 0

2 1 21 1 2 1 0

1 2

1

23 2 2

1 2 0 2

2 3 223 2 1 2

1 2 0 2 2

The energy of this polarized sphere in the external field is

1U

2

3

2

,

1 1, 4 ,

2 2

1 2 1

2 2

V

grad

grad grad T T

dv

t U

mt r n E t

m

m r n mr n E I

m c m

P E

P E E

F r

F r F r r

r r

1 2/m n n

Page 10: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Scattering force (Rayleigh regime)

Incidentplanewave

DielectricSphere

Scattered sphericalwave

2

,

/

where is the cross section for

the radiation pressure of the particles

pr Tscat

pr

C t

c n

C

S r

F r

Page 11: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Calculating Cpr

Maxwell’s equation

Decouple Maxwell’s equation

through Electric Hertz vector

Introduce the spherical scattering

geometry

Solve the decoupled

Maxwell’s equation for the scattering

cross section

Green’s function

Page 12: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

This slide is taken from the lecture notes of Optical Tweezers in Biology by Prof. Dmitri Petrov https://www.icfo.es/courses/biophotonics2006/html/

Page 13: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Mie (scattering) theory

Spherical harmonics: Waves in spherical structures

Maxwell’s equation

Decouple Maxwell’s equation through Electric &

Magnetic Hertz vector

Solve the decoupled

Maxwell’s equation for the scattering

cross section

Spherical harmonics

Page 14: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Ray optics regime

Z

Y

O

PR

P

PT

PT R

PT R

2

22

αα+β

β

θθ

r

r

θ-rΠ-2(θ-r)

θ

θ

r

θ-r

r

Π-(θ+r)

Angles measured

+z

+y Medium index of refraction n1

Sphere index of refraction n2

Page 15: Nanoscale Simulations Laboratory Department of Mechatronics Gwangju Institute of Science and Technology (GIST), KOREA 이 용 구이 용 구 Calculation of optical

나노 시뮬레이션 연구실Nanoscale Simulations Laboratory나노 시뮬레이션 연구실Nanoscale Simulations Laboratory

Metal trapping

An electronic field attenuates e-times in the skin layer

This slide is adapted from the lecture notes of Optical Tweezers in Biology by Prof. Dmitri Petrov https://www.icfo.es/courses/biophotonics2006/html/