national advisory committee for aeronautics/67531/metadc57141/m2/1/high... · of...

100
.. +-. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICALI NOTE 4322 ORDINATES AND THEORETICAL PRESSURE-DISTRIBUTION DATA FOR NACA 6- AND 6A-SERIES AIRFOIL SECTIONS WITH THICKNESSES FROM 2 TO 21 AND FROM 2 TO 15 PERCENT CHORD, RESPECTIVELY By Elizabeth W. Patterson and Albert L. Braslow Langley Aeronautical Laboratory Langley Field, Va. Washington September 1958 F ... . -I

Upload: phamkiet

Post on 20-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

..

+-.

NATIONAL ADVISORY COMMITTEEFOR AERONAUTICS

TECHNICALI NOTE 4322

ORDINATES AND THEORETICAL PRESSURE-DISTRIBUTION DATA FOR

NACA 6- AND 6A-SERIES AIRFOIL SECTIONS WITH

THICKNESSES FROM 2 TO 21 AND FROM 2

TO 15 PERCENT CHORD, RESPECTIVELY

By Elizabeth W. Patterson and Albert L. Braslow

Langley Aeronautical LaboratoryLangley Field, Va.

Washington

September 1958

F

. . . .-I

‘kCH LltiRAHYKAPB,NM

NATIONAL ADVISQRY coMMITrEE

TECHNICAL NOTE 4322

ORDINATES AND THEORETICAL PRESSURE-DISTFUBUTION DM?A FOR

NACA 6- AND 6A-SER~ KIIWIL SECTIONS WITH

THICKNESSES FRCM2T021ANDFRCM 2

TO 15 PERCENT CHORD, RESPECTIVELY

By Elizabeth W. Patterson smd Albert L. Braslow

Basic thickness forms of the NACA 63-, 64-, 65-series and NACA 63A-,64A-, 65A-series airfoil sections are tabulated for thicknesses of 2, 3,

4 4, and 5 percent chord. Also presented for these thin airfoil sectionsare theoretical values of pressures and velocity ratios required toobtain theoretical airfoil pressure distributions. In addition, for eachfsmily of airfoil sections, cross plots are presented from which ordinates

Q and pressure distributions can be easily obtained for airfoil sectionsof thicknesses intermediate to those presented in this report, in NACAReport 824 (from 6 to 21 percent chord for the NACA 6-series), and inNACA Report 903 (trom6 to 15 percent chord for the NACA 6A-series).

INTRODUCTION

In order to minimize the wave drag of supersonic aircraft, the wingsand tail surfaces are designed with the use of airfoil sections thinnerthan 6 -cent chord. Ordinates for only a few of these thin airfoils.are published ad these sre not conveniently located in a single report.This report will supplement the information presented in references 1and 2 and provide the ordinates of additional airfoil sections usefulin design of supersonic aircraft.

The information presented h this report includes tabulated ordinatesfor symmetrical NACA 6- and 6A-series airfoil sections with thicknessesof 2, 3, 4, and 5 percent chord and a simplified method of obtatiingordinates for any thickness intermediate to published values from 2

● to 21 percent chord for NACA 63-, 64-, and 65-series and from2 to15 percent chord for NACA 63A-, 64A-, and 65A-series airfoil sections.

..-_-. In addition, a simplified procedure is presented for obtaining the

* pressure distributions about airfoil sections of intermediate thicknesses.

NACA TN 4s22

SYMBOLS

c

t

Vm

v

AV

AVa

x

Y

chord of airfoil

maximum thickness of airfoil

free-stresm velocity

local.velocity at any point on airfoil surface

increment of local velocity

increment of local velocity caused by additionaldistribution

distance

distance

along chord from leading edge

perpendic- to chord

DISCUSSION

type of losd .—

The basic thickness forms for the NACA 63-, 64-, 65-series andHACA 63A-, 64A-, 6~-series airfoil sections with thick&esses of 2, 3,k, and 5 percent chord are presented in the tables of figures 1 to 24.For the 6A-series airfoil sections, where a trailing-edge radius isspecified, an ordtiate is presented for the 100.percent-chord stationto serve as a guide in fairtig the rear portion of the airfoil. Thetheoretical methods of references 1 and 2 were used to derive the2-percent-thick airfoil sections of the NACA 63-, 64-, 65-series andthe NACA 63A-, 64A-, 65A-series families, respectively. Althoughnot exactly correct, ordinates for thickness ratios intermediate tothose presented in references 1 and 2 and in the present report canbe obtained for all practical purposes by the following method whichwas used to obtain the ordinates for the 3-, 4-, and 5-percent-thickairfoil sections tabulated herein. For each fsmily of airfoils, theratio obtained by dividing the ordinate y at each chordwise stationby the msxtiwn thickness t is plotted against the airfoil maximumthickness in percent airfoil chord as presented in figures 25 to 30.l%romthese cross plots, the ratio y/t at each chordwise station canbe obtained at the desired value of msximum thickness. Values of theratio of the leading-edge radius to the maximum thickness squared asa function of maximum thickness t are presented for the NACA 6-seriesand 6A-series airfoil sections in figures 31 and 32, respectively.Addition of a cambered mean line to the basic thickness form is accom-

4

plished with the use of the mean-line data of references 1 and 2. b

NACA TN 4322 3

&

The theoretical pressure distributions, indicated by (V/V@)2, for

?

each of the symmetrical.airfoil sections presented are also tabulatedin figures 1 to 24. In order to obtain the theoretical pressure dis-tributions for these airfoil sections at angles of attack and/or withcsznberedmean lines, the procedure described in reference 1 can be used.b this methcd of calculating the pressure distributions, the velocitydistribution about an airfoil section is considered to be composed ofthe following three separate and independent components:

(1) The distribution correspmding to theover the basic thickness form at zero angle of

(2) The distribution corresponding to theof the mean line (A-v/v’+

(3) The distribution corresponding to thetion associated with angle of attack (A@@

velocity distributionattack (/ )v v.

design load distribution

additional losxidistribu-

~a Values of the velocity-increment ratio AVIV. are presented inreferences 1 and 2 and values of the velocity ratio V/V~ and thevelocity-increment ratio AVa/V~ are tabulated in figures 1 to 24. For

w each fsmily of airfoil sections, values of (V/Vm)2 and AVa/Vm forintermediate thinnesses can be obtained from figures 33 to M. b these

U)figures, V V. S.nd AVa/Vm are plotted as a function of the msxtiumairfoil thickness t in percent chord for each chordwise station.

Careful comparison of the ordinates and pressure ratios tabulatedin references 1 snd 2 with the faired cross plots of figures 25 to &shows some discrepancies. Although these discrepancies are small enoughto be disregarded for all practical purposes, the values obtained fromthe faired cross plots sre preferred for design considerations.

Langley Aeronautical Laboratory,National Advisory Ccmmittee for Aeronautics,

Langley Field, Vs., August 25, 1958.

REFERENCES

1. Abbott, Ira H., Von Doenhoff, Albert E., snd E%ivers, Lotis S., Jr.:

b ummary of Airfoil Data. NACA Rep. 824, 1945. (Formerly NACA~ L+60. )

F---2. Loftin, Laurence K., Jr.: Theoretical and Experimental Data for a

d Nmber of NACA 6A-Series Airfoil Sections. NACA Rep. 903, .1948.(Supersedes NACA TN 1368.)

