Ứng dỤng ĐẠo hÀm khẢo sÁt hÀm sỐ … · gia sư thành Được 3 6) tìm m để...

16
Gia sư Thành Được www.daythem.edu.vn 1 Bài 1: QUAN HỆ GIỮA ĐẠO HÀM VÀ SỰ BIẾN THIÊN CỦA HÀM SỐ 1. Tính đơn điệu của hàm số: a. Định nghĩa: + Hàm số f (x) được gọi là đồng biến trên D nếu 1 2 1 2 1 2 , , ( ) ( ) x x Dx x fx fx + Hàm số f (x) được gọi là nghịch biến trên D nếu 1 2 1 2 1 2 , , ( ) ( ) x x Dx x fx fx b. Định lý: + Hàm số () y fx đồng biến trên khoảng (a;b) ' 0, ( ; ). y x ab + Hàm số () y fx nghịch biến trên khoảng (a;b) ' 0, ( ; ). y x ab 2. Cực trị của hàm số: + Hàm số () y fx đạt cực trị tại 0 x nếu 0 '( ) 0 yx . + Hàm số () y fx đạt cực đại tại 0 x nếu đạo hàm ' y đổi dấu từ + sang – khi đi qua 0 x . + Hàm số () y fx đạt cực tiểu tại 0 x nếu đạo hàm ' y đổi dấu từ – sang + khi đi qua 0 x . y f(x 1 ) f(x 2 ) x 1 x 2 Định lý . Giả sử hàm số f(x) có đạo hàm cấp một trên khoảng (a; b) chứa điểm x 0 , f (x 0 ) = 0 và f(x) có đạo hàm cấp hai khác 0 tại điểm x 0 . + Nếu f ’’ (x 0 ) < 0 thì hàm số f(x) đạt cực đại tại điểm x 0 . + Nếu f ’’ (x 0 ) > 0 thì hàm số f(x) đạt cực tiểu tại điểm x 0 . + Nếu f ’’ (x 0 ) = 0 thì hàm số f(x) không có cực trị. CÁC DẠNG TOÁN THƯỜNG GẶP Bài 1: Xét tính đơn điệu và cực trị của hàm số y = f(x). a. Qui tắc 1: + B 1 : Tìm tập xác định (gisD = R, a < 0) + B 2 : Tính f (x) và giải phương trình f (x) = 0 BBT: + B 3 : Lập bảng biến thiên và kết luận x -x 1 x 2 x 3 +b. Qui tắc 2: + Tính f ’’ (x) và tính f ’’ (x i ).(x i là nghiệm pt f (x)) f (x) + 0 - 0 + 0 - + Nếu f ’’ (x) < 0 thì hàm số đạt cực đại tại điểm x i . + Nếu f ’’ (x) > 0 thì hàm số đạt cực tiểu tại điểm x i . f(x) + Nếu f ’’ (x) = 0 thì hàm số không có cực trị. CT Chú ý: Cách xét dấu của phương trình. + Ta xét dấu tphải sang trái, bên phải cùng dấu với hsa (nếu phương trình tích, thương thì cùng dấu tích các hsa) qua nghiệm đơn đổi dấu, qua nghiệm kép không đổi dấu. Ví dụ 1: Xét tính đồng biến, nghịch biến và cực trị của các hàm số sau: a) 3 2 2 2 y x x x b) 4 2 3 2 2 x y x c) 2 1 5 x y x d) 2 2 26 2 x x y x j j j x x x d b i i i x x x c j j j x x x a x

Upload: others

Post on 21-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

1

⧫ Bài 1: QUAN HỆ GIỮA ĐẠO HÀM VÀ SỰ BIẾN THIÊN CỦA HÀM SỐ

1. Tính đơn điệu của hàm số: a. Định nghĩa:

+ Hàm số f (x) được gọi là đồng biến trên D nếu 1 2 1 2 1 2, , ( ) ( )x x D x x f x f x

+ Hàm số f (x) được gọi là nghịch biến trên D nếu 1 2 1 2 1 2, , ( ) ( )x x D x x f x f x

b. Định lý:

+ Hàm số ( )y f x đồng biến trên khoảng (a;b) ' 0, ( ; ).y x a b

+ Hàm số ( )y f x nghịch biến trên khoảng (a;b) ' 0, ( ; ).y x a b

2. Cực trị của hàm số:

+ Hàm số ( )y f x đạt cực trị tại 0

x nếu 0

'( ) 0y x .

+ Hàm số ( )y f x đạt cực đại tại 0

x nếu đạo hàm 'y đổi dấu từ + sang – khi đi qua 0

x .

+ Hàm số ( )y f x đạt cực tiểu tại 0

x nếu đạo hàm 'y đổi dấu từ – sang + khi đi qua 0

x .

y

f(x1)

f(x2)

x1 x2

Định lý . Giả sử hàm số f(x) có đạo hàm cấp một trên khoảng (a; b) chứa điểm x0,

f ’(x0) = 0 và f(x) có đạo hàm cấp hai khác 0 tại điểm x0.

+ Nếu f ’’(x0) < 0 thì hàm số f(x) đạt cực đại tại điểm x0.

+ Nếu f ’’(x0) > 0 thì hàm số f(x) đạt cực tiểu tại điểm x0.

+ Nếu f ’’(x0) = 0 thì hàm số f(x) không có cực trị.

CÁC DẠNG TOÁN THƯỜNG GẶP Bài 1: Xét tính đơn điệu và cực trị của hàm số y = f(x).

a. Qui tắc 1: + B1: Tìm tập xác định (giả sử D = R, a < 0)

+ B2: Tính f ’(x) và giải phương trình f

’(x) = 0 BBT:

+ B3: Lập bảng biến thiên và kết luận x -∞ x1 x2 x3 +∞

b. Qui tắc 2: + Tính f ’’(x) và tính f

’’(xi).(xi là nghiệm pt f

’(x)) f

’(x) + 0 - 0 + 0 -

+ Nếu f ’’(x) < 0 thì hàm số đạt cực đại tại điểm xi.

+ Nếu f ’’(x) > 0 thì hàm số đạt cực tiểu tại điểm xi. f(x) CĐ CĐ

+ Nếu f ’’(x) = 0 thì hàm số không có cực trị. CT

⧩ Chú ý: Cách xét dấu của phương trình.

+ Ta xét dấu từ phải sang trái, bên phải cùng dấu với hệ số a (nếu phương trình tích, thương thì

cùng dấu tích các hệ số a) qua nghiệm đơn đổi dấu, qua nghiệm kép không đổi dấu.

