numog ix presentation

Upload: lte002

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 NUMOG IX Presentation

    1/33

    9/7/ 2004 Prashant and Penumadu. NUMOG-IX 1

    Modeling the Effect of Overconsolidation

    on Shear behavior of Cohesive Soils

    Amit Prashant and Dayakar PenumaduDepartment of Civil and Environmental Engineering,University of Tennessee, Knoxville, TN 37996, USA

    Acknowledgements: Financial support from the National Science Foundation

    (NSF) through grants CMS-9872618 and CMS-0296111 is gratefully acknowledged.

    Any opinions, findings, and conclusions or recommendations expressed in this

    presentation are those of authors and do not necessarily reflect the views of NSF.

  • 8/13/2019 NUMOG IX Presentation

    2/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 2

    Presentation outline

    Isotropic elasticity.

    Experimentally evaluated yield surface.

    Failure surface for normally and overconsolidated clay.

    Introducing reference surface based on the failuremodes.

    Plastic potential and hardening rule.

    Predictions for Kaolin clay

  • 8/13/2019 NUMOG IX Presentation

    3/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 3

    = Elastic volumetric strain

    = Elastic shear strain

    = slope of unload-reload curve in e-ln(p')

    spaceSpecific volume, v = 1 + e

    = Poissons ratio

    Isotropic elasticity

    e

    p

    ( )

    ( )

    v ' 0'

    1

    0 3 1-2 v '

    e

    p

    e

    q

    pp

    qp

    +=

    The present model uses q-p-e space for defining the model surfaces and material

    hardening, and the material response is assumed to be a function of pre-consolidation

    stress. Therefore, as an obvious choice in this case, the elasticity model is defined based

    on the Cam clay elasticity (Schofield & Wroth, 1968)*. The elastic stress-strain

    compliance matrix:

    *Schofield, A.N. & Wroth, C.P. (1968). Critical State Soil Mechanics. Maidenhead, McGraw-Hill.

    e

    p

    Many clays show a non-linear e-log p relationship during isotropic unloading and the

    value varieswith the mean effective stress; however, the model assumes a constant average value of consideringthat a small variation of will have less significant influence on the overall stress-strain responseduring monotonic shear loading.

  • 8/13/2019 NUMOG IX Presentation

    4/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 4

    Determination of yield location from

    experimental data

    0

    0.4

    0.8

    1.2

    1.6

    0 20 40 60 80 100

    W(

    kPa)

    YP

    OCR = 1.5

    0

    0.4

    0.8

    1.2

    1.6

    0 20 40 60 80 100

    YP

    OCR = 2

    0

    0.3

    0.6

    0.9

    1.2

    0 20 40 60 80

    LSSV (kPa)

    W(

    kPa)

    YP

    OCR = 5

    0

    0.3

    0.6

    0.9

    1.2

    0 20 40 60 80

    LSSV (kPa)

    YP

    OCR = 10

    0

    30

    60

    90

    120

    0.0 0.5 1.0 1.5Shear Strain, eq(%)

    DeviatoricSt

    ress,q(kPa)

    OCR=1.5

    OCR=2

    OCR=5

    OCR=10

    YP (Yield Point)

    Length of stress

    space vector:

    Yield point determination using

    Stress-strain relationship*

    Yield point determination using

    strain energy approach*

    ( )3

    2

    1

    i

    i

    LSSV norm =

    = = 3

    1

    i i

    i

    dW =

    = Strain energyIncrement :

    *Graham, J., Noonan, M. L., and Lew, K. V. (1983). Yield

    States and Stress-Strain Relationships in a Natural Plastic

    Clay. Canadian Geotechnical Journal, Vol. 20, pp. 502-516.

  • 8/13/2019 NUMOG IX Presentation

    5/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 5

    Experimental yield surface in q-p' space

    Reference: Prashant, A. & Penumadu,

    D. Three-Dimensional Mechanical

    Behavior of Kaolin Clay. Soils and

    Foundations, Personal communication.

    3835353110

    614061405

    14163142682

    17576175781.5

    p

    (kPa)

    q

    (kPa)

    p

    (kPa)

    q

    (kPa)

    Strain Energy

    Approach

    Bi-linear Elasto-

    plasticity

    ApproachOCR

    Point of initial yield during shearing

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300

    Mean Effective Stress, p' (kPa)

    DeviatorStress,

    q(kPa)

    OCR=1OCR=10

    OCR=5

    OCR=2

    OCR=1.5

    Elastic

    Zone

    Failure Point

    Initial Yield Point

    Yield

    Surface

  • 8/13/2019 NUMOG IX Presentation

    6/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 6

    Yield surface

    2

    2 ln opq

    f Lp p

    =

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300 350

    Mean Effect ive Stress, p' (kPa)

    DeviatoricStress,q(kPa)

    L=0.4

    L=0.8

    L=1.2

    po' = 300 kPa

    L = Another state variable

    po = Pre-consolidation pressure

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300 350

    Mean Effect ive Stress, p' (kPa)

    D

    eviatoricStress,q(k

    Pa)

    po'=100 kPa

    po'=200 kPa

    po'=300 kPa

    L=1

  • 8/13/2019 NUMOG IX Presentation

    7/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 7

    Yield Surface in 3-D stress space

  • 8/13/2019 NUMOG IX Presentation

    8/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 8

    ( )o

    f OC f ef f e initial f i o initial iq C p C p C p p p

    = = =

    Failure surface

    ( ) oe op p p p

    =

    VoidRatio

    Natural Log of Mean Effective Stress

    (po, eo)

    (pe, e)(p, e)

    NCL

    URL

    1

    10

    1 10

    Overconsoli dation Ratio, OCR

    x

    y=x0.9

    o= 0.90

    1o s c

    C C = ( )logo C e oe e C p p =

    ( )logo S oe e C p p =

    ( )0

    of OC f NC

    i

    q qOCR

    p p=

    f f e

    q C p=

    o

    of f

    pq C p

    p

    =

    Ladd, and Foott (1974)

    Mayne and Swanson (1981) ( ) ( ) ou vo u voOC NC S S OCR

    =

    True triaxial data

    Failure Points

    NCL = Isotropic normalconsolidation line

    URL = Isotropic unload-

    reload line

    f NC f ef f e initial f o initialq C p C p C p = = =

    ( )ep f e=

    (Undrained shearing)

  • 8/13/2019 NUMOG IX Presentation

    9/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 9

    Normalized failure surface in q-p' space

    0

    0.2

    0.4

    0.6

    0.0 0.2 0.4 0.6 0.8 1.0

    Mean Effect ive Stress, p'/po '

    FailureS

    hearStress,qf/p

    o'

    o= 0.5

    o= 0.7

    o= 0.9o= 1.0

    Cf= 0.51

    M

    o

    of f

    pq C p

    p

    =

    0

    , Cf

    = Failure surface parameter in proposed model

  • 8/13/2019 NUMOG IX Presentation

    10/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 10

    Failure modes in various stress-strain

    relationships Localized deformations may occur during hardening of material that lead to a sudden

    loss of material stiffness and eventually failure.

    The sudden failure conditions (caused by strain localization) may be independent ofthe soil properties defining the pre-failure elasto-plastic yielding of clay.

    The surface defining the ultimate growth of yield surface is separated form the failure

    surface to model both sudden and smooth failure modes. This surface is named as a

    reference surface. The failure surface defines lower

    bound of the reference surface, and

    these surfaces will be identical for

    smooth failure conditions.

    In triaxial compression plane (q-p

    space), the reference surface can

    reasonably be assumed to have a

    similar shape as the failure surface.

  • 8/13/2019 NUMOG IX Presentation

    11/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 11

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 0.03 0.06 0.09 0.12 0.15

    Shear Strain, eq

    DeviatorStress,q(kPa)

    b = 0.5

    b=1

    OCR = 1

    OCR = 5

    Sudden Failure Conditions at high

    intermediate principal stress ratio

    2 3

    1 3

    b

    =

    Intermediate principalstress ratio

  • 8/13/2019 NUMOG IX Presentation

    12/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 12

    Reference Surface

    o

    op

    q C pp

    =

    Cy = Reference surface parameter in proposed model

    Cf= Reference surface parameter in proposed model

    0

    50

    100

    150

    200

    250

    0 50 100 150 200 250 300 350

    Mean Effective Stress, p' (kPa)

    DeviatoricStress,q(kPa)

    po'=300 kPa

    L = 0.8

    o= 0.7

    Yield Surface

    Failure Surface:

    C = Cf= 0.75

    Reference Surface:

    C = Cy= 0.8

  • 8/13/2019 NUMOG IX Presentation

    13/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 13

    Mean Effective Stress, p'

    Devia

    toricStress,q

    Yield Surface

    ReferenceSurface

    q

    qy

    Hardening Rule

    op

    ( )

    v

    o o

    p

    p

    p p

    = 0o

    p

    q

    p

    = 0pp

    L

    = ( ) 1Lpq

    Ln

    =

    y

    q

    q

    =

    Mapping Function:

    Two hardening variable, and define the shape and size of the yield

    surface at current stress state

    L

    nL = Hardening parameter in

    proposed model

  • 8/13/2019 NUMOG IX Presentation

    14/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 14

    Plastic Potential

    -1

    -0.5

    0

    0.5

    1

    0 0.5 1

    p'/po'

    g/p'

    = 0.8

    = 1.2

    more dilative

    2 1o

    g p

    p p

    =

    1

    g

    gn

    q

    =

    0

    0.5

    1

    0 5 10 15 20

    g/ q

    ng= 1

    ng= 2

    Asymptotic

    , ng = Plastic potential parameter in proposed model

  • 8/13/2019 NUMOG IX Presentation

    15/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 15

    Incremental Stress-Strain Compliance

    ( )( )

    1 13 1 2 '

    ij ij kk e pij ij ij mn

    mn ij

    d d f gd d d d vp H

    + = + = +

    ( )

    2 222 ln 2 1o

    L g

    o

    p vL p pH n n L p

    p p

    = +

    Hardening Function, H

    Stress-Strain Compliance

  • 8/13/2019 NUMOG IX Presentation

    16/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 16

    Parameters for Kaolin Clay

    = 0.016, is determinedfrom o and

    oLop and have to be

    determined from state of soil

    Proposed Model Parameters Value

    0.016Elastic Behavior

    0.28

    Cf 0.63Failure Surface

    o 0.9

    Reference Surface Cy 0.66

    0.16Hardening Parameter

    nL 22

    0.92Plastic potential

    ng 3.5

  • 8/13/2019 NUMOG IX Presentation

    17/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 17

    Predictions for triaxial compression tests

    0

    40

    80

    120

    160

    200

    0 0.06 0.12 0.18

    Shear Strain, q

    Predicted

    Measured

    OCR = 1.5

    q (kPa)

    0

    40

    80

    120

    160

    200

    0 0.06 0.12 0.18

    Shear Strain, q

    Predicted

    Measured

    OCR = 1

    q (kPa)

    0

    40

    80

    120

    160

    200

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 1

    Predicted

    Measuredu (kPa)

    0

    40

    80

    120

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 1.5

    Predicted

    Measuredu (kPa)

  • 8/13/2019 NUMOG IX Presentation

    18/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 18

    Predictions for triaxial compression tests

    0

    40

    80

    120

    160

    200

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 2

    Predicted

    Measuredq (kPa)

    0

    40

    80

    120

    160

    200

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 5

    Predicted

    Measuredq (kPa)

    0

    40

    80

    120

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 2

    Predicted

    Measured

    u kPa

    -40

    0

    40

    80

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 5

    Predicted

    Measured

    u (kPa)

  • 8/13/2019 NUMOG IX Presentation

    19/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 19

    Predictions for triaxial compression tests

    0

    40

    80

    120

    160

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 10

    Predicted

    Measuredq (kPa)

    -40

    0

    40

    80

    0 0.06 0.12 0.18

    Shear Strain, q

    OCR = 10

    Predicted

    Measured

    u (kPa)

  • 8/13/2019 NUMOG IX Presentation

    20/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 20

    Predictions for triaxial compression tests

    (effective stress paths)

    0

    50

    100

    150

    200

    0 50 100 150 200 250 300

    Mean Effective Stress, p' (kPa)

    DeviatorStress,q(kPa)

    Predicted

    Measured

  • 8/13/2019 NUMOG IX Presentation

    21/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 21

    Summary

    Proposed a new constitutive approach:

    Isotropic elasticity

    Yield surface with teardrop shape

    Failure surface as a function of loading history Introducing reference surface as a control for yielding to

    capture brittle response

    Plastic potential was different from the yield surface, hence

    non-associative flow rule.

    Uncoupled hardening for volumetric and shear deformation

    The model parameters can be determined using two standard

    laboratory tests, isotropic consolidation and undrained triaxialcompression test on normally consolidated clay.

    New model predicted the kaolin clay behavior with reasonable

    accuracy.

  • 8/13/2019 NUMOG IX Presentation

    22/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 22

    Failure and Reference Surface Parameters

    f NC f o initialq C p=

    y NC y o initialq C p=

    1o = Plasticity Ratio or the

    exponent in failure surface

    o

    of f

    pq C p

    p

    =

    o

    oy y

    pq C p

    p

    = Reference Surface:

    For undrained shearing of

    normally consolidated clay

    Failure Surface:

    ( )ln 10c

    C=

    From Consolidation data From Consolidation data or Plasticity ratio

    ( )ln 10s

    C=

  • 8/13/2019 NUMOG IX Presentation

    23/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 23

    Hardening Parameters

    0.00

    0.40

    0.80

    1.20

    1.60

    0 0.01 0.02 0.03 0.04

    ( L/nL) from hardening rule

    (L)fromY

    ieldFunction

    1

    nL= 22

    Lo= 0.75

    ( )1 pqL

    L

    n

    =

    Hardening Parameter nL

    ( )vo o

    p

    p

    p p

    =

    ( )1Lpq

    Ln

    =

    Volumetric Hardening

    ParameterOCR = 1

  • 8/13/2019 NUMOG IX Presentation

    24/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 24

    Plastic Potential Parameters

    0.000

    0.003

    0.006

    0.009

    0.012

    0.015

    0.018

    0 0.001 0.002 0.003 0.004 0.005

    pp

    (Rgq

    p)

    1

    ng= 3.5

    pq

    p

    p

    d g g

    q pd

    =

    p p

    g q g pR n =

    ( ) ( ){ }1 2 1og

    p pR

    =

    0g

    p =

    Stress state at

    reference surface2 1

    o

    g p

    p p

    =

    1g

    gn

    q

    =

    Where,

    OCR = 1

  • 8/13/2019 NUMOG IX Presentation

    25/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 25

    Typical shape of the plastic potential

    Typical plastic potential

    surface for = 0.8

    p'/2

    q

    p'

    Typical plastic potential

    surface for = 1.2

    2

    1

    3

    Hydrostatic Line

    Typical plastic potentialsurface for > 1

    Ellipsoidal plastic

    potential surface for = 1

  • 8/13/2019 NUMOG IX Presentation

    26/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 26

    1

    Plastic Stress-Strain Compliance

    0oo

    f f f ff dp dq dp dL

    p q p M

    = + + + =

    ( )p p po o o

    o p q pp p

    p q

    p p vpdp d d d

    = + =

    ( )1p p pp q L qp pp q

    L LdL d d n d

    = + =

    ( )

    ( )1p po p L qo

    vpf f f fd n d dp dq

    p M p q

    + = +

    Consistency

    condition requires:

    From hardening rule:

    2

    3

    4

    Using Eq. 2 and 3, Eq. 1 can be rearranged in the following form

    p

    p

    gd d

    p

    =

    p

    q

    gd d

    q

    =

    Flow rule: 5 6

  • 8/13/2019 NUMOG IX Presentation

    27/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 27

    Plastic Stress-Strain Compliance

    cont.

    22 ln opf

    LpL p

    =

    22

    o o

    f pL

    p p

    =

    ( )

    2 222 ln 2 1o

    L g

    o

    p vL p pH n n L p

    p p

    = +

    ( )

    ( )

    1

    1 oLo

    f fd dp dq

    vpf g f g p qn

    M q p p

    = + +

    ( )( )

    1 oLo

    vpf g f gH n

    L q p p

    = +

    Using Eq. 4 to 6, the

    loading function can

    be derived as:

    Therefore, material

    hardening:

    Derivatives of yield

    surface:

    Material hardening:

  • 8/13/2019 NUMOG IX Presentation

    28/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 28

    Predictions using Modified Cam-clay

    Model: NC Kaolin clay

    0

    40

    80

    120

    160

    200

    0 0.03 0.06 0.09 0.12 0.15 0.18

    Shear Strain, q

    DeviatoricStress,q

    (kPa)

    Predicted

    Measured

    Comparison of experimental data with modified cam-clay predictions for

    undrained triaxial compression test on normally consolidated Kaolin clay

    0

    40

    80

    120

    160

    200

    0 0.03 0.06 0.09 0.12 0.15 0.18Shear Strain, q

    ExcessPorePressure

    ,u

    (kPa) Predicted

    Measured

    Reference: Schofield, A.N. & Wroth, C.P. (1968). Critical State Soil Mechanics.

    Maidenhead, McGraw-Hill.

  • 8/13/2019 NUMOG IX Presentation

    29/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 29

    Predictions using Modified Cam-clay

    Model: Shear Stress-Strain Relationship

    0

    40

    80

    120

    160

    200

    0 0.03 0.06 0.09 0.12 0.15 0.18

    Shear Strain, q

    DeviatorStress,q(kPa

    )

    OCR=1

    OCR=5OCR=10

    Experimental

    Predictions

  • 8/13/2019 NUMOG IX Presentation

    30/33

    P di ti i Si l H d i

  • 8/13/2019 NUMOG IX Presentation

    31/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 31

    Predictions using a Single Hardening

    Model proposed by Lade (1990)

    Comparison of experimental data with single hardening model predictions for

    undrained triaxial compression test on normally consolidated Kaolin clay

    0

    40

    80

    120

    160

    200

    0 0.03 0.06 0.09 0.12 0.15 0.18

    Shear Strain, q

    DeviatoricStress,q

    (kPa)

    Predicted

    Measured

    0

    40

    80

    120

    160

    200

    240

    0 0.03 0.06 0.09 0.12 0.15 0.18Shear Strain, q

    ExcessPorePressure,u

    (kPa)

    Predicted

    Measured

    Reference: Lade, P. V. (1990). Single Hardening Model with Application to NC Clay.

    Journal of Geotechnical Engineering, 116(3), 394-415.

    P di ti i Si l H d i

  • 8/13/2019 NUMOG IX Presentation

    32/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 32

    Predictions using a Single Hardening

    Model proposed by Lade (1990)

    0

    40

    80

    120

    160

    200

    0 0.03 0.06 0.09 0.12 0.15 0.18Shear Strain, q

    Deviatoric

    Stress,q(kPa)

    Predicted

    Measured

    OCR = 1.5

    0

    40

    80

    120

    0 0.03 0.06 0.09 0.12 0.15 0.18Shear Strain, q

    ExcessPorePressure,u

    (kP

    a)

    OCR = 1.5

    Predicted

    Measured

    P di ti i Si l H d i

  • 8/13/2019 NUMOG IX Presentation

    33/33

    9/7/2004 Prashant and Penumadu. NUMOG-IX 33

    Predictions using a Single Hardening

    Model proposed by Lade (1990)

    0

    40

    80

    120

    160

    200

    0 0.03 0.06 0.09 0.12 0.15 0.18Shear Strain, q

    DeviatoricStress,q(kPa)

    OCR = 2

    Predicted

    Measured

    0

    40

    80

    120

    0 0.03 0.06 0.09 0.12 0.15 0.18Shear Strain, q

    ExcessPore

    Pressure,u

    (kPa)

    OCR = 2

    Predicted

    Measured