HACA TN 4322

1.2

.8

(v/vrm)2

.4

020 40 60 80

x, percent c

x, Y)percent c percent c (v/vw)av/vm AVa/Vm

o 0 0 0 14.164.158 1.028 1.014 2.262

:% .198 1.032 1.016 1.7401.25 .Z54 1.037 1.o18 1:%3

.332 1.04~ 1.022X .489 1.049 1.024 .7037.5 .5W 1.WO 1.03

.67I..558

10 l.~1 1.025 .48012 .7’96 1.052 1.026 .38020 .885 1.053 1.026 .320

1.054 1.027 .277z :% 1.055 1.027 .245

1.055 1.027~

.21-8:% 1.053 1.026 .193

45 .965 1.Q50 l.oa .lE50 .916 1.045 1.022 .15855 .&o 1.039 1.019 .14360 .769 1.033 1.01665

.2.28.676 1.03 l.ol.zl .115.573 1.o18 1.009 .102

; .463 1.009 1.004 .090.350 .999 .999 .077

g .239 .939 .994 .a55w .136 ●979 :29 .05095 .051 .s69 .035100 0 .9% .979 0

L.E.radius: 0.045 percent c

z(x)

b

Figure l.- NACA 63-002 b=ic thickness fOrIII.

NACA TN ik322

1.2

.8

(v/v* )2

.4

0

0 20 40 60 80

x, percent c

XJ Y,percent c percent c 0DJ2 Vb. AVa/Vm

o 0 0 0 9.083..5 .243 1.022 1o11 2.241’.75 .YM 1.042 l.oa 1.770

1.25 .383 l.@ I.027 1.3772.5 .528 1.065 1.032 .995;.; .732 1.071- 1.035

.884.700

1.074 1.oy5 .55910“ 1.0(% 1.076 1.037” Ml&15 l.lyj 1.079 1.03920 ;.~a7 1.051 1.040 .321

1.083 1.041 .278;2 1:476 1.084 1.041 .24535 1.499 1.082 1.040” .a8

1.489 1.080 1.039 .1s2 1.445 1.074 1.036 .inw 1.37i 1.o68 1.033 .15/3g 1.271 1..O58 I.029 .142

1.149 1.049 1.02465

.L27l.m 1.037 1.o18 .la4

70 .853 l.o~ 1.o12 .100.698 1.o12 1.0Q6 .098

~ ..520 .9% .999 .07685 .354 ●9$33 .99190 .201 .* ..* %95 .074 .954 .977 .ox100 0 .939 .969 0

L.E.radius: 0.072percentc

100

Figure 2.- NACA 63-003 basic thickness form.

WK!A TN 4322

1.2

.8

(v/v~ )2

●4

o0

1

j

1

20 40 60 80x, percent c

x, Y>percent c percent c (v/v=)zv/vm AVa/V=

o 0 0 0 6.7u.330 1.010 1.005 g!.212

:?5 .404 1.049 1.024 1.789l.a .513 1.C4%31.033 1.395

●705 1.082 1.040 “.%1;:: ,976 log. 1.045 .6967.5 l.lm l.o~ 1.04? :$;10 1.341 1.1OJ 1.049la 1.590 1.106 1.052 .38320 l.no l.log 1.053 .3al

1.894 1.U2 1.055 .278z 1.ti9 1.U4 1.055 .24535 2.000 l.u.l 1.054 .238

1.984 1.108 1.053 .195E 1.924 1.100 1.049 .ln50 1.824 1.091 1.045 .1%155 1.689 1.078 1.038 .14260 1.525 1.065 1.032 .127,65 1.336 1.049 1.024 .IJ370 1.129 1.033 1.01.6 .100

.910 1.OU 1.007 .087z .997 .99 .on85 :% .9@ .$239 :%3

.263 .979z .@ :% .!%9 .033IXO o *9a .960 0

L.E.radius: 0.128 percent c

100

Figure 3.- NACA 63-(x14basic thickness form.

NACA TN 4322 7“

1.2

.8

(v/vm )2

.4

0

1 , 1 [ I I I I

1I 1 I I I 1 1 1 1

I

o

-9

a

20 40 60 80

x, percent c

x, Y>percent c percent c (v/vm)zv/v= AVa/Vm,,0 0 0 0 5.353.5 .417 .994 .997 2.M9.75” .505 1.032 1.026 l.~gg

1.25 .642 1.077 1.038 1.403.881 1.098 1.048 .987

;:2 1.W 1.I.IJ.1.054 .6947.5 1.472 1.IJ2Q 1.058 .56110 1.676 1.124 l.cfm .48315 1.988 1.133 1.064 .38320 2.213 1.137 1.066 .32225 2.368 1.141 1.068 .27930 2.462 1.143 1.(%9 .245

2.500 1.141 1.068 .=8% 2.478 1.1* 1.066 .1%45 2.401 1.M6 l.til .l-j’3.50 2.274 1.114 1.053 .15855 2.104 1.Oq’ 1.047 .14160 1.897 1.C80 1.039 .I.266 1.661 1.061 1.’030 .11270 1.401 1.04’0 1.020 .Ogg

1.128 1.o18 1.009 .086z .849 .9s5 .997 .07485 .576 .972 .* .051!% .324 .947 .973 .04795 .I18 .924 .$X51 .032100 0 .932 .9 0

L.E.radius: 0.200 percent c

10Q

Figure 4.- NACA 63-005 basic thickness form.

NACA TN 4322

1.2

.8

wb~ )2

.4

0o 20 40 60

x, percent c

80

x,percent c

o

‘%1.252.55.07.5

g2iI

g35

$503566570

z859395.00

Y)percent c

o.149.M8.246.*

:%.654.775.863.928.971.995●999.976.931.867.790.699.597.487W&

.150

.0580

(v/vm)2

o1.02L1.0331.0421.0451.0481.0491.0491.0501.0511.W11.0521.053l.m1.0521.0481.0421.oy51.02$31.0201o11l.w2-.992.983.970.955

,.E.radius:0.028percent c

Vpfm

o1.0101.016l.o.a1.0221.0241.0241.024I.oa1.05100a1.0261.0261.0271.0261.0241.0221.0181.0141.0101.OW1.001.996.991.985.977

14.4512.2101.86o1.465.9$X3.697.562.478.m.320.277.245.m.1%.178.lx.142.IZ8.IJ.5.102.089.078.(%5.052.0350

100

Figure ~.- NACA 64-oo2 basic thickness form.

NACA TN 4322

1.2

.8

(v/v~ )2

Jl

o0

*

*

20 ho 60 80

x, percent c

XJpercent c perc~kt c (v/vm)2v/vm AVa/Vm

o.5.75

1.25

;:27.510152025

!z5760

85w95LOO

o.235.288.372.515●TQ.856●973

1.156I.2911.3$91.4551.4911.4991.4631.3951.2g8l.la1.043.889.724.553.382.2ZL.084

0

!?.028l.~11.0581.(%31.(%61.0681.0701.072

1.079l.oea1.0811.078l.o’p1.0631.0531.0411.0301.0151.(X)2.937.972.953.935

L.E.radiua: 0.062percent c

o 9.7501.014 2.223l.oz’j 1.8601.029 1.4651.0311.032 :E1.033 .5611.0* .4781.035 .*11.037 .3201.038 .2781.039 .2451.039 .=81.040 .197l.ofi .1781.035 .1581.031 .1421.026 .1281.020 .11.41.OV .1011.007 .0981.001 .076.993 .C%3S& .c@3

.034.967 0

100

Figure 6.- NACA 64-oo3 basic thickness form.

10

1.2

●8

.4

ro

0 20 40 60 80

x, percent c

x? Y))ercent c percent c (v/v&’ v/v. AVa/Va

o 0 0 0 7.070.5 .322 1.029 1.014 2.225

.391 1.060 1,.030 1.844l:Z ..500 lop l.oyl

.6851.456

1.079 1.039;:: *9!3 :.o& y$ :%7.5 1.134 . .56I.