Ví dụ 1: Xét tính đồng biến, nghịch biến và cực trị của các hàm số sau:

a) 3 22 2y x x x b) 4

2 3

2 2

xy x c)

2 1

5

xy

x

d)

22 26

2

x xy

x

j j jx x x

d b

i i ix x x

c

j j jx x x

a x

Page 2: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

2

e) 2 1 3y x x f) 22y x x g) 3 4( 2) ( 1)y x x h) 22y x x x

Ví dụ 2: Tìm cực trị của các hàm số sau:

a) xxy 2sin b) xxy 2sin2 c)2sin 3cos , [0; ].y x x x

Bài 2: Xác định tham số để hàm số y = f(x) đồng biến (nghịch biến)

a. Tìm m để hàm số f(x) đồng biến (nghịch biến) trên tập xác định

B1: Tìm tập xác định D

B2: Tính f ’(x)

+ Hàm số f(x) đồng biến trên D khi và chỉ khi f ’(x) 0 x D

+ Hàm số f(x) nghịch biến trên D khi và chỉ khi f ’(x) 0 x D

Chú ý. +

0

0,02

aRxcbxax +

0

0,02

aRxcbxax

+ Nếu a chứa tham số phải xét trường hợp a = 0

b. Tìm m để hàm số dcxbxaxxf 23)( đồng biến (nghịch biến) trên (α, β)

B1: Tìm tập xác định D B2: Tính f ’(x)

Cách 1: Nếu tham số m có mũ bậc nhất.

+ Hàm số f(x) đồng biến trên (α; β) f ’(x) 0 ∀x ∈ (α; β) ( )m g x ax ( )m M g x

+ Hàm số f(x) nghịch biến trên (α; β) f ’(x) 0 ∀x ∈ (α; β) ( ) min ( )m g x m g x

Cách 2: Nếu tham số m có mũ bậc hai và phương trình f ’(x) có ∆ = (km + h)

2

→ f ’(x) có hai nghiệm x1 , x2

với x1 < x2

+ f(x) đồng biến (α; β)

21

2

1

0

0

xxa

x

xa

nghịch biến (α; β)

21

2

1

0

0

xxa

x

xa

+ f(x) đồng biến (-∞; α) ⇔ a > 0, x1 > α, nghịch biến (-∞; α) ⇔ a < 0, x1 > α,

+ f(x) đồng biến (α; +∞) ⇔ a > 0, x2 < α, nghịch biến (α; +∞) ⇔ a < 0, x2 < α,

c. Hàm số y = dcx

bax

có TXĐ: D =

c

dR \ ,

2

/

)( dcx

bcady

+ Hàm số f(x) đồng biến (-∞; α)

cd

bcad

/

0, f(x) nghịch biến (-∞; α)

cd

bcad

/

0

+ Hàm số f(x) đồng biến (α; +∞)

cd

bcad

/

0 , f(x) nghịch biến (α; +∞)

cd

bcad

/

0

1) Tìm các giá trị của m để hàm số 3 214 3

3y x mx x đồng biến trên R. ĐS: 2 2m

2) Với giá trị nào của m hàm số: 2 3 21

( 6) ( 2) 3 43

y m m x m x x luôn nghịch biến trên R.

ĐS: - 7/4 ≤ m ≤ 2

3)(KA -13) Tìm m để hàm số 3 2y x 3x 3mx 1 (1) nghịch biến trên khoảng (0; + ) ĐS: m ≤ -1

4) Tìm m để hàm số 3 21 1 3 43

y x m x m x đồng biến trên (0, 3) ĐS: 127

m

5) Cho hàm số: 3

)1(3

1 3223 m

xmmxxy (C). Tìm m để hàm số (C).

a, đồng biến [0; 2] b. đồng biến (1; +∞) ĐS: a. m ≥ 3 ˅ m ≤ - 1, b. m ≤ 0

Page 3: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

3

6) Tìm m để hàm số: y 4mx

x m

nghịch biến trên khoảng ( ;1) ĐS: 2 1m

Bài 3: Ứng dụng tính đơn điệu chứng minh đẳng thức )()( xvxu

+ Đặt: )()()( xvxuxf

+ Tính )(/ xf và chứng minh )(/ xf > 0 hoặc )(/ xf < 0

+ Nếu )(/ xf > 0 suy ra )(xf đồng biến với mọi 0)()()0()(0 xvxufxfx

Chứng minh các đẳng thức sau:

a, 3

s inx , 06

xx x b, tan , 0

2x x khi x

c,

20,

3tan

3 x

xxx

d, 2sin t anx 3 , (0; )2

x x x

e, xxx

x2

111

82

11

2

với (0 < x < +∞)

Bài 4: Các bài toán cực trị hàm số

a. Xác định tham số để hàm số đạt cực trị tại x = a.

+ Hàm số y = f(x) đạt cực đại tại x = a 0)(/ af và chứng minh 0)(// af

+ Hàm số y = f(x) đạt cực tiểu tại x = a 0)(/ af và chứng minh 0)(// af

+ Hàm số y = f(x) đạt cực trị tại x0 , y0

00

0

/

)(

0)(

yxf

xf và chứng minh 0)( 0

// xf

b. Xác định tham số để hàm số có cực trị Với hàm số bậc ba đạo hàm là một tam thức bậc hai : f

’(x) = Ax

2 + Bx + C, (A 0).

+ Hàm số f(x) đạt một cực đại và một cực tiểu khi và chỉ khi phương trình f ’(x) = 0 có hai

nghiệm phân biệt 0,0 A

+ Hàm số f(x) không có cực trị khi và chỉ khi phương trình f ’(x) = 0 có nghiệm kép hoặc vô

nghiệm 0

Với hàm số trùng phương, ta có y’ = 4ax

3 + 2bx = 2x(2ax

2 + b) ,

)1(02

00

2

/

bax

xy

+ Hàm số có ba cực trị (1) có hai nghiệm phân biệt khác 0 02

a

b

Khi đó hàm số có hai cực tiểu, một cực đại khi a > 0; có hai cực đại, một cực tiểu khi a < 0.

+ Hàm số có một cực trị (1) vô nghiệm hoặc có 1 nghiệm x = 0 02

a

b

Chú ý:

+ Nếu không tìm được hai điểm cực trị ta qui về tổng hai nghiệm và tích hai nghiệm.

