observations of the crab nebula and pulsar

20
Observations of the Crab Nebula and Pulsar with the Solar Tower Atmospheric Cherenkov Effect Experiment John Kildea McGill University, Montr´ eal, on behalf of the STACEE Collaboration

Upload: others

Post on 26-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Observations of the Crab Nebula and Pulsar

with

the Solar Tower Atmospheric CherenkovEffect Experiment

John KildeaMcGill University, Montreal,

on behalf of the STACEE Collaboration

1STACEE Crab Nebula/Pulsar Observations

• Previous STACEE observations (1998, 1999)— 6.8σ detection in 42 hours on-source (Oser et al., 2001)— 32-heliostat detector

• Motivations for present observations—(a) characterize new detector/analysis, now 64 heliostats—(b) search for Crab Pulsar—(c) differential Crab Nebula spectrum down to 100 GeV

• Dataset (21.2 hrs total)— 2002-2003: 7.2 hours on-source— 2003-2004: 14.0 hours on-source— equal amounts of off-source data

• ON/OFF brightness differences— accounted for offline using padding procedure

2STACEE Observing modes – Monocanting

γ2002−2003

• All heliostats point toward expected shower location— maximizes light collected, good for dim showers

3STACEE Observing modes – Paracanting

γ2003−2004

• Some point at expected shower location, some parallel— provides core information, superior reconstruction

4Shower Reconstruction and Gamma/Hadron Separation

γ −rays~10 km

~130 m

~240 m

Show

er C

ore

gamma−ray

Second, select− shower direction parameter− grid ratio parameter

First, find the shower core

− see STACEE reconstruction poster− three independent methods

.

.

5Event Reconstruction – Shower Direction

DirectionSource

Shower MaximumReconstructed

~130 m

~240 m

. Shower−front fit

− constrained by arrival times

− shower max, free parameter

− spherical or conical fit

Finding the shower direction− need point of shower max− need core position on ground

.

Fitted Shower−front

θ

• Direction offset, θ— gamma rays from source, have small values of θ

6Gamma/Hadron Separation – Shower Direction

(mrad)θ0 5 10 15 20 25 30 35

Nor

mal

ised

Pop

ulat

ion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(mrad)θ0 5 10 15 20 25 30 35

Nor

mal

ised

Pop

ulat

ion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(mrad)θ0 5 10 15 20 25 30 35

Nor

mal

ised

Pop

ulat

ion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Gamma-raysProtons

• Simulated data— θ is a good gamma/hadron separation parameter for STACEE∗

∗Bins have equal area on the sky

7Gamma/Hadron Separation – Shower Direction

(mrad)θ0 5 10 15 20 25 30 35

(mrad)θ0 5 10 15 20 25 30 35

ON

-OFF

-200

0

200

400

600

800

1000

1200

1400

1600

Direction Reconstruction

• Crab Nebula data (ON-OFF distribution)— Clear excess at low θ∗

∗Bins have equal area on the sky

8Event Reconstruction – Grid Alignment

~10 km

~130 m

~240 m

gamma−ray

Show

er C

ore

Most light emitted at shower maximum− approximately spherical shower front− arrival times differ between heliostats

Method developed by CELESTE*

.− looks promising for STACEE

.

CELESTE∗∗* Bruel, P., et al., 2004, Proceedings of Frontier Science 2004, Physics & Astrophysics in Space

9Event Reconstruction – Grid Alignment

~10 km

~130 m

~240 m

gamma−ray

Show

er C

ore

Simple sum of FADC traces.− no alignment for shower geometry

− resultant is short and wide

10Event Reconstruction – Grid Alignment

~10 km

~130 m

~240 m

gamma−ray

Show

er C

ore

Account for shower geometry.− realign and resum traces

− resultant is tall and narrow

H

W

— of course, we don’t know where the shower max is!

11Event Reconstruction – Grid Alignment

~10 km

~130 m

~240 m

gamma−ray

Show

er C

ore

Form grid of points at shower max.− realign and resum for each point

− find point with tallest and narrowest pulse

(largest H/W)

− projection of shower max onto

ground provides core location

− this grid point is closest to shower max

12Gamma/Hadron Separation – Grid Alignment

X (m)-200 -150 -100 -50 0 50 100 150 200

Y (m)

-100-50

050

100150

200250

300

H/W

(mV

/ns)

0

500

1000

1500

2000

2500

X (m)-200 -150 -100 -50 0 50 100 150 200

Y (m)

-100-50

050

100150

200250

300

H/W

(mV

/ns)

0200400600800

10001200140016001800

X (m)X (m)

Gamma−ray Proton

• Distribution of H/W for each grid point— peak provides core location

• Gamma/hadron separation— distribution very different for gamma rays and protons— gamma-ray pulses quickly fall out alignment away from shower max

— parameterize shape of H/W distribution as grid ratio, {(H/W )200m(H/W )max

}

13Gamma/Hadron Separation – Grid Ratio

]max

]/[(H/W)200m

[(H/W)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

]max

]/[(H/W)200m

[(H/W)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nor

mal

ised

Pop

ulat

ion

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 Gamma raysProtons

• Simulated data— Grid ratio is a good gamma/hadron separation parameter for STACEE

14Gamma/Hadron Separation – Grid Ratio

]max/(H/L)200mGridRatio [(H/L)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

]max/(H/L)200mGridRatio [(H/L)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pop

ulat

ion

0

1000

GridRatio

• Crab Nebula data (ON-OFF distribution)— Clear excess at small values of the grid ratio

15Crab Nebula ResultsCut No. ON No. OFF ON–OFF σ γ Rate (min −1)

2002-2003Raw 165773 164341 1432 2.6 3.3 ± 1.30Re-trigger 137923 136237 1686 3.4 3.9 ± 1.20Re-trigger + Direction 41440 40652 788 2.8 1.8 ± 0.67Re-trigger + Grid Ratio 4452 3989 463 5.1 1.1 ± 0.21

2003-2004Raw 290770 288641 2129 2.4 2.5 ± 0.89Re-trigger 231269 228932 2337 3.1 2.7 ± 0.79Re-trigger + Direction 75031 72818 2213 5.5 2.6 ± 0.45Re-trigger + Grid Ratio 14331 13405 926 5.5 1.1 ± 0.19

• All cuts applied directly from simulations (Eth ∼ 170 GeV)— no optimization at this stage

16Crab Nebula ResultsCut No. ON No. OFF ON–OFF σ γ Rate (min −1)

2002-2003Raw 165773 164341 1432 2.6 3.3 ± 1.30Re-trigger 137923 136237 1686 3.4 3.9 ± 1.20Re-trigger + Direction 41440 40652 788 2.8 1.8 ± 0.67Re-trigger + Grid Ratio 4452 3989 463 5.1 1.1 ± 0.21

2003-2004Raw 290770 288641 2129 2.4 2.5 ± 0.89Re-trigger 231269 228932 2337 3.1 2.7 ± 0.79Re-trigger + Direction 75031 72818 2213 5.5 2.6 ± 0.45Re-trigger + Grid Ratio 14331 13405 926 5.5 1.1 ± 0.19

• All cuts applied directly from simulations (Eth ∼ 170 GeV)— no optimization at this stage

• Improved direction reconstruction for paracanted data— as expected according to simulations

17Crab Nebula ResultsCut No. ON No. OFF ON–OFF σ γ Rate (min −1)

2002-2003Raw 165773 164341 1432 2.6 3.3 ± 1.30Re-trigger 137923 136237 1686 3.4 3.9 ± 1.20Re-trigger + Direction 41440 40652 788 2.8 1.8 ± 0.67Re-trigger + Grid Ratio 4452 3989 463 5.1 1.1 ± 0.21

2003-2004Raw 290770 288641 2129 2.4 2.5 ± 0.89Re-trigger 231269 228932 2337 3.1 2.7 ± 0.79Re-trigger + Direction 75031 72818 2213 5.5 2.6 ± 0.45Re-trigger + Grid Ratio 14331 13405 926 5.5 1.1 ± 0.19

• All cuts applied directly from simulations (Eth ∼ 170 GeV)— no optimization at this stage

• Improved direction reconstruction for paracanted data— as expected according to simulations

• Grid ratio very powerful— expect further improvement with optimization

18Crab Pulsar Results

Phase (0-2)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Phase (0-2)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

# ev

ents

11700

11800

11900

12000

12100

12200

Crab Pulsar Pulse Profile (ON)

• Independent analysis (15 hrs of data)— PhD thesis of P. Fortin, McGill University

• Pulsed upper limit (at 185 ± 35 GeV)— 16.4% of unpulsed STACEE signal

19Conclusions

• STACEE Crab Nebula detection— clear detection in both years with different pointing strategies— non-optimized cuts

• Crab Pulsar upper limits— 16.4% of unpulsed signal at 185 ± 35 GeV— expect improvement with low-energy event selection— (down to ∼50 GeV)

• Looking ahead...— spectral analysis underway (see Mkn 421 talk by Jennifer Carson)— event reconstruction methods look promising— proceeding systematically (understand cuts, optimize, apply)— perform analysis on other sources