1.290 1.091 1:045 .478g 1.536 1.097 1.047 .38220 1.717 1.101 1.049 .320

Lag 1.1o4 1.051 .278;: 1.938 1.107 1.052 .24535 l.$xrj’ l.log40

1.053 .2181.997

451.055 .197

;:% l.ml .17750 ;:g7 1.095 1.046 .15855 1.726 1.083 1.041 .14260 1.567 1.C69 1.034 .12865 1.y32 1.054 1.027 .U4P 1.177 1.039 1.019 .100

●957 1.OEU 1.010 .097E .729 1.002 1.001 .on85 .503 .g81 .gfm .062

.2go .* .059z .11o .937 :% .033.00 0 .915 .957 0

J.E.ratius:0.110percent c

100

z

k.’

Figure 7.- NACA 64-oo4 basic thickness form.

mm m 4322 IL

1.2

.8

(v/vm )2

.4

00 20

x>percent c

o.5.75

1.25

;::7.510152025

%40455055606570

z85w95Lw

40 60

x, percent c

80 100

Y$percent c

o.40!3.494.627.854

1.1731.43$?1.6081.9162.1432.3102.4Ez2A-832.4$%2.4352.3162.1521.950y&7

1:M6.902.6a.357.134

0

(v/w2

o1.0211.0631.0791.0941.1011.1071.U2

::s1.1321.1361.1381.141I.132l.1.lg1.1041.0861.0671.0471.0231.001.975.949

:E

L.E.radius: O.lm percent c

Vp?=

o1.0101.0311.0391.0461.0491.0521.0551.0591.(%21.0641.0661.0671.068l.ca1.0581.0511.0421.0331.0231.OU1.001.937S&

.946

5.5502.213;.EQJ

:997.693.560.479.583.321.279.245.219.lg8.in.158.142.127.113.099.086.074.061.048.032

0

Figure 8.- NACA 64-005 basic thickness form.

12 NACA TN 4322

1.2

.8

(v/vm)2

.4

0

f —

— . — - — — — — -

o 20 .!@ 60 80x, percent c

x,percent c percL c (v/vm)2 Vbw AVa/Vm

o 0 0 0.5

1;.:;:.139 1.017 1.008.165 1.025 1.012 1:780

l:g .23-I. l.oyl 1.015 1.401.307 1.035 1.017 ●994

;:2 .430 1.037 l.olfl .692J*5 .522 1.oy3 1.019

.600.563

1.040 1.020 .47815 .724 1.042 1.021 .38120 .&L8 1.04~ 1.02.2 .32125 .8$x) 1.047 1.023 .277

.943 1.049 1.024 .245% .97940

1.We”-”1.025 .21.8.997 1.052 1.026 .lg6.997 1.054 I.027 .in

g .974 1.053 1.026 .15955 .926 1.0443 1.024 .144

.856 1.042 1.0.22. .130g .768 1.035 1.017 .I.1670 .668 1.027 1.013 .103

.556 1.017 l.cxm .090z .435 1.007 1.003 .07885 .308 .995 .997 .065

.183 .933 .991 .052z .072 .!%7 .!333 .035100 0 .* .974 0

L.E.radius: 0.027’percent C“

Figure 9.- NACA 65-002 basic thickness form.

MICA TN 4322 13

( v/vln

1.2

.8

)2

.4

0

.&

4

0 20 Lo 60 80

x, percent c

x? Y>percent c percent c Wv=)2 Vb. fLv&m

o 0 0 0 9.980.a 1.033 1.016 2.210

:?5 .264 1.042 1.023. 1.793L.a .334 1.047 1.024 1.406

.469 l.ml 1.05 .97;:2 .649 1.055 i.027 .6937.5 ;g 1.057 1.028 ;~510 l.ca 1.03015 1.091 1.(%5 L.032 .3812Q 1.233 1.068 1.033 .32125 1.341 I.072 1.035 .278

1.420 1.074 1.036 .245$ 1.472 1.076 1.037 .21840 1.498 1.079 1.039 .1$645 1.495 1.091 1.040 .in50 1.458 1.080 1.039 .X59

1.383 1.072 1.035z

.1441.276 1.063 1.031 .13

65 1.144 1.051 1.025 .U670 .wl 1.039 1.019 .102

.822 1.024 1.o12 .089z .641 1.009 1.W4 .07685 .453 .992 .9s6 .054w .269 .973 .W .go95 .105 .949 .974 .034m) o .%5 .962 0

L.E.radius: 0.061 percent c

100

Figure 10.- NACA 65-w3 basic thickness form.

14

1.2

.8

NACA TN 4322

(v/vm )2

.4

00 20 ho 60 80

x, percent c

x, Y)percent c percent c @/Q2 ~hw AV#m

o 0 0 0 7.180.5 .307 1.046 1.023 2.ti8.75 .370 1.054 1.027 1.800

1.5 .465 1.059 1.029 1.407.632 1.064 L.032 .978

::; .870 l.o~ 1.035 .6931.055 1.076 1.037 .561

10“ 1.21.2 1.081 1.040 .478J-5 1.460 1.099 1.044 .*120 1.650 1.093 1.045 .321

1.793 1.097 1.047 .279z 1.897 1.100 1.049 .246

1.963 1.103 l.mo .21.9:: L.g$xl 10K% 1.C52 .196

I.ggl l.mg 1.053 .llaz 1.940” 1.108 1.@3 .16055 1.838 1.097 1.04760

.1441.693 1.083

651.041 .12g

1.515 1.C%8 1.033 .IJ570 1.309 1.B1 1.05 .101

1.083 1.031 1.015 .08az .842 1o11 1.005 .07585 *593 .!389 .063

.331 .954 :%2 .049z .136 .933 .H .033I.00 o .* .930 0

L.E.-Us: 0.109percent c

Figure 11.- NACA 65-004 basic thickness form.

100

1.2

15

.8

)2

●4

o

1 I Ill

I I1 I

h

o ’20 40 60 80

x, percent c

X3 Y>percent c percent c (v/v=)zVp?. AVJV=

o 0 5.720.5 .394 :.o& ?.@ 2*152.75 .475 1.030 1.800

1.= .594 1:C%4 1.032 1.402.795 1.074 1.036 .gy5

;:: logo 1.0!37 1.043 .695. 1.322 1.094 1.046 .560

10 1.53.8 1:100 1.049 .47815 1.828. l.u.l 1.054 .381Zn 2.c%6 1.U8 1.057 .321

2.245 1.1.23 1.060 .279;2 2.3T3 1.127 1.062 .24635 2.459 1.131 1.C%3 .21940 2.4$%3 1.1* 1.065 .197

2.487 1.137 :.Of& l’@z 2.420 1.ly5 .16055 2.290 l.lz?o l:OXI .14460 2.106 1.10365

1.050 .12g1.881 1.(M4 1.041 .114

70 1.623 1.062 1.031 .1001.339 1.oy3 1.019 .087

z 1.0* 1.01-2 1.OC%85

.074.729 .(%2

9 .430 :g4 :% .@@95 .165 .917 .$58 .033lCO o .880 .9* o

L.E.radiuE:0.170percent c

loo

Figure 12.- NACA 65-oo5 basic thickness form.

16

1.2

.8

)2

.4

0

?NACA

o

1

1

I‘1

20 40 “60 80

x, percent c

—.x, Y>

(v/% )2 Vh. ‘vaP.?ercent c percentc m

o 0 0 o 14.296.5 .159 1.01.81.009 2.ZLO.75 .196 1.034 1.017 1.83o

1.23 .al 1.041 1.020 1.450.350 1.044 1.022 .955

;:: .486 1.048 1.024 .697J.5 .587 1.049 1.024

.668.558

1.0’50 1.025 .48115 ●79 1.051 1.025

.877.381

1.052 1.026 .319z .938 1.052 1.026 .27730 .977 1.053 1.026 .243

●995 1.053 1.026 .217z .995 1.052 1.026 .1!35

.974 1.048 1.024 .176$ ●936 1.045 1.022 .15855 .& 1.040 1.020 .14260 .W8 1.035 1.017 .12865 .724 1.02g 1.014 .1.1570 .630 1.022 1.OIJ .102

.528 1.014 1.007 .090z .424 1.007 1.003 .07885 .319 .%@ .999 .06590 .214 .* S& .05295 .log .976 .035.00 .005 0 0 0

,.E.radius: O.0~ percent c?.E.radius: O.O@ percent c

I

m)

TN

P

Figure 13. - NAC!A63A002 basic thickness form.

NACA TN 1322 17

1.2

.8

(v/v* )2

.4

00

&

“4

=4

20 “40 60 80

x, percent c

x, Y)(v/vm)2 v/vm~ercent c percent c ‘vaPm

o 0 0 0 9.320.5 ●242 .993 .996 :.;x&.75 .s5 1.048 1.024

1.= ●377 1.057 1.028 1:435.524 1.064 1.032

;:: ●7W 1.070 1.034 ;~7.5 .878 1.072 1.03510 .999 I.om 1.037 .482L5 1.183 1.07’8 1.0% .*20 1.315 1.080 1.03925

.3191.408. 1.0s2 1.040 .~71.467 1.084 1.041 .243

,: 1.455 1.082 1.040 .2171.493 1.079 1.039 .l%1.461 1.074 1.036 .l~

z 1.400 l.c%a 1.033 .15853 1.316 1.061 1.030 .142

1.2Q9 1.051 1.03%

.3271.083 1.041 1.020 .114

70 1.030 1.015 .101:% . 1.020 1.010 .089

E .63385

1.008 1.004 .076.476 ●997.319 :F2 .991 :?1

~ .163 .967 .%3 .O*.00 .007 0 0 0

~.E.radius: 0.C%7percent c!.E.radiua: 0.008 percent c

100

Figure 14.- NACA 65ACX33basic thickness forM.

18 NACA TN 4322

(v/v=

1.2

.8

)2

.4

00 20 ho 60 80

x, percent c

x, Y3p&cent c percent c (v/v=)z Vb. Av@co

o 0 0 0 6.770.5 .326 ●967 .9!33 2.170

.396 1.@8 1.029 1.812l:Z ●W3 1.071. 1.035 1.418

.698 1.092 1.040 .935::: .957 ;.O%& :X& .696. 1.167 .561

10 1.328 1:100 1:049 .48415 1.576 l.lm 1.051 .38220 1.753 1.108 1.053 .320

1.878 1.111 1.054 .277z 1.$@3 1.114 1.Q55 .244

1.995 1.1.11 1.054z

.2171.991 1.106

451.052 .lgh

1.94=6 1.og8 1.048 .l~l.w logo 1.044 .1%

z l.mo 1.090 1.039 .1416$ 1.607 1.067 1.033 .126

1.439 l.m 1.02-7 .1.1370 1.249 1.040 l.om .100

1.046 1.026 1.013 .088% .840 1.009 1.004 .07’5@ .632 .992 .063w .424 .976 :% .04995 .217 .958 ●979 .034LCO .009 0 0 0

L.E.mdius: 0.118percent cl?.E.radius: 0.010 percent c

100

.

.

Figure 15. - NACA 63ACQ4 basic thickness fem.

NACA TN 1322 19

1.2

)2

.4

0

*

<

0 20 40 60 80

x, percent c

x, Y)percent c percent c (v/v=)zv/v. AVafV=

o 0 0 0 5.420.4= . .940 .g’j’o2.131

:% .496 1.063 1.031 l.lt%I.a .628 1.080 ,1.039 1.400

.8TL 1.og8 1.048;:: 1.207 1.I.13 1.055 :6%7.5 1.456 1.U8 1.057 .56210 1.658 1.124 1.06015 1.S63 1.132 1.(%4 :%20 2.191 1.137 ;.% .320

2.348 1.140 . .278z 2.k50 I.142 1.070 .24435 2.4$ 1.140 1.068 .21740 2.488 I.132 1.064 .19445 2.4YI 1.X23 1.060 .17’450 2.327 1.114 1.055 J2

2.ti3 1.100 1.049% 2.M3 1.084 1.041 .12665 1.792 ;.~7 1.033 .Iu70 1.555 . 1.024 .Ogg

1.302 1.031, 1.015 .096i? 1.045 1.010 l.oqj .07’485 .786 .989 .062w ●528 :9$ :% .04895 .270 0.974 0.033103 .OI.2 o

L.E. radius: 0.185 percent cl?.E.re.dlus: 0.013 percent c

loo

Figure 16. - NACA 65ACQ~ basic thickness form.

20 IW!A TN 4322

1.2

.8

(v/v~ )2

●4

o

0 20 40 60 80

x, percent c

x, Y,(v/vm)2 v/vmpercent c percent c AV@m

o 0 0 0 14.m.5 .133 1.02U 1.010 2.240.75 .191 1.033 1.01.6 1.850

1.25 .245 1.040 1.020 1.470.341 1.043 l.oz!l .992

;:2 .473 1.045 1.022 .6987.5 .571 1.046 1.023

.650.558

10 1.047 I.023 .48LL5 .769 1.048 1.024 .38120 .856 1.049 1.024 .319

.9= 1.W l.q .277z .967 1.Q51 1.025 .244

.993 1.Q32 1.026 .218% 1.000 1.052 1.026 .lgk45 .987 1.051 1.05 .176.50 1.047 1.023 .15955 :8% 1.042 l.oa .143& .825 I..036 1.o18 ;12:65 1.0.29 1.01470 :6% 1.023 1.013. .102

.5W 1.016 1.008 .090% .442 1.008 1.CC)4 .07885 .332 .999 .999 .659 .223 $3; .05295 .113 0:%9 0.034LOO .004 0

L.E.radius: 0.028 percent ci?.E.radius: 0.005percent c

100

Figure 17. - I’?ACA6UACQ2 basic thickness form.

NACA TN 4322 a

1.2

.8

( v/v~ )2

●4

o0 20

x,percent c

o

:?51.252.55.07.5

:2025

z

$5055

z70

E859095100

40 60

x, percent c

Y,percent c

o.235.289.369.510.706.@l

~.y96.1.2821.*O1.4491.4891.5001.4781.4211.3371.2321.11o.9P.818.657.494.331.169.007

(v/v=)z

o1.0301.0461.0551.(%21.0641.0661.0681.0711.073l.o~1.07’81.079l.cao1.0781.0701.0621.0541.0441.0341.0231.o1o

●997.$X32.967

0

o1.0151.023Ii0271.0311.0321.0321.0331.0351.036:.:3

1:0391.0391.0381.0341.0311.0271.0221.0171.OU1.0Q5.993.ggl

0.983

80 100

‘vaP.

9.5002.2281.8501.467.990.697.560

:%.320;%

.218

.15

.176

.159

.142

.128

.115

.101

.0?39

.077

.064

.051

.0+o

L.E.radiue:0.062percent cT.E.-iUS: 0.008 percent c

Figure 18. - NACA 64AO03 basic thickness form.

22

1.2

.8

(v/v~)2

94

I

f

o0 20 Lo 60 80 100

x, percent c

x? Y,percent c percent c (v/Ym)2~~- Av!dv.

0 0 0 0 6.920.5 .318 1.035 1.017 2.199.75 .3!38 1.052 1.026 1.845

1.5 .492 1.066 1.032 1.459.679 1.079 1.039 .*

;:; .937 1.092 1.040 .6$. 1.129 1.086 1.042 .562

10 1.286 1.089 1.044 .4U15 1.526 1.og4 1.046 .38120 1.706 1.098 1.048 .3XI

1.839 1.101 1.049 .278z 1.931 1.104 1.051 .24335 1.995 1.10640

1.Q52 .2192.000 1.108 1.053 .1$6

45 1.957 1.1Q3 l.Qn .1761.890 1.094 1.046 .158

z l.m 1.083 1.041 .14260 1.637 1.07165

1.035 .1281.472 1.059 1.029 .1.141.2% 1.045 1.022 .100

$ 1.082 1.030 1.015 .08880 .858 1.013 1.006 .07685 .652 .955 ●997 .06390 .438 .976 .gm .05095 .223 .958 ●979 .033100 .039 0 0 0

L.E.radius: O.U.O percent cT.E.radius: 0.010 percent c

*

.

.

Figure 19. - NACA 6JAOOJ basic thickness form.

MICA TN 4322 23

1.2

.8

(v/v* )2

.4

0

- —

o 20

x,percent c

o.5.75

1.s2.55.07.5101520

g35

g5055606570

E859055100

Lo 60

x, percent c

Y)percent c

o.402.487.616.848

1.1671.4061.6021.942.1312.2972.4132.4-812.5002.456”:.2

2:0%1.8311.5971.3431.077.8u.54-4.278.OIL

oL 0321.0531.0741.093l.1.oil1.K%1.1111.1.171.123l.l$q1.1311.1331.1361.1311.1181.1041.089l.om1.0551.0361.015.9%.970.946

0

L.E.radius: O.1~ percent cT.E. radius: O.0~ percent c

‘J/vm

o1.0161..0261.0361.0451.0491.0521.0541.0571.0601.0621.0631.0641.0661.C%31.0571.0511.0441.0361.0271.01.81.007:%&

.9730

80 100

5.5702.61.8311.445j83

;5%;

.*1

.321

.*

.245

.21-9

.197

.176

.l%

.141

.lzq’

.1.13

.Ogg

.087

.075

.062

.048

.0320

Figure 20.- NACA 6LAO05 basic thickness fo~.

24 NACA TN 1522

1.2

.8

(v/v@ )2

.4

0

0 20 40 60 80

x, percent c

x, YJ(v/vm)2 v/vmpercent c percent c AVJVm

o 0 0 0 16.145.5 .140 1.017 1.CX38 2.220.75 .163 1.027 1.013 1.810

1.25 .214 1.032 1.016 1.400.312 1.035 1.017

;:: .436 1.038 1.019 :E7.5 .527 1.039 1.019 .56310 .603 1.040 1.020 .47915 .724 1.042 1.02120 .8L8 1.044 1.022 :%

.890 1.046 1.023 .277z .944 1.048 1.024 .24535 .980, 1.00 l.oa .=8M .999 l.ml 1.05 .19645 .999 1.052 1.026 .17850 l.ml l.oa .16055 %J 1.047 1.023 .14460 1.041 1.020 .965 .799 1.035 1.017 .u.670 .707 1.028 1.014 .103

.603 1.023. 1.010 .090% .489 1.013 l.oti .07’8m .368 1.003 1.001 .0659 .247 .991 .995 .05195 .I.26 .977 .9’98 .034100 .(X)4 o 0 0

L.E.rdiue: 0.026percent cT.E.radiue: 0.~45 percent~c

*

5-’

Figure 21.- NAC!A65Ao02 basic thickness form.

NACA TN 4322 25

.

u

1.2

.8

( ~/v* )2

.4

0

f

.

0

I

20 ho 60 80

x, percent c

x, YJ(v/vm)2 Vjv=percent c percent c AVa/Vm

o 0 0 0 10.081.5 .223 1.030 1.o16 2.220.75 .269 1.043 l.ozl 1.81.2

1.2’3 .342 1.046 1.023 1.395.479 1.049 1.o24 .978

;:: .656 1.055 1.027 .6917.5 .793 1.@8 1.029 .56310 .908 1.060 1.030 .48015 l.ogl 1.064 I.032 .*120 I.231 1.068 1.033 .321

1.339 1.071 1.035 .277;2 1.418 l.o~ 1.036 .24535 1.471 1.076 1.037 .Z18

1.498 1.078 1.038 .lg7& 1.49!3 1.079 1.039 .17’850 1.467 L.076 1.037 .16055 1.404 1.070 1.034 .14460 1.310 1.062 1.031 .lzg65 1.193 1.053 1.026 .U5

~.m 1.042 l.oa .102; .gol 1.032 1.01-6

.W9 1.o18 l.oog :%g .550 1.003 1.031 .064

;&9 .050z o:% o:% 0.034100 .007

L.E.YXldiUS: o.(Y58percent cT.E. radius: 0.007 percent c

100

Figure 22.- NACA 6~AO05 basic thickness form.

26 NACA TN

1.2

.8

( v/vrJ.j )2

.4

n

I I I I I I I I I I

o 20 40 60 80

x, percent c

x, Y)(v~ f v/vmA~a~.percentc percent c ~

o 0 0 0 7’.337.304 1.038 1.019 2.22.0

:?5 .H 1.050 1.025 1.8C51.25 .469 1.055 1.027 1.389

.647 1.(%1 1.030 .974;:2 .875 lop. 1.035 .6907.5 1.059 L 076 1.037 ;g:10 1.213 1.080 1.03915 1.459 1.087 L.043 .38120 1.645 1.091 1.045 .322

~.m$ 1.0s5 1.046 .277;: 1.892 1.098 1.043 .2k535 1.962 1.101 1.049 .2J-840 l.~ 1.104 1.051 .1*

1.9$6 1.105 1.051 .178;: 1.954 1.101 1.049 .161

1.868 1.092 1.045 .1442: 1.743 1.W1 1.040 .12865 1.586 1.070 1.034 .SL470 1.402 1.6 1.028 .101

1.195 1.041 1.020 .089~ .967 I.023 1.OU. .on85 .729 1.003 l.ml .06390 .490 ●B3 .B1 .04995 .H ●979 .034.00 :Z9 o 0 0

..L’.radius: 0.102percent c?.E.radius: 0.010 percent c

100

w

Figure 23. - NACA 6xo04 basic thickness form.

NACA TN 1322 27

1.2

●8

(v/v~ )2

.4

0

— _L

o 20 40 60 80

x, percent c

x, Y,percentc percent c (v/v.)

2 v/vm AVa/V=

o 0 0 0 5.831.5 .385 1.041 1.020 2.190.75 .467 1.050 l.oa 1.789

1.25 .5% 1.C60 1.030 1.379.815 3.072 1.035 .970

;:2 1.094 1.097 1.043 .6897.5 1.326 1.094 1.046 .56210 1.519 1.099 1.048 .48015 1.826 1.109 1.053 .38220 2.059 1.U.5 1.056 W?;3 2.237 1.120 1.05830 2.367 1.123 1.060 .246

2.k53 1.U’7 1.062 .218E 2.4% 1.lW 1.”63 .1$345 2.49 1.132 1.064 .17850 2.440 1.I28 1.062 .Ml55 2.331 1.116 1.056 .14460 2.173 1.I-02 1.050 .I.2865 1.976’ 1.o88 1.043 .1.1370 1.746 1.069 1.034 .10075 1.487 l.m 1.03 ,0%80 1.203 i.028 1.014 .07685” ●SW’ 1.003 1.001 .0529 .609 .978 ..9+39 .@@95 .310 .947 .973 .034100 .on o 0 0

L.E.redius:0.150percent cT.E. radius: 0.01.23percent c

100

Figure 24.- NACA 6xo05 basic thickness form.

28 NACA TN @22

Figure 25. -foil n

.338

.334

.296

.292 — —

.44

.240

.178

.U4

●170

.=

.m

●4

.120

.104

.l~

.096

.092

m%immthiehless,t,pareent0

(a) x = 0.5 to 10 percent c.

,Variation of ratio of ordinate to msximum thickness with alr-mximum thickness for the NACA 65-series airfoil sections.

.

NACA TN 4322 29

*

*

.4%

J@

.476

.472

.468

Mxlma tblolmas, t, pa..aent a

,.

(b) x = 15 to 45 percent c.

Figure 25.- Continued.

30 NACA TN 4322

Uu

J@

J@

.@o

J@

A12

J@

J@l

J@

.3%

●37k

y/o

.*

.3%

.3%

.I@o

.4%

J@

JIM

4!4

J&o

J+%

(c) x = ~0 to 60 percent c.

.

?

..*

Figure 25.- Continued.

NACA ‘TN4322 31

.-*

Mu

‘a .262

.253

.2*

.29

s

(d) x= 65 to 75 percent c.

Figure 25.- Continued.

32 NACA TN 4322

.026

.022

.018

.E?o

.116

Mu.: .llz

j

2 Joe

! ●*9

!

.100

% .096

22

.068

.064

.C40

.0%

.Ogz

.176

.l’f2

.la

.la

.160

.1s6

.48

-—0 2 4~8~=1416 ma=

kxlum thiohle.m, t, Dal’senta

(e) x = W to 95 percent c.

Figure 25, - Concluded.

●✎

NACA TN 4322 33

.s28

.324

.320

.292

.28s

.24

J?&

.40

.236

.232

.1’72

.3J6

.ti

.L%

J-4

.m

loo

AI%

*W

MuJmm thiekmm, t, rfmoantu

(a) x = 0.5 to 10 percent c.

Figure 26. - Variation of ratio of ordinate to maximm thickness with air-foil mximzn thidmess for the NACA 64-series airfoil sections.

34 l?ACA TN 4322

.900

.k%

u- .WJ.sg J@~ .490

Lx

2

; J@s8 J@

%

g Ml

J+60

.436.

.432

J@

.*

.ZG

.S6Uo 2 4681012141% MZOZ?

Ymhum Muokneaa, t, paraent0

(b) x = 15 to 45 percent c.

Figure 26. - Continued.

P

.

*

NACA TN 4322

w-

.3%

.392

.@!

.380..

.376

.372

.436

.*8

J@

.%$

.428

J@+

J@

.&2

J@

JK18

.4611

J&O

J@

.452

.lll@

Jlllh—0 2 b68102221J16 ls2Q22

~ tMub*ma, t, jmroent 0

(c) x = ~0 to 60 percent c.

35

Figure 26. - Continued.

36

.300

.34

.292

.268

.24

.2&

276

●-E

.?68

.264

.&

.*C

.2%

.2P

.228

.=4

.220

.226

A2

ala

.352

.348

.2A

.?4+0

.3?4

.332

mm mi k322

.326

.324

.y20

.3260 2 46sM.Iz14~ am=

Uulmmtldokmas, 6, Mrmnt o

(d) x = 65 to 71j percent c.

Figure 26. - Continued.

NACA TN 1522

.

8

.

*

hl-

!!

.0%

.Ks

.@

.020

.W

.M

.=4

.lzo

.ti

.lu?

.108

.104

.q6

.0s8

.@

.C40

.0%

lea

.*

.lso

.176

.m

.L58

.la

.160

.1*

(e) x = t?Qto 95 percent c.

Figure 26. - Concluded.

37

38 NACA TN 1322

.

.220

.216

●2U

J60

.156

.1%

.48

.1.20

.12.6

.2,22

.108

.14

.

.Oal

.076

.072

.0+8o 2 46810 EIIL16 18z0a

Wlmu tMolrman, ~, went 0

(a) x=O.~to 5.0 percent c.

Figure 27.- Variation of ratio of ordinate to maximum thickness with air-foil msximum thickness for the NACA 6~-series airfoil sections.

.

NACA TN 4322 39

G

M%lmlm tblokueas, t, pai.aont 0

(b) x = 7.5 to @ percent c.

Figure 27.- Continued.

40 NACA TN 4522

J@8

.44

.l)zo

J116

*

J@

.404

w

. J@

~

; .396

!s

!J

%0sd

J@

.4*

J@o

m476

An

(c) x = 45 to 60 percent

Figure 27. - Continued.

la 20 22

c.

NACA TN 4522

.336

.332

.@

.324

.320.

.316

.312

.*

*

0I!i?

.304

●WJ

.*

.

---0 2 46810u WL6 182022

~ thiaknaas,t, Wroent 0.. —-

(d) x = 65 to 70 percent c.

Figure 27. - Continued.

41

k2

.220

.216

Jm2

.208

.=4

.200

●196

.1*

.Iea

.1*

.lE3

ao

.276

.272

.268

.2Q

.260

.256

.2%

.=M

.4+

.ao

.2%

NACA TN 4322

0 2 46SI.0UU16 mm=MximIlmtbioknens,t,pement 0 .

(e) x = 75 to M percent c.

Figure 27. - Continued. *

NACA”TN 432243

.

.036

.032

.028

.@

um thlakness,t,Wr=ent 0

------- . .

(f) x = @ to 95 percent c.

Figure 27. - Concluded.

44 NACA TN 4322

.I@i

J172

.468

.*—

.&8

J@

.596

.39.-

0 .178

i

J/4

.170

.u?6

.lz.z

.100

.096

.@4

.080

.0760 2 46810 zzz4L6

uximllntblaknem, t, pemmt u

.

(a) x = 0.5 to 25 percent C.

Figure 28. - Variation of ratio of ordinate to maximumthickness with air- 4foil rmxtium thickness for the I?AC!A6jA-series airfoil. sections.

NAC!ATN 4322 45

.1111o

J+36

.432

J+28

J@&

.468

.

r

.b96

.I+92

.488 ~2’4 6 8 10 32 426

K.suimumthlokness, t, peroant 0

.-

(b) x = 301055 percent c.

Figure 28. - ~ont inued.

46

.316

●312

.9

.304

*

%

.296

●%4

.360

●356

.352

.348

.9A

.408

NACATN 4322

.4*

.&G+l

●396

.392

.*8o 2 k 6 8 10 12”14 16

Maximumthldcnesa, t, proent o“..

(c) x = 60 to 70 percent c.

Figure 28.- Continued.

IiACATN 4322

.@

o

.0!%

.09

(d) x = T~ to 1~ percent c.

Figure 28. - Concluded.

47

48 NACA TN 4322

*

Figure 29. - Variafoil maximlxn

.430

.426,

.508

.54

.*

.326

.322

.X8

.Zea

..zEa

.280 x—

.238

.@ s

.230

.174

.l~o

.166

d+

.120

.098

.wk

(a) x= O.~ to 20 percent c.

tion of ratio of ordinate to maximum thickness with air- ‘

thickness for the NACA 64A-series airfoil sections.

ANACA TN 4322 49

-

.448

.4U

.440

,432

.476

*

: ●494

;0 ‘.490%0

; J&

● 502

.498

.498

.494

.486

●MZ

.I+62

.4580 2 4 6 8 10 12 ‘U lbWalmum thlakness, t, peroent o

(b) x = 27 to ~~ percent c.

Figure 29.- Continued.

50

.326

.322

.318

.34

.310

.306

.372

.%8

.364

.360

.3%

●332

J@

.412

.408

.404

.&m

NACATN 4322

----0 2 4 G s 10 ~ U 16

Maximum tbl okness, t, p.maent a

— —- .

(c) x = 60 to TO percent c.

Figure ~.- Continua.

NACA TN 4.322 51

.

,

4

.168

.Mk

.160

.156

.152

.=4

.220

.216

.21.2

.208

.204

.276

.272

.268

.264

.260

.2560 2 4681012

Maximum tbldfness, t, wroent

(d) x = 75 to @ percent

Figure 29. - Continued.