+ Để tìm cực trị của hàm số đa thức y = f(x) ta lấy y chia cho y’ và viết hàm số dưới dạng:

y = y’.h(x) + g(x). Khi đó, nếu x0 là điểm cực trị thì y0 = g(x0)

1) Tìm m để hàm số: 1)4(3)1( 223 mxmxmxy đạt cực đại tại x = 0. (Đ/S: 2m )

2) Xác định b, c để hàm số: y = 2

1x

4 + 2bx

2 + c đạt cực trị tại x = -1, y =

2

1 (Đ/S: b = -

2

1 , c = 1)

3) Tìm các hệ số a, b, c, d của hàm số: y = ax3 + bx

2 + cx + d sao cho hàm số đạt cực tiểu tại điểm x = 0,

f(0) = 0 và đạt cực đại tại điểm x = 1, f(1) = 1. (Đ/S: a = - 2, b = 3, c = d = 0)

4) Tìm m để hàm số: 53)2( 23 mxxxmy có cực đại, cực tiểu. (Đ/S: 13,2 mm )

5) Định m để hàm số: y = mx4 + (m

2 – 9)x

2 + 10 có 3 điểm cực trị (Đ/S: m < - 3 ˅ 0 < m < 3)

Page 4: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

4

6) Tìm m để hàm số: y 3 21 1( 1) 3( 2)

3 3x m x m x có hai cực trị hoành độ dương. (Đ/S: m > 2 )

7)(KB-14) Cho hàm số 3 3 1 y x mx (1), Cho điểm A(2; 3). Tìm m để đồ thị (1) có hai cực trị B và

C sao cho tam giác ABC cân tại A. ĐS: m = 1/2

8)(KB-12) Cho hàm số 3 2 33 3 (1)y x mx m , m là tham số thực. Tìm m để đồ thị hàm số (1) có hai

điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48. ĐS: m 0, m = 2

9)(KA-12) Cho hàm số 4 2 22 1 1y x ( m )x m ( ) ,với m là tham số thực. Tìm m để đồ thị hàm số (1)

có ba điểm cực trị tạo thành ba đỉnh của một tam giác vuông. ĐS: m > -1, m = 0

10)(KB-13)Cho hàm số 3 22 3( 1) 6 (1)y x m x mx . Tìm m để đồ thị hàm số (1) có hai điểm cực trị

A và B sao cho đường thẳng AB vuông góc với đường thẳng y = x + 2. ĐS: m = 0, m = 2.

⋇ Bài tập tương tự

Bài 1: Xét tính đồng biến, nghịch biến và cực trị của các hàm số sau:

1) 31292 23 xxxy 2)2

2

1

1

x xy

x x

3)

4

2482

2

x

xxy 4) 3 2 2y x x

Bài 2: Xác định tham số để hàm số đồng biến, nghịch biến

1) Tìm m để hàm số: y 3 22 ( 3)3

mx x m x m đồng biến trên R ĐS: 1m

2) Tìm m để hàm số: y = 2

1

x m

mx

nghịch biến trên tập xác định của nó. ĐS: m < - 2 ˅ m > 2

3) Tìm m để 3 2 11 3 23 3my x m x m x đồng biến trên 2, ĐS:

2

3m

4) Tìm m để hàm số 123 xmxxy nghịch biến trên khoảng (1; 2). ĐS: 4/13m

5) Cho hàm số 1)1(6)12(32 23 xmmxmxy có đồ thị (Cm). Tìm m để hàm số

a. đồng biến trên khoảng (2; ) b. nghịch biến trên (1; 2

3) ĐS: a. m ≤ 1 b.

2

1 < m < 1

6) Tìm m để hàm số mx

mxy

1 đồng biến trên (2; +∞) ĐS: - 2 ≤ m < -1 ˅ m > 1

Bài 3: Cực trị hàm số

1) Tìm m để hàm số: 5)3( 23 mmxxmxy đạt cực tiểu tại x = 2. Đ/S: 0m

2) Tìm m để hàm số: 5)2(2 24 mxmmxy đạt cực đại tại 2

1x . ĐS:

3

8m

3) Xác định các hệ số a, b, c sao cho hàm số y = x3 + ax

2 + bx + c đạt cực trị bằng 0 tại điểm x = - 2 và

đồ thị của hàm số đi qua điểm A(1; 0). Đ/S: a = 3, b = 0, c = - 4

4) Tìm m để hàm số: 1)1(3 23 xmmxmxy không có cực trị. Đ/S: 4/10 m

5) Tìm m để hàm số 3 21 13

f x x mx mx đạt cực trị tại x1, x2 thoả mãn điều kiện 1 2 8x x .

ĐS: 1 65 1 65

, ,2 2

m

6) Tìm m để hàm số: 4 2 42 2f x x mx m m có cực đại, cực tiểu lập thành tam giác đều. ĐS: m 3 3

7) Tìm m để hàm số: 142 24 mxmxy có 2 điểm cực tiểu, một cực đại và khoảng cách giữa chúng

bằng 5. ĐS: m = 1/25

8) Tìm m để hàm số y = x4 – 2mx

2 + 2m + m

4 có 3 cực trị A, B, C sao cho S ABC = 6 ĐS: m 5 6

Page 5: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

5

9)(KD- 12) Cho hàm số y = 2

3x

3 – mx

2 – 2(3m

2 – 1)x +

2

3 (1), m là tham số thực. Tìm m để hàm số

có hai điểm cực trị x1 và x2 sao cho x1.x2 + 2(x1 + x2) = 1 ĐS:m < 2

13

V m >

2

13, m =

2

3

10)(KB-11) Cho h/s 4 22 1y x ( m )x m (1). Tìm m để đồ (1) có ba điểm cực trị A,B,C sao cho

OA = BC, A là cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại. ĐS:m > -1,m = 2 2 2

⧫ Bài 2: Ứng dụng đạo hàm tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Giả sử hàm số f(x) có tập xác định D (D R)

+ 0 0

( ) ,max ( )

: ( )D

f x M x DM f x

x D f x M

+

0 0

( ) ,min ( )

: ( )D

f x m x Dm f x

x D f x m

a. Tìm GTLN, GTNN của hàm số trên một khoảng ta sử dụng phương pháp.

Tính f (x).

Xét dấu f (x) và lập bảng biến thiên.

Dựa và bảng biến thiên ta có Maxf(x) = CĐ, minf(x) = CT

b. Tìm GTLN, GTNN của hàm số liên tục trên đoạn [a; b] ta sử dụng phương pháp.

Tính f (x).

Giải phương trình f (x) = 0 tìm các nghiệm x1, x2, …, xn treân [a; b] (nếu có).

Tính f(a), f(b), f(x1), f(x2), …, f(xn).

So sánh các giá trị vừa tính và kết luận:

mxfMxMaxfbaba

;;

)(min,)(

Ví dụ 1: Tìm giá trị LN, NN của các hàm số sau

1) 21

4

xy

2)

xxy

4 trên (0; +∞) 3)

123

310202

2

xx

xxy 4)

xy

cos

1 trên

2

3;

2

ĐS: 1. max y = 4 2. min y = 4 3. min y = 2/5 , max y = 7 4. max y = -1

Ví dụ: Tìm giá trị LN, NN của các hàm số sau

1)3 22 3 12 1y x x x trên [–1; 5] 2) y = x

4 - 3x

3 - 2x

2 + 9x. trên [-2; 2]

3) |65| 2 xxy trên [- 5; 5] 4) 225 xy trên [- 4; 4] 5) 2 4y x x

6) 24 xxy 7) 2 cos2 4siny x x trên 0;2

8) y = x + cos2x trên [0;

4

]

ĐS: 1. Max y =266, min y = -6 2. Max y = 14, min y = - 7 3. Max y = 56, min y = 0

4. max y = 5, min y = 3 5. Max y = 2 3 , min y = 6 6. Max y = 2 2 , min y = - 2

7. max y = 2 2 , min y = 2 8. Max y = 2/14/ , min y = 1

⋇ Bài tập tương tự

1) y = x3 - 3x

2 - 9x + 35 Trên đoạn [-4; 4] 2)

2 2( 0)y x x

x 3)

22 5 4

2

x xy

x

trên [0; 1]

4) y 24x x 5) 21 xxy 6)

1

12

xxy trên khoảng (1; ).

7)2sin 1

sin 2

xy

x

8)

2

1

cos cos 1y

x x

9) ,sin

2

2 xx

y trên

2;

2

10) Tìm tham số m để giá trị nhỏ nhất của hàm số 2

( )1

x m mf x

x

trên đoạn [0;1] bằng -2

Page 6: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

6

11) Cho hàm số cos 1

cos 2

k xy

x

. Tìm k để giá trị nhỏ nhất của hàm số nhỏ hơn -1.

ĐS: 1. maxy = 40, miny = - 41 2. miny = 3 3. maxy = 3

11, miny = 2 4. maxy = 2 2 ,miny = -2

5. maxy = 2

1, miny =-

2

1 6. miny = 5 7. maxy =

3

1, miny = - 3 8. maxy =

4

7, miny =

3

1

9. maxy = 14

, miny =

2

3

2

1

24

10. m = -1, m = 2 11. k = - 4 hoặc k = 2

⊶⊶⊶⥈⊷⊶⊶

⧫ Bài 3 ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ

1. Định nghĩa:

Đường thẳng 0x x được gọi là đường tiệm cận đứng của đồ thị hàm số ( )y f x nếu ít nhất

một trong các điều kiện sau được thõa mãn:

0

lim ( )x x

f x

;

)(lim0

xfxx

hoặc 0

lim ( )x x

f x

; 0

lim ( )x x

f x

;

Đường thẳng 0y y được gọi là đường tiệm cận ngang của đồ thị hàm số ( )y f x nếu:

0lim ( )x

f x y

; 0lim ( )x

f x y

Đường thẳng , 0y ax b a được gọi là đường tiệm cận xiên của đồ thị hàm số ( )y f x

nếu : lim ( ) ( ) 0x

f x ax b

; lim ( ) ( ) 0x

f x ax b

2. Chú ý:

a) Nếu ( )

( )( )

P xy f x

Q x là hàm số phân thức hữu tỉ ta có .

Nếu Q(x) = 0 có nghiệm x0 thì hàm số có đường tiệm cận đứng là 0x x .

Nếu bậc P(x) bậc Q(x) thì hàm số có tiệm cận ngang.

Nếu bậc (P(x)) = bậc (Q(x)) + 1 thì hàm số có tiệm cận xiên.

b) Nếu )(xfy ta tìm tiệm cận bằng cách xác định hệ số a, b trong phương trình của tiệm cận

xiên, ta có thể áp dụng các công thức sau:

( )

lim ; lim ( )x x

f xa b f x ax

x hoặc

( )lim ; lim ( )

x x

f xa b f x ax

x

1) Tìm các đường tiệm cận đứng và tiệm cận ngang các hàm số sau;

a) 2 5

1

xy

x

b)

2

2

4 5

1

x xy

x

c)

2

2

2 3 3

1

x xy

x x

d)

2 4 5

xy

x x

e)

13

x

xy

2) Cho hàm số mx

mxy

2

1. Xác định m để tiệm cận đứng của đồ thị qua điểm A(-1; √2) ĐS: m = 2

3) Cho hàm số2

( )1

x my f x

mx

. Tìm m để đồ thị hàm số có tiệm cận đứng, tiệm cận ngang và các

tiệm cận cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8. ĐS: m = 2

1

4) Tìm các đường tiệm cận xiên của các hàm số sau:

Page 7: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

7

a.27 4 5

2 3

x xy

x

b.

3

2

1

1

x xy

x

c.

4

3

4

1

x xy

x

d. y 22 1x x e.

2 3 2

2

x xy

x

⋇ Bài tập tương tự

1) Tìm tiệm cận đứng và tiệm cận ngang của các hàm số sau:

a. 10 3

1 2

xy

x

b.

2

1

2 2

xy

x x

c.

2

2

9

xy

x

d. y

2

3 2

7 3 4

2 2

x x

x x x

2) Tìm tiệm cận xiên của các hàm số sau:

a. 2 4 3

1

x xy

x

b. 2 4y x x c.

2

4 2

9

xy

x

d. y 2 3 10x x x

⊶⊶⊶⥈⊷⊶⊶

⧫ Bài 4: KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ

Các bước khảo sát sự biến thiên và vẽ đồ thị hàm số đa thức B1: Tập xác định D = R

B2: Xét sự biến thiên của hàm số.

a) Tìm giới hạn tại vô cực của hàm số.

b) Lập bảng biến thiên của hàm số, bao gồm:

+ Tính đạo hàm f ’(x) và tìm nghiệm f

’(x) = 0, xét dấu đạo hàm, xét chiều biến thiên và tìm cực

trị của hàm số (nếu có), điền các kết quả vào bảng.

B3: Vẽ đồ thị của hàm số

+ Tìm điểm uốn I(x0; y0) là nghiệm phương trình f ’’(x) = 0 (chỉ áp dụng hàm số bậc ba)

+ Xác định một số điểm đặc biệt của đồ thị và vẽ hình.

+ Nhận xét về đồ thị: Chỉ ra trục và tâm đối xứng của đồ thị (nếu có)

Chú ý: Biện luận phương trình f(x) – m = 0 bằng độ thị

+ Ta biến đổi phương trình về dạng f(x) = m (*).

+ Nghiệm phương trình (*) là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

1. Hàm số bậc ba 3 2 ( 0)y ax bx cx d a :

Hàm số nhận điểm uốn làm tâm đối xứng.

Các dạng đồ thị hàm số:

a > 0 a < 0

y’ = 0 có 2 nghiệm phân biệt

’ = b2 – 3ac > 0

y’ = 0 có nghiệm kép

’ = b2 – 3ac = 0

y

x 0 I

y

x 0

I

Page 8: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

8

y’ = 0 vô nghiệm

’ = b2 – 3ac < 0

1) Cho hàm số: y = x3 – 3x

2 (C).

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

b. Dựa vào đồ thị (C) biện luận theo m số nghiệm của phương trình: x3 – 3x

2 + m – 2 = 0 .

2) Cho hàm số y = - x3 + 6x

2 – 9x + 2 (C).

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

b. Dựa vào đồ thị (C) tìm m để phương trình: x3 – 6x

2 + 9x + m = 0 có 3 nghiệm phân biệt.

3) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) y = - x3 – x + 2.

2. Hàm số trùng phương:4 2 ( 0)y ax bx c a :

Đồ thị hàm số nhận trục tung làm trục đối xứng.

Các dạng đồ thị hàm số:

1) Cho hàm số (C): y = x

4 – 6x

2 + 5

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)

b. Dựa vào đồ thị (C), biện luận theo m số nghiệm phương trình: - x4 + 6x

2 + 3 + m = 0.

2) Cho hàm số (C): y = - x4 + 2x

2 – 2.

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)

b. Dựa vào đồ thị (C), tìm m để phương trình – x4 + 2x

2 – m

2 – 1 = 0 có 4 nghiệm phân biệt.

3) Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 4 21 3

2 2x x

Các bước khảo sát sự biến thiên và vẽ đồ thị của hàm phân thức hữu tỉ

Hàm số nhất biến: ( 0, 0)ax b

y c ad bccx d

B1: Tập xác định D =

c

dR \ .

B2: Xét sự biến thiên của hàm số.

+ Xét tiệm cận đứng và tiệm cận ngang của hàm số.

a > 0 a < 0

y’ = 0 có 3 nghiệm

phân biệt

ab < 0

y’ = 0 có 1 nghiệm

ab > 0

y

x 0

y

x 0

y

x 0

y

x 0

y

x 0

I

y

x 0

I

Page 9: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

9

),()(lim

xf

c

dx

)()(lim

xf

c

dx

→ c

dx là tiệm cận đứng hàm số

c

axfxf

xx

)(lim)(lim →

c

ay là tiệm cận ngang hàm số

+ Lập bảng biến thiên của hàm số, ta có : y’ =

2( )

ad bc

cx d

,

nếu ad – bc > 0 thì hàm số đồng biến trên D, nếu ad – bc < 0 thì hàm số nghịch biến trên D.

y’ > 0 ta có BBT y

’ < 0 ta có BBT

x - d/c x - d/c

y’ + + y

’ - -

a/c

y a/c y

a/c a/c

B3: Vẽ đồ thị của hàm số

+ Xác định một số điểm đặc biệt của đồ thị (giao điểm 0x, giao điểm 0y) và vẽ hình.

+ Đồ thị nhận giao điểm hai đường tiệm cận làm tâm đối xứng.

Các dạng đồ thị

Khảo sát sự biến thiên và vẽ đồ thị (C) của các hàm số sau: a, 2 4

1

xy

x

b,

3

2

xy

x

PP VẼ HÀM SỐ CHỨA GIÁ TRỊ TUYỆT ĐỐI

1. Đồ thị hàm số )(xfy : Ta có ( ) ( ) 0

( )( ) ( ) 0

f x khi f xf x

f x khi f x

2. Đồ thị hàm số )( xfy : Ta có ( ) 0

( )( ) 0

f x khi xf x

f x khi x

y = f (x) có đồ thị (C) y f x có đồ thị (C’) y f x có đồ thị (C’’)

0,y f x x D . Do đó ta phải

giữ nguyên phần phía trên trục Ox

và lấy đối xứng phần phía dưới trục

Ox lên trên ta được đồ thị (C’).

y f x có f x f x ,

x D nên đây là hàm số

chẵn do đó có đồ thị đối xứng

qua trục tung Oy.

0

ad - bc > 0

x

y

0

ad -bc < 0

x

y

Page 10: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

10

f(x)=x^3-2x^2-0.5

x

y

(C)

f(x)=abs(x^3-2x^2-0.5)

f(x)=x^3-2x^2-0.5

x

y

(C')

f(x)=abs(x)^3-2x^2-0.5

f(x)=x^3-2x^2-0.5

x

y

(C'')

Chú ý:

+ Phương trình 0|)(| mxf hoặc 0|)(| mxf , nghiệm phương trình là giao giữa hàm

số )(xfy hoặc )( xfy và đường thẳng y = m

+ Vẽ đồ thị )(xfy , )( xfy và tìm tham số m.

1) Cho hàm số (C): 3 22 9 12 4y x x x .

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

b. Tìm m để phương trình : 3 22 | | 9 12 | |x x x m có 6 nghiệm phân biệt.

2) Cho hàm số (C): 108 24 xxy

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)

b. Tìm m để phương trình: mxx |108| 24 có 8 nghiệm phân biệt

3) Cho hàm số (C):1

1

xy

x

. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

a, Từ đồ thị hàm số (C) suy ra hàm số (C’):

1

1

xy

x

b, Từ đồ thị hàm số (C) suy ra hàm số (C’’):

| | 1

| | 1

xy

x

.

⊶⊶⊶⥈⊷⊶⊶ BÀI TẬP RÈN LUYỆN

1) Cho hàm số3

2 113

3 3

xy x x có đồ thị (C).

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

b. Biện luận theo m số nghiệm của phương trình: x3 – 3x

2 – 9x + 11 + m = 0.

2) Khảo sát sự biến thiên và vẽ đồ thị hàm số: y = 2x3 + 6x

2 + 6x – 1.

3) Cho hàm số xxxy 93 23 có đồ thị (C)

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

b. Dựa vào đồ thị (C), tìm m để phương trình 0293 23 mxxx có hai nghiệm

4) Cho hàm số y = - x4 + 2x

2 + 3 có đồ thị (C)

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)

b. Dựa vào đồ thị (C), biện luận theo m số nghiệm của phương trình 2x4 – 4x

2 + m + 2 = 0.

5) Khảo sát sự biến thiên và vẽ đồ thị hàm số y = x4 + 2x

2 + 1.

Page 11: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

11

6) Cho hàm số 22 24 xxy có đồ thị (C).

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C).

b. Dựa vào đồ thị (C), tìm m để phương trình 012 24 mxx có 3 nghiệm.

7) Khảo sát và vẽ đồ thị các hàm số sau: a, 2 1

2 2

xy

x

b,

2

1

xy

x

8) Cho hàm số (C) : y 3 3 1x x .

