nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 ·...

30
同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian Fu Tongji University Jan. 13, 2020 原子核结构理论研讨会, 绵阳 Introduction: rotational nuclei in the NSM, IBM, and NPA The Elliott’s SU(3) limit For realistic nuclei Summary

Upload: others

Post on 23-Mar-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

同济大学TONGJI UNIVERSITY

Nucleon-pair coupling in rotational nuclei

GuanJian Fu

Tongji University

Jan. 13, 2020 原子核结构理论研讨会, 绵阳

Introduction: rotational nuclei in the NSM, IBM, and NPA

The Elliott’s SU(3) limit

For realistic nuclei

Summary

Page 2: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Nuclear collective behaviorNuclear collective behavior

Page 3: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Nuclear collective behaviorNuclear collective behavior

Models based on deformation

Page 4: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Rotational motion in the nuclear shell modelRotational motion in the nuclear shell model

Elliott’s SU(3) model:

Quadrupole interaction

One or many H.O. major shells

a new perspective: the SU(3) symmetry

Q operator → quadrupole deformation

Page 5: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Yrast band in Cr-48

Superdeformed band in Ca-40

0

0

Rotational motion in the nuclear shell modelRotational motion in the nuclear shell model

E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005).

Page 6: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Rotational motion in terms of the shell modelRotational motion in terms of the shell model

T. Dytrych et al., Phys. Rev. Lett. 111, 252501 (2013).

Page 7: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Elliott’s SU(3) model:

Quadrupole interaction

One or many H.O. major shells

a new perspective: the SU(3) symmetry

Q operator → quadrupole deformation

For heavy-mass regions:

strong spin-orbit couplings, SU(3) broken

one HO major shell is not enough,

intruder orbits, pseudo- and quasi-SU(3)

configuration space is too gigantic

Need truncation!

Rotational motion in the nuclear shell modelRotational motion in the nuclear shell model

Page 8: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Truncations of the model spaceTruncations of the model space

The NPA is a truncation of the shell-model configuration space;

1 1 2 20

n nj m j m j mC C C

Cooper pairs with good angular momentum r:

Nucleon-pair approximation (NPA):

1 2† † †

p 0Nrr rA A A

Shell model, full configuration interaction

† † † † † †

b 0s s s d d d

Cooper pair => boson; Interacting boson model (IBM):

further mapping to IBM.

A. Arima and F. Iachello, Ann. Phys. (NY) 99, 253 (1976); 111, 201 (1978); 123, 468 (1979); J. Q. Chen, Nucl. Phys. A 626, 686 (1997); Y. M. Zhao and A. Arima, Phys. Rep. 545, 1 (2014).

Page 9: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Microscopic foundation of the IBMMicroscopic foundation of the IBM

e.g. OAI mapping

Sph.

Deformed

Page 10: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Microscopic foundation of the IBMMicroscopic foundation of the IBM

For deformed nuclei, require manually adda term to reproduce moment of inertia…

Page 11: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

For nearly spherical nuclei:

compare NSM wave functions with NPA wave functions,

overlap > 90% for g.s. with, e.g., the SD-pair truncation

Validity of the NPAValidity of the NPA

Y. Lei et al., Phys. Rev. C 82, 034303 (2010); 84, 044301 (2011);Y. Y. Cheng et al., Phys. Rev. C 94, 024321 (2016).

Page 12: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

For nearly spherical nuclei:

compare NSM wave functions with NPA wave functions,

overlap > 90% for g.s. with, e.g., the SD-pair truncation

For rotational nuclei:

can reproduce rotational band (parameters)

Validity of the NPAValidity of the NPA

Structure coefficients of the SD pairs?

Higher-spin pairs?Exact SDthe pf shell

Elliott’s SU(3)

under the same interaction: NPA predicts much smaller

moment of inertia and B(E2) than NSM does

Difficulty: Selecting good pairs is a long-standing problem;

no one has successfully reproduced rotational bands by

the NPA in a large space with effective interactions.