.52

.

x,

.004

0

●060

.056

1

.052

●112

.108

.104

‘1tan● AUW

o 2 4 6 8 10

Maximum thickness, t,

(e) x = $Xlto 100 percent

Figure 29.- Concluded.

u! & 3.6

pement c

c*

.

8

NACA TN 4322

.30a

.34

.Mo

266

.262

220

216

.ti

.160

P.l-

.

: .1%

~ .L?og!

3

ii.U6

z.112

i!.,*.096

.092

.0s8

.@

.003

.0’/6

.072

.0680 2 k 6 8 LO u U“ti

53

Kaxlmux tkfoknem, t, xoant .3

(a) x = O.~ to 10 ~rcent c.

Figure 30.- Variation of ratio of ordinate to maximum thickness with air-foil msximum thickness for the NACA 65A-series airfoil sections.

54 NAC!ATN 4322

M

.I+92

.488

.484

.

.500

.496

~ .498.

; .492

j

~ J@

% .450

;2

.446

J+@’

J@6

.412

.408

.5458

.364

.36002 4 6 8 1o”” 12 ‘4 16

Maxlmun thlokneaa, t, percent o *

(b) X= 15 to 50 percent c.

Figure 30.- Continued. 1

NACA TN 4322 !55

.

s

.3%

●3P

.%8

.3L4

.*O

.3%

&oo

[email protected]

m-

!~ .392

1! “w:

: ●34

~ :440

%

; .I136

s

.432

.428

.424

J172

J168

.464

J&oo 2 468101z4M

Mulmm tMakmsa,t,mment .3

(c) x = .55 to 70 percent c.

Figure 30.- Continued.

56

. 18E

.184

. L80

.176

.172

M’w

.246

.244

●*

.236

.232

.228

.X4

.300

.296

.292

.288

.28!4

NACA TN 4322

‘0 2 46810u QI6raximum thlokne88, t, percent o

(d) x = 75 to 5 percent c.1

Figure 30. - Continued.

NACA TN 4322

X8

s

.

0 2 k 6 8 10 12 4 16

Maximum thi chess, ti= peroent c-_

(e) x = gO to 100 percent c.

Figure m.- Concluded.

.o12

.008

.004

g lo

1 “ .008

i !

‘ 3

! j

.004

0

.008

.Ool+

o

m 31.-

0 2 4 G B 10 ~ U ~ la 20 ~

Mmw thidmess, t, peroent o

. .

Variation of the ratio of leading-edge radius to IWKiMm thickness sqp.ared for the

NACA 63-, 64-, w 65-series tioti sections.

NACA TN 4322 59

.008

● 004

.004

00 2 4681ou4M

Maximum thickness, t, percent o

Figure 32.- Variation of the ratio of leading-edge radius tothickness squsred for the NACA 65A-, 61tA-,and 6~-seriessections.

maximumairfoil

60

N

NACA TN 1522

.

L1

1*O

.9

.8

●7

.6

●5

.4

●3

.2

.1

00 2 4 G 8 10 u Q 16 18 zo 22

Maximumthldcneee, t, peroent o

(a) x= O.~ percent c.

Figure 33.- Variation of static-pressure coefficient with airfoil max-imum thickness for the NACA 65-series airfoil sections. .

NACA TN 4322 61.

1.28

1.*

1.20

l.ti

M2

1.08

1.04

1.00

.96

.?2

.ea

.4

.80

.76

.72

.68

.64

.60

●9

(b) x = 0.75 to 5.0 percent c.

Figure 33. - Continued.

62 NACA TN 4322

L.76

l.~

1.68

1.64

1.60

1.40

1+6

1.32

L28

1.24

1.20

1.16

1.12

1.08

t.oh----0 2 46BJoM4M 18202z

Uzfmm thldmens,t,preent 0

(c) x= 7.5 to 30 percent c.

Figure 33. - Continued.

&

k

*

4

NACA TN 4s22 63

o 2 4 6 8 10 u * 16 la 20 22

-m tblohess, t, peraant o

(d) x = 35 to 70 percent c.

Figure 33. - Continued.

64

1.04

ml

1.00

.96

.92

.88

44

8● O

.76

.72

.68

.64

NACA TN 4322

V

.

(e) x= 7~to 100 percent c.

Figuxe 33.- Concluded.

.

.

.

NACA TN 4322 65

0 2 46sM=4~ mzo=-- WIidcueam, t,mmollta

.

(a) x= 0.5t02.~ percent c.

Figure 34.- Vmiation of static-pressure coefficient with airfoil msx-.imum thickness for the NACA 64-series airfoil sections.

66

1.9

1.28

lak

1.20

1*16

1.12

1.o8

Loll

NACA TN 4322

“o 2 468zou4U ti 2022~1~ t~o~em~, ~,pmomt 0

(b) x = ~.O to 40 percent c.

Figure 34.- Continued.

NACA TN 4522 67

1.64

1.60

1.36

1.52

1.48

1*IA

1.40

1.36

1.32

1.28

1.24

1.20

1.16

l.li?

1.08

l.oi$

l.m

(c) x= 47t075 percent c.

Figure 34.- Continued.

68 NACA TN 4322

.68

.6110 2 46

(d)

8 10 12 4

MaximatMokness,t,percwnt

x = 80 to 100 percent

Figuxe 34.- Concluded.

16 18 20 22

0

c.

.

.

NACA TN 4322 69

~1= tMOhe#n, b, FaOanto.

(a) x = O.~ to ~.O percent c.

. Figure 35.- Variation of static-pressure coefficient with airfoil max-imum thickness for the NAC!A6~-series airfoil sections.

70 NACA TN 4322

T

l.v

1.68

1*Q

1.60

1.56

l.=

1.b8

1.k4

lAO

1.*

1.*

1.28

1A

1.20

1.16

1.12

1.06

1.4

1.00

9

(b) x= 7.~to4~ percent c.

Figure 35.- Continued.

NACA TN 4322 71

.

0 2 4 6 8 10 = d 16 ~ 26 =Atulmuinthlokness, k, Bmant 0

(c) x . ~ to 75 percent c.

Figure 35. - Continued.

72

1.04

1.00

●96

N8 .92

%

. .88*$422 .84000

~ .80

mQf-lf4

:: .76+m

.72

.68

.64

.60

NACA TN 4522

Meximum thioknese, t, peroent o

(d) x = 80 to 100 @=cent c.

Figure 35. - Concluded.

NACA TN 4322

1.2.E

*

cdl

.

s

G?&

?..20

1.16

1.3.2

1.08

1.04

1.00

.%

.92

.s9

.@4

.8o

.76

.72

.6.9

.64

.60

73

0 2 4 6 8 lo 22 4ti~ thioknem, t, Mm*nt a

*

(a) x= O.~to~.O percent c.

. Figure 36.- Variation of static-pressure coefficient with airfoil mSX-inum thickness for the NACA 6~-series airfoil sections.

74

1.48

1.M

1.40

NJ

1.36

1.32

1.28

1.24

1.20

1.16

1.12

1008

1 nt,

NACATN 4322

*

*.”*

o 2 k A e 10 ~ 4 16hlaxiznum thickness, t, peroent a %

(b) x= y.~to~percerit c.

Figure 36.- Continued.u

NACA TN 4322 75

l.I@

1.44

1.40

1.36

1.32

1.28

1.4

1.20

1.16

1.12

l.oe

1.Q

1.00

.96

.92

.ea

.eho 2 46 8 10 12 1.4 16M9ximw thickness, t, peroent 0

(c) x = 35 to 95 percent co

Figure 36. - Concluded.

.

76

(a) x = 0.5 to 2.5 percent c.

NACATN 4322

w

?

o 2 kg 8 10 12 4 16MeximuJII thickness,t, peroento

Figure 37. - Variation of static-pressure coefficient with airfoil max-imm thickness for the NACA 64A-series airfoil sections.