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)

b. Biện luận theo m số nghiệm phương trình: 3| | 3 | |x x m

9) Cho hàm số (C): y 4 22 4x x

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) .

b. Với giá trị nào của m phương trình 2 2| 2 |x x m có đúng 6 nghiệm thực phân biệt.

10) Khảo sát và vẽ đồ thị hàm số (C): 1

12

x

xy và suy ra đồ thị hàm số (C

/):

1||

1||2

x

xy

11) Cho hàm số: xaaxxa

y )23(3

)1( 23

.

a. Xác định a để hàm số luôn luôn đồng biến ĐS: a ≥ 2

b. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) khi a = 3/2

c. Từ đồ thị hàm số (C) suy ra đồ thị hàm số: |2

5

2

3

3

1| 23 xxxy

⊶⊶⊶⥈⊷⊶⊶

⧫ Bài 5 MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ

I- TIẾP TUYẾN CỦA HÀM SỐ 1. Tiếp tuyến của hàm số (C) y = f(x) tại điểm x0 (C).

B1: Với x0 (C) f(x0)

B2: Tìm hệ số góc tiếp tuyến của (C) tại x0 : '

0( )f x

B3: Phương trình tiếp tuyến của (C) tại x0 có dạng : y '

0 0 0( )( ) ( )f x x x f x

2. Tiếp tuyến của hàm số (C) y = f(x) khi biết hệ số góc k.

B1: Gọi điểm M(x0; y0) (C) Hệ số góc tiếp tuyến của (C) tại x0: '

0( )f x

B2: Vì tiếp tuyến có hệ số góc k '

0( )f x = k, giải pt tìm x0 f(x0)

B3: Phương trình tiếp tuyến của (C) tại x0 có dạng : y '

0 0 0( )( ) ( )f x x x f x

Chú ý: + Nếu tiếp tuyến song song đường thẳng: y = kx + m thì có hệ số góc '

0( )f x = k

+ Nếu tiếp tuyến vuông góc đường thẳng: y = kx + m thì có hệ số góc '

0( )f x .k = - 1

+ Nếu tiếp tuyến tạo với trục 0x một góc thì có hệ số góc '

0( )f x = | tan | .

3. Tiếp tuyến của hàm số (C) y = f(x), biết tiếp tuyến đi qua điểm A(xA; yA) (C)

B1: Gọi điểm M(x0; y0) (C) Hệ số góc tiếp tuyến của (C) tại x0: '

0( )f x

B2: Phương trình tiếp tuyến của (C) tại x0 có dạng : y '

0 0 0( )( ) ( )f x x x f x

B3: Tiếp tuyến đi qua điểm A '

0 0 0( )( ) ( )A Ay f x x x f x , giải pt tìm x0

B4: Thế x0 vào B2 ta được phương trình tiếp tuyến cần tìm.

1) Cho hàm số (C): 1

23

x

xy . Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng – 2

Đ/S: y = -25x + 18

Page 12: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

12

2)(KD -10) Cho hàm số 4 2 6y x x .Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến

vuông góc với đường thẳng 1

16

y x . ĐS: y = 6x + 10

3) Viết phương trình tiếp tuyến của (C): xxxy 323

1 23 , biết tiếp tuyến có hệ số góc lớn nhất

ĐS: 3/8 xy

4)(KB-08) Cho hàm số y = 4x3 – 6x

2 + 1 (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết

rằng tiếp tuyến đó đi qua điểm M(–1;–9). ĐS: y = 24x + 15 hay y = 15 / 4 x 21/ 4

5)(KA-09) Cho hàm số 32

2

x

xy (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến tạo với Ox,

Oy một tam giác cân tại O. Đ/S: y = -x – 2

6) Cho hàm số 3 23 2y x x ( )C . Viết phương trình tiếp tuyến của đồ thị ( )C biết tiếp tuyến cắt các

trục ,Ox Oy lần lượt tại hai điểm ,A B sao cho 1

9OA OB ĐS: 9 7y x , 9 25y x

II- GIAO ĐIỂM CỦA HAI ĐỒ THỊ

1. Giao điểm giữa hàm số (C) : 2ax ax

,b bx c

y ycx d dx e

, với đt d: y = mx + n

+ Phương trình giao điểm của (C) và đường thẳng d: ax b

mx ncx d

(*) ( )

dx

c

+ Đặt (*) bằng g(x) = Ax2 + Bx + C = 0, d cắt (C) tại hai điểm phân biệt

phương trình (*) có 2 nghiệm phân biệt khác c

d 0, 0A , 0)(

c

dg

2) Giao điểm giữa hàm số (C) y = ax3 + bx

2 + cx + d với đt d: y = mx + n

+ PT giao điểm của (C) và (d): ax3 + bx

2 + cx + d = mx + n Ax

3 + Bx

2 + Cx + D = 0 (1).

+ Nếu PT (1) tìm được nghiệm x = x0

+ Dùng sơ đồ Horner chia phương trình (1) cho x = x0 từ đó (1) 0

2( ) ax 0 (2)

x x

g x bx c

+ Số giao điểm của (d) và (C) là số nghiệm phương trình (1).

Nếu PT (1) có 3 nghiệm phân biệt thì PT (2) có 2 nghiệm phân biệt khác x0 0

0, 0

( ) 0

a

g x

3) Giao điểm giữa hàm số (C) y = ax4 + bx

2 + c và đường thẳng d : y = m

+ PT giao điểm của (C) và (d) : ax4 + bx

2 + c = m (1)

+ Đặt t = x2 (t > 0) at

2 + bt + c – m = 0 (2)

+ Số giao điểm của (d) và (C) là số nghiệm của phương trình (1).

Nếu PT (1) có 4 nghiệm phân biệt PT (2) có 2 nghiệm dương phân biệt 0, 0

0, 0

a

S P

Ví dụ 1: Tìm số giao điểm của hàm số hữu tỉ và đường thẳng.

1) Cho hàm số 1

2 1

xy

x

(C) .Tìm m để (C) cắt đường thẳng 12:)( mmxydm tại 2 điểm phân

biệt A, B ĐS: m ≠ 0, m ≠ - 1/3

2)(KB -09) Tìm tất cả các giá trị của m để đường thẳng y = - x + m cắt đồ thị hàm số y = 2 1x

x

tại hai

Page 13: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

13

điểm phân biệt A, B sao cho AB = 4 ĐS: m = 2 6

3)(KB -10) Cho hàm số y = 2x 1

x 1

có đồ thị (C). Tìm m để đường thẳng y = -2x + m cắt đồ thị (C) tại

hai điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 3 (O là gốc tọa độ). ĐS: 2m

4)(KA-11) Cho hàm số 1

2 1

xy

x

. Chứng minh rằng với mọi m đường thẳng y = x + m luôn cắt đồ thị

(C) tại hai điểm phân biệt A và B. Gọi k1, k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A

và B. Tìm m để tổng k1 + k2 đạt giá trị lớn nhất. ĐS: m = - 1

Ví dụ 2: Tìm số giao điểm của hàm số bậc ba và đường thẳng.

1)(KD -13) Cho hàm số 3 22 3 ( 1) 1 (1) y x mx m x , m là tham số thực. Tìm m để đường thẳng

y = -x +1 cắt đồ thị hàm số (1) tại ba điểm phân biệt. ĐS: m < 0 ˅ m > 8/9

2)(KD -08) Cho hàm số y = x3 – 3x + 2 (C) và đường thẳng (d) qua A(3; 20) có hệ số góc m. Tìm m để

đường thẳng d cắt (C) tại 3 điểm phân biệt. ĐS: m 15

, 244

m

3)(KA -10) Cho hàm số y = x3 – 2x

2 + (1 – m)x + m (1), m là số thực. Tìm m để đồ thị của hàm số (1)

cắt trục hoành tại 3 điểm phân biệt có hoành độ x1, x2, x3 thỏa mãn điều kiện: 42

3

2

2

2

1 xxx

ĐS: -1/4 < m <1, m 0

4) Cho hàm số 3 – 3 1y x x có đồ thị (C) và đường thẳng (d): 3y mx m . Tìm m để (d) cắt (C) tại

M(–1; 3), N, P sao cho tiếp tuyến của (C) tại N và P vuông góc với nhau. ĐS: 3 2 2

3m

Ví dụ 3: Tìm số giao điểm của hàm số bậc 4 và đường thẳng.

1) Cho hàm số : y = x4 – (3m + 4)x

2 + m

2 (C). Tìm m để (C) cắt trục hoành tại 4 điểm phân biệt.

ĐS : m > - 4/5, m 0

2)(KD -09) Cho đường thẳng d: 1y và hàm số (Cm): 4 2(3 2) 3y x m x m .

Tìm m để (d) cắt (Cm) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 (Đ/S: 0,13

1 mm )

3) Tìm m để hàm số y = x4 – 2mx

2 + 2m + 3 cắt trục hoành tại 4 điểm phân biệt x1, x2, x3, x4 sao cho

4 4 4 4

1 2 3 4 44x x x x ĐS : m > 3, m =2

291

4) Cho hàm số y = - x4 + (m + 1)x

2 – m + 1, (Cm). Tìm m để đường thẳng y = 1 cắt đồ thị (Cm) tại 4

điểm phân biệt đều có hoành độ nhỏ hơn hoặc bằng 3 và các hoành độ đó lập thành cấp số cộng.

ĐS: m = 9, m = 1/9

III - Tìm điểm M thuộc đồ thị hàm số (C): y = f(x)

• Gọi M(x0; y0) ∊ (C) ⟹ y0 = f(x0), áp dụng điều kiện còn lại tìm x0

Chú ý: + Tìm điểm không đổi M ∊ (C), ta biến đổi pt y0 = f(x0) về dạng: f(x0; y0)m + g(x0;y0) = 0

+ Công thức khoảng cách: 0 0( ;0 ) | | ( ;0 ) | |d M x y d M y x , 0 0

2 2

| ax |( ; )

by cd M

a b

1)(KD – 14) Cho hàm số y = x3 – 3x – 2 . Tìm tọa độ điểm M thuộc (C) sao cho tiếp tuyến của (C) tại M

có hệ số góc bằng 9. ĐS: M là (-2; -4) và (2; 0)

2)(KD-07) Cho hàm số 1

2

x

xy (C). Tìm )(CM sao cho tiếp tuyến của (C) tại M cắt Ox, Oy tại A, B

tạo thành tam giác OAB có diện tích bằng 1/4. Đ/S: )1;1();2;2/1( 21 MM

3) Cho hàm số (C): y 2 1

1

x

x

. I là giao điểm hai đường tiệm cận. Tìm điểm M thuộc đồ thị (C), sao cho

Page 14: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

14

tiếp tuyến của (C) tại M và IM có tích hệ số góc bằng – 9. ĐS: (0; -1), (- 2; 5).

4) Cho hàm số (C): y = (m + 2)x3 + 2(m + 2)x

2 – (m + 3)x – 2m + 1. Tìm các điểm thuộc (C) mà đồ thị

hàm số luôn đi qua với mọi m. ĐS: A(- 2;7), B(1; 4), C(- 1;6)

5)(KA-14) Cho hàm số x 2

yx 1

. Tìm tọa độ điểm M thuộc (C) sao cho khoảng cách từ M đến đường

thẳng y = - x bằng 2 ĐS: M là (-2; 0) và (0; -2).

6) Cho hàm số 2

43

x

xy (C). Tìm các điểm thuộc (C) có hoành độ nguyên và cách đều 2 trục tọa độ.

ĐS: M1(1; 1) và M2(4; 4)

7) Cho hàm số 2 1

1

xy

x

.Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C)

nhỏ nhất. ĐS: A(0; 1) , B(–2; 3).

⊶⊶⊶⥈⊷⊶⊶ BÀI TẬP RÈN LUYỆN Bài 1: Lập phương trình tiếp tuyến

1)(CĐ -13) Cho hàm số 2 1

1

xy

x

. Gọi M là điểm thuộc (C) có tung độ bằng 5. Tiếp tuyến của (C) tại

M cắt trục tọa Ox và Oy lần lượt tại A và B. Tính diện tích ∆OAB. ĐS: y = -3x + 11, S = 121/6

2) Cho hàm số: 2 2

1

xy

x

(C).

a, Viết phương trình tiếp tuyến của (C), biết tiếp tuyến song song với đường thẳng: y = - 4x + 1

b, Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(1; )3/2 .

c, Viết pt tiếp tuyến của (C), biết tiếp tuyến tạo với hai tiệm cận một tam giác vuông cân.

ĐS: a) y = - 4x + 2, y = - 4x + 14, b) 9

2

9

4 xy c) y = - x – 1, y = - x – 7

3) Cho hàm số 2 1

1

xy

x

(C). Viết phương trình tiếp tuyến của (C), biết rằng tiếp tuyến cắt các trục

Ox, Oy lần lượt tại A, B sao cho 9OA OB . ĐS: 9

25

9

1 xy ,

9

13

9

1 xy

Bài 2: Tìm giao điểm của hai hàm số

1) Cho hàm số 2 1

1

xy

x

(C). Xét đường thẳng (dm) đi qua điểm A(- 2; 2) có hệ số góc m. Tìm m để

(dm) cắt (C) tại hai điểm phân biệt. ĐS: m < 0 ˅ m > 12

2)(KD -11) Cho hàm số 2 1

1

xy

x

. Tìm k để đường thẳng y = kx + 2k +1 cắt đồ thị (C) tại hai điểm

phân biệt A, B sao cho khoảng cách từ A và B đến trục hoành bằng nhau.