Y. M. Zhao et al., Phys. Rev. C 62, 014316 (2000).

Page 13: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Pair-structure coefficientPair-structure coefficient

In early applications, one determines pair-structure coefficients using the

generalized seniority (GS) states of the SM.

the S pair is chosen so that the expectation value of Hamiltonian in the S-

pair condensate is minimized:

D, G,… pairs obtained by diagonalizing the Hamiltonian matrix in the space

spanned by the generalized-seniority-two (i.e., one-broken-pair) states

it does not work for deformed nuclei;

it does not tell us which pairs are important in advance

simple; works well for nearly-spherical nuclei

Page 14: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Pair-structure coefficientPair-structure coefficient

In early applications, one determines pair-structure coefficients using the

generalized seniority (GS) states of the SM.

Conjugate gradient method (CG):

1. treat pair coefficients as free parameters;

2. minimize g.s. energy by iterative NPA calculations.

heavy calculation;

it does not tell us which pairs are important in advance

numerically optimal solution;

works well for deformed nuclei;

Page 15: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

0

400

800

1200

I

Exact

SDGS

Ex

(M

eV)

(b)

I

B(E

2)

(e2

fm4)

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

0

400

800

1200

I

Exact

SDGS

SDGGS

Ex

(M

eV)

(b)

I

B(E

2)

(e2

fm4)

(a)

Elliott’s SU(3) limitElliott’s SU(3) limit

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

0

400

800

1200

I

Exact

SDGS

SDGGS

SDCG

Ex

(M

eV)

(b)

I

B(E

2)

(e2

fm4)

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

0

400

800

1200

I

Exact

SDGS

SDGGS

SDCG

SDS'D'CG

Ex

(M

eV)

(b)

I

B(E

2)

(e2

fm4)

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

0

400

800

1200

I

Exact

SDGS

SDGGS

SDCG

SDS'D'CG

SDGCG

Ex

(M

eV)

(b)

I

B(E

2)

(e2

fm4)

(a)

6p6n in the pf shell under

generalized-seniority based method(GS)

conjugate gradient method (CG)

Precisely reproduce the pf-shell SU(3) in the SDG-pair truncation!

G. J. Fu et al., to be published.

Page 16: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

0 2 4 6 8 10 12 14 16 18 20 22 24

0

100

200

300

0 2 4 6 8 10 12 14 16 18 20 22 24

0

1000

2000

3000

4000

I

Exact

SDGS

SDGIGS

SDCG

SDGCG

SDGICG

Ex

(M

eV)

I

(b)

B(E

2)

(e2

fm4)

(a)

Elliott’s SU(3) limitElliott’s SU(3) limit

generalized-seniority based method(GS)

conjugate gradient method (CG)

Precisely reproduce the sdg-shell SU(3) in the SDGI-pair truncation!

6p6n in the sdg shell under

G. J. Fu et al., to be published.

Page 17: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

unitary transformation:

Pairs obtained from the HF basisPairs obtained from the HF basis

1. Solve the HF equation in the shell-model space with effective interactions.

(SHERPA)

NSM s.p. basisHF s.p. basis

2. The HF state of 2N valence protons is written by a pair-condensate state.

the phase of pair is arbitrary

3. HF pair => pairs with good spin in the NSM basis

selecting pairs with large

yJM, it tells us what pairs

are important in advance!

G. J. Fu and C. W. Johnson, arXiv:1909.08785.

Page 18: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Pairs obtained from the HF basisPairs obtained from the HF basis

e.g., 6p6n in the pf shell under

Solving the HF equation + angular momentum projection = exact solution

HF pair => SDG pairs

SDGI pairs for 6p6n, 10p10n(?), 12p12n(?) in the sdg shell…

SU(3) boson mapping

G. J. Fu et al., to be published.

Page 19: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

0.0 0.5 1.0 1.5

0

1

2

3

4

0.0 0.5 1.0 1.5

0

2

4

6

8

x

Exact

SDGS

SDGGS

SDCG

SDGCG

Ex

(M

eV)

x

(a')

Shape evolution driven by interactionsShape evolution driven by interactions

Iπ = 2+ Iπ = 4+

CG works for rotational

εjα: s.p. energy from kb3g;

VP: pairing interaction;