NACA ~ 4322 77

1.48

1.44

1.40

10*

1.32

1.28

1.24

1.20

1.16

1012

1.08

1.oh–7

o 2 46 8 10

Meximumthickness, t,

(b) x = ~.O to 35 percent

Figure 37.- Continued.

12 4 16

peruant c

c.

78

1.32

1.28

1.24+

1.20

1.16

1*12

1.08

1*O4

1.00

.96

.92

.88

-al,

I?ACATN 4322

--0 2 468 30 22 416

Mdmum tblakness, t, perobnt o

(c) x= 40to$l~peFEent c.

Figure 37.- conc~~ed..

NACA TN 4322 79

1.12

1.08

z.oI+

w- 1.00

$- .96

.88

.84

.80

.76

.72

.680 z k6 8 10 12 4 16

Maximumthickness, ‘t,peroeniios

(a) x= 0.5 to 2.~ percent c.

Figure 38.- V~iation of static-pressure coefficient with airfoil max-9 immn thickness for the NACA 6~-series airfoil-sections.

80

(N

f!

NACA TN lt522

1.44

1.40

1.36

1.32

1.28

1.24

1.20

1016

l.1.z!

1.08

1.04

1.00

(b) x= 5.0t040 percent c.

Figure 38.. Continued.

.

*

“o 2 46 8 10 12 4 16

MaxiriIum thioknes8, t, perOent D

NACATN 4322 81

d

..70 2 k 6 8 10 ~“~ 16

Hud.!numthiokmas* t, percent u

(c) x = J+~ to 95 percent c.

Figure 38. - Concluded.

82

(a) x= Opercent co

NACATN 4322

Figure 39.- Variation of additional velocity-increment ratio with air-foil maximumthiclmess for the NACA 63-series airfoil sections.

NACA TN 4322 83

2.3

2.2

2.1

2.0

1.9

1.8

1.7

L6

1.5

1.4

1.3

1.2

1.1

1.0

.9

.8

(b) x= 0.5t02.~ percent c.

Figure 39.- Continued.

84 NACA TN 4322

.72

.68

.64

.60

.%

.%

&8

.44

.40

.36

.32

.28

.24

.20

.16

●I2

.08

.*

0

(c) x = 5.0 to 95 percent c.

!.

D

Figure 39. - Concluded.

NACA TN 4322

.

8-’8

4

Z@

a.b

4.0

L3.6

13.2

lz.a

Z2.k

12.0

=.6

11.2

10.8

m4

10.0

9.6

9.2

8.8

8.4

8.o

7.6

7.2

85

7.6

7.2

6.8

6.4

6.0

5.6

5.2

4.8

44

4.0

3.6

3.2

2.8

2.4

2.0

1.6

1.2

.8

.4

02

c

.

(a) x = O percent c.

Figure 40.- Variation of additional velocity-increment ratio with air-foil maximum thiclmess for the NACA 64-series airfoil sections.

86

2.I$

2.3

2,2

2.1

2.0

1.9

1.8

1.7

I.&

1.5

1.4

1.3

1.2

1●1

1.0

●9

.80 2 4 6 s 10 M 4 16 18 20 z?

M8xlmum thlokneas, t, peroent o

(b) x = O.~ to 2.5 @-rcent c.

Figure 40.- Continued.

*

‘w

w

NACA TN 4322 87

●V

.69

●QI

.60

.%

●9

J@

&

J@

.36

.%

&8

.*

920

.16

.U

.08

d!

00 z 46 Blo Mlka6 la 2022

Mulmum thiokpms, t, pmomt 0

(c) x= 5.0to$l~ percent c.

Figure 40.- Concluded.

8a

16.o

15.6

15.2

4.8

3L4

1.4.o

13.6

13.2

12.8

12.4

12.o

u .6

U.2

10.8

look

10.0

9.6

9,2

8.8

8A

(a) x = O percent c.

Figure 41.- Variation of additional velocity-incrementratio with air-foil maximum thickness for the NACA 6~-series airfoil sections.

4322 89

0. 2 4661ou U... ti 18 20 22~um thiclmeaa,t, peroent o

(b) x = 0.5 to 2.5 percent c.

Figure 41.- Continued.

I

n

(a

xII

ul

b

0.

\ * 4

NACM TN @22 91

.

\

w!

4.0

13.6

23.2

lz.s

~.4

22.0

u.6

Z1.z

10.8

10.4

20.0

9.6

9.2

8.8

8.L

8.o

7.6

7.2

6.8

(a) x = O percent c.

9.2

0.8

8.11

8.o

7.6

7.2

6.8

6.k

6.0

5.6

5.2

4.8

4A

4.0

3.6

3.2

2.8

@

2.0

1.6,6

Figure 42.- Variation of additional velocity-increment ratio with air-foil maximum thickness for the NACA 6~-series airfoil sections.

2.3

2.2

2.1

2.0

1.9

1.8

1.7

L.6

l.~

1.4

1.3

1●2

2.1

1.0

.0

NACA TN 4322

-,0 2 41$ 8 10 12 14 16

Maximumth.laknesa, t, peroent o

(b) x = 0.5 to 2.5 percent c.

Figure 42.- Continued.

IWCA TN 4322

00 2 46SZOUIA~

~~ t~o~eas, t, Imroent a

. . .-— . . .

(c) x = 5.0 to 97 percent c.

93

.V

.6a

.61t

.6o

.36

.%

J@

J14

&o

.%

.32

.2a

.*

.20

.ti

.12

.Oa

.*

Figure 42.- Concluded.

94 NACA TN 4322

I8.8

I8.&

8.o

I7.6

7.2

6.8

6.L

6.0

5.6

5.2

&8

k.4

4.0

3.6

3.2

2.8

2.4

2.0

1.6,--0 2 b6810i21426

~= t~OhOBE, t, r.aromnt o

(a) x = O percent c.

Figure 43. - Vsriation of additional velocity-increment ratio with air-foil maximumthiclmess for the NACA 64A-series airfoil sections.

t

MCA TN 4322

2.&

2.3

2.2

2.1

2.0

5P‘“’

1.3

1.2

1.1

100

.90 2 k 6 6 10 u 4 M

~mn thioknesa, t, pmoent e

(b) x = 0.5 to 2.5 percent c.

Figure 43. - Continued.

96

.72

.68

.611

“.60

.%

.52

.24

a

.ti

.12

.0s

da

a

o 2 It 6810xWimum thioknem,t,~ment o

(c) x= 5.0tog~ percent

Figure.43.- Concluded.

NACATN 4322

?

*’

13A NACA ‘llJ 4322

16,4

16.0

15.6

15.2

4.8

UJ4

4.0

15.6

13.2

22.’9

u.k

1.2.o

u.6

11.2

10J

10.II

M.c

9J

9.;

8.(

97

9.6

9.2

8.8

8.4

8.o

7.6

7.2

6.8

6.lt

6.0

5.6

5.2

IL.8

Lb

l@o

3.6

3.2

2.8

2.4

2.0

6“

(a) x = O percent c.

Figure 44.- Vsxiation of additional velocity-increment ratio with air-foil maximum thickness for the NACA 65A-series airfoil sections.

98

2.4

2.3

2*2

2.1

2.a

1.4

1.3

1.2

1.1

1.0

.9

.80 2 4 .6 8 10 22

k!axlmumthlokneas, t, ~roent

(b) x= 0.~to2.5 percent

Figure 44.- Continued.

4160

c.

NACATN 4322

P

.b

(c) x= ~.0t09~ percent c.

Figure 44.- Concluded.

NACATN 4322

0 2 46EmIzU Z6Uxlmmthldneas, t, ~roant o

99

tfACA - Lu@ay FMd, Va.