ĐS: k < 3 2 2 3 2 2k ,k 0, k =-3

3) Tìm m để đường thẳng (d): mxy cắt (C):2

12

x

xy tại 2 điểm phân biệt A, B sao cho AB đạt

giá trị nhỏ nhất ĐS: m = 0

4) Cho hàm số 1

1

xy

x

, (C). Xác định m để đường thẳng y = 2x + m cắt (C) tại hai điểm phân biệt A,

B sao cho các tiếp tuyến của (C) tại A, B song song với nhau. ĐS: m = - 1

5) Cho hàm số 3 26 9 6y x x x có đồ thị là (C). Định m để đường thẳng ( ) : 2 4d y mx m cắt

đồ thị (C) tại ba điểm phân biệt. ĐS: m > - 3

6) Cho hàm số y = x3 – 3x (C) và đường thẳng (d): y = m(x + 1) + 2. Tìm m để (d) cắt (C) tại 3 điểm

Page 15: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

15

phân biệt có hoành độ thõa x1 < 0 < x2 < x3 ĐS: - 9/4 < m < - 2

7) Cho hàm số 3 21 2

3 3y x mx x m có đồ thị (Cm). Tìm m để (Cm) cắt trục hoành tại 3 điểm phân

biệt có tổng bình phương các hoành độ lớn hơn 15. ĐS: m > 1 ˅ m < -1

8) Viết phương trình đường thẳng (d) cắt đồ thị (C): y = x3 – 3x + 2 tại 3 điểm phân biệt A, B, C sao cho

xA = 2 , BC = 2 2 ĐS: y = x + 2

9) Cho hàm số y = x4 – mx

2 + m – 1 (C). Tìm m để (C) cắt trục hoành tại 4 điểm phân biệt. ĐS: 1 2m

10) Cho đường thẳng d: 1y và hàm số (Cm): 4 2(3 2) 3y x m x m . Tìm m để (d) cắt (Cm) tại 4

điểm phân biệt có hoành độ x1, x2, x3, x4 thõa , 2 2 2 2

1 2 3 4 1 2 3 4 4x x x x x x x x ĐS: m = -2/9

11) Cho hàm số (Cm): 12)1(2 24 mxmxy . Tìm m để (Cm) cắt Ox tại 4 điểm có hoành độ lập

thành cấp số cộng. Đ/S: 9/4;2 mm

Bài 3: Tìm điểm thuộc đồ thị

1) Cho hàm số 2

y x 2 x 1 C . Tìm các điểm M trên đường thẳng d : y 2x 19 , biết rằng

tiếp tuyến của đồ thị C tại M vuông góc đường thẳng x 9y 8 0 . ĐS: M 3;13 ,1 207

M ;11 11

.

2) Cho hàm số 3 22 9 12 4y x x x . Tìm điểm M trên đồ thị (C) biết tiếp tuyến của (C) tại M cắt (C)

tại điểm thứ hai là N sao cho N cùng với hai điểm cực trị của đồ thị (C) tạo thành một tam giác có diện

tích bằng 3, biết N có tung độ dương. ĐS: M(3/4; 25/32)

3) Cho hàm số y = x4 – 2x

2 + 1. Tìm toạ độ hai điểm P, Q ∈ (C) sao cho đường thẳng PQ song song với

trục Ox và khoảng cách từ điểm cực đại của (C) đến đường thẳng PQ bằng 8. ĐS: P(-2;9), Q(2;9)

4) Cho hàm số 2

43

x

xy (C). Tìm các điểm M thuộc (C) sao cho M cách đều 2 đường tiệm cận.

ĐS: M1( 1; 1) , M2(4; 6)

⊷⊶⊶⊷Hết⊶⊶⊷⊷

Cho hàm số 3 22 9 12 4y x x x

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

b) Tìm điểm M trên đồ thị (C) biết tiếp tuyến của (C) tại M cắt (C) tại điểm thứ hai là N sao cho N cùng

với hai điểm cực trị của đồ thị (C) tạo thành một tam giác có diện tích bằng 3, biết N có tung độ dương.

1,0 điểm

(C) có hai điểm cực trị (1; 1), (2;0) 2A B AB . Phương trình đường thẳng

: 2 0AB x y . 1

( ; ). 3 ( ; ) 3 22

ABNS d N AB AB d N AB 0.25

Gọi d là đường thẳng đi qua N và / /d AB . Phương trình của d có dạng

0x y c 4 (0; 4) ( )| 2 |

( , ) ( , ) 3 28 (3;5)2

c N loaicd A d d N AB

c N

0.25

Với (3; 5)N , giả sử 0 0( ; )M x y . Pt tiếp tuyến với (C) tại M là: 0 0 0'( )( )y y x x x y .

Do tiếp tuyến đi qua N nên ta có: 2 3 2

0 0 0 0 0 05 (6 18 12)(3 ) 2 9 12 4x x x x x x 0.25

02

0 0

0

3 ( , )

( 3) (4 3) 0 3

4

x loai vi N M

x xx

. Vậy 3 25

; .4 32

M

0.25

Câu 1. Cho hàm số y x x4 22 1 .

Page 16: ỨNG DỤNG ĐẠO HÀM KHẢO SÁT HÀM SỐ … · Gia sư Thành Được 3 6) Tìm m để hàm số: y mx 4 xm ( ;1) nghịch biến trên khoảng f ĐS: d 21m x Bài 3: Ứng

Gia sư Thành Được www.daythem.edu.vn

16

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2) Tìm toạ độ hai điểm P, Q thuộc (C) sao cho đường thẳng PQ song song với trục hoành và khoảng

cách từ điểm cực đại của (C) đến đường thẳng PQ bằng 8.

Điểm cực đại của (C) là A(0;1) . PT đường thẳng PQ có dạng: y m m( 0) .

Vì d A PQ( , ) 8 nên m 9 . Khi đó hoành độ các điểm P, Q là nghiệm của phương trình:

x x x4 22 8 0 2 .

Vậy: P Q( 2;9), (2;9) hoặc P Q(2;9), ( 2;9) .

Câu 2. Cho hàm số x

yx

3 4

2

(C).

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2) Tìm các điểm thuộc (C) cách đều 2 tiệm cận.

Gọi M x y( ; ) (C) và cách đều 2 tiệm cận x = 2 và y = 3.

Ta có: x x

x y x xx x

3 42 3 2 2 2

2 2

x xx

xx

1( 2)

42

Vậy có 2 điểm thoả mãn đề bài là : M1( 1; 1) và M2(4; 6)