VQ: SU(3) quadrupole interaction.GS works for spherical

6p6n in the pf shell with

G. J. Fu et al., to be published.

Page 20: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Shape evolution driven by interactionsShape evolution driven by interactions

Iπ = 2+ Iπ = 4+

6p6n in the pf shell with

εjα: s.p. energy from kb3g;

VP: pairing interaction;

VQ: SU(3) quadrupole interaction

0.0 0.5 1.0 1.5

1

2

3

0.0 0.5 1.0 1.51

3

5

7

Exact

SDGS

SDGGS

SDCG

SDGCG

RI+

2

x

(b')

xG. J. Fu et al., to be published.

Page 21: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Shape evolution driven by interactionsShape evolution driven by interactions

Iπ = 2+

Iπ = 4+

6p6n in the pf shell with

εjα: s.p. energy from kb3g;

VP: pairing interaction;

VQ: SU(3) quadrupole interaction

0.0 0.5 1.0 1.50

400

800

0.0 0.5 1.0 1.5

0

400

800

1200 Exact

SDGS

SDGGS

SDCG

SDGCG

B(E

2)

(e2

fm4)

x

(c')(c)

x

Iπ = 4+

CG works for rotational

GS works for spherical

G. J. Fu et al., to be published.

Page 22: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

N = 26 isotonesN = 26 isotones

NPA:

pf shell + KB3G interaction

G. J. Fu et al., to be published.

Page 23: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

pf shell + KB3G interaction

From HF to NPAFrom HF to NPAHF: selecting pairs from HF states

G. J. Fu et al., to be published.

Page 24: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

From HF to NPAFrom HF to NPA

1p1/21p3/20f5/20g9/2 shell + JUN45 interaction

oblate prolate

G. J. Fu and C. W. Johnson, arXiv:1909.08785.

Page 25: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

NSM

From HF to NPAFrom HF to NPA

1p1/21p3/20f5/20g9/2 shell + JUN45 interaction

I : two bands are calculated

based on two HF solutions,

HF1 and HF2, respecitively;

II: we mixed the states obtained

from HF1 and HF2.

G. J. Fu and C. W. Johnson, arXiv:1909.08785.

Page 26: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

2s1/21d3/21d5/20g7/20h11/2 (50-82) shell + Bonn potential

From HF to NPAFrom HF to NPA

NSM NSM

G. J. Fu and C. W. Johnson, arXiv:1909.08785.

Page 27: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

We study deformed nuclei using the NPA in the framework of the shellmodel, by selecting good pairs using the CG method and from the HF.

We find the SDGCG pair truncation precisely reproduces the Elliott’s SU(3)of the 6p6n system in the pf shell, and the SDGICG pair truncationreproduces the Elliott’s SU(3) in the sdg shell.

The CG method works very well for the rotational motion, and thetraditional GS method works for nearly spherical nuclei. CG + GSreproduces nuclear shape evolution.

We can select good pairs from the HF. Our preliminary results show thatthe SDGHF pair truncation can well reproduce low-lying rotational bands.

SummarySummary

Page 28: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian
Page 29: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

• Generally, for given J one obtains 2J+1 different pairs for different M.

• A HF state can have arbitrary orientation with the same physical meaning, but yJM will be changed.

Triaxially and octupole deformed nucleiTriaxially and octupole deformed nuclei

The truth is the 2J+1 pairs are not linearly independent.

orthogonalization: diagonalize the norm matrix of pair

Numerically, axially deformed: 1 pair

triaxially deformed: 2 pairs

octupole deformed: parity-nonconserving pairs

HF pair => pairs with good spin in the NSM basis

yJM are rotation invariant

Page 30: Nucleon-pair coupling in rotational nucleinst2020.physics.sjtu.edu.cn/ppt/fu.pdf · 2020-01-20 · 同济大学 TONGJI UNIVERSITY Nucleon-pair coupling in rotational nuclei GuanJian

Improved pairing in the HF basisImproved pairing in the HF basis

The HF state of 2N valence protons is written by a pair-condensate state.

the phase of pair is arbitrary

Consider pairing in the HF basis: