학습에앞서 - cnl.sogang.ac.krcnl.sogang.ac.kr/soclasstv/youtube/signals/ch03.pdf · 3...

24

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 학습에앞서

    § 학습목표– FIR 필터의개념및특성을이해한다.– FIR 필터의구현방법을학습한다.– FIR 필터의주파수응답을구한다.

    2

  • 3

    Discrete-time System

    § Operate on x[n] to get y[n]§ A general class of systems

    – ANALYZE the systeml Tools: time-domain & frequency-domain

    – SYNTHESIZE the system§ Example

    – Running average l RULE: “the output at time n is the average of three consecutive

    input values”

    Computery[n]x[n]

  • General FIR Filter

    § Filter coefficients {bk}

    – Filter order is M– Filter length is L = M+1– Number of filter coefficients is L

    § Example– 3-pt Average System

    4

    å=

    -=M

    kk knxbny

    0][][

    ]3[]2[2]1[][3

    ][][3

    0

    -+-+--=

    -=å=

    nxnxnxnx

    knxbnyk

    k}1,2,1,3{ -=kb

    ])2[]1[][(][ 31 ++++= nxnxnxny

  • Example: filtered stock signal

    § 50-pt Averager

    58/26/2019 © 2003, JH McClellan & RW Schafer

    OUTPUTINPUT

  • Special Input Signals (1/2)

    § Unit impulse– The mathematical notation is that of the Kronecker delta function.

    6

    ïî

    ïíì

    ¹

    ==

    00

    01][

    n

    nnd

    1

    n

    LL +-+++-+=-=å ]1[]1[][]0[]1[]1[][][][ nxnxnxknkxnxk

    dddd

    ]4[2]3[4]2[6]1[4][2][ -+-+-+-+= nnnnnnx ddddd

  • Special Input Signals (2/2)

    § Unit Impulse response– When the input to the FIR filter is a unit impulse sequence, x[n]=d[n],

    the output is, by definition, the unit impulse response, which is denoted by h[n].

    7

    å=

    -=M

    kk knxbny

    0][][

    å=

    -=M

    kknxkhny

    0][][][

    å=

    -=M

    kk knbnh

    0][][ d

    Filtery[n]x[n]

    Convolution

    Since h[n]=0 for n

  • Convolution

    § Convolution and FIR Filters– Notation:

    – FIR case:

    8

    Filtery[n]x[n]

    ][][][ nxnhny *=

    å=

    -=M

    kknxkhny

    0][][][

    Finite limits

    Finite limitsSame as bk

  • 9

    Example: Convolution

    n -1 0 1 2 3 4 5 6 7x[n] 0 1 1 1 1 1 1 1 ...h[n] 0 1 -1 2 -1 1 0 0 0

    0 1 1 1 1 1 1 1 10 0 -1 -1 -1 -1 -1 -1 -10 0 0 2 2 2 2 2 20 0 0 0 -1 -1 -1 -1 -10 0 0 0 0 1 1 1 1

    y[n] 0 1 0 2 1 2 2 2 ...

    ][][]4[]3[]2[2]1[][][

    nunxnnnnnnh

    =-+---+--= ddddd

    ]4[]4[]3[]3[]2[]2[

    ]1[]1[][]0[

    ----

    nxhnxhnxhnxhnxh

    å=

    -=M

    kknxkhny

    0][][][

  • Implementation of FIR filters

    § Recall the general definition of an FIR filter

    § The basic building-block systems we need are the multiplier, the adder, and the unit-delay operator.

    10

    Filtery[n]x[n]å

    =

    -=M

    kk knxbny

    0][][

    ][][ nxny b=]1[][ -= nxny

    ][][][ 21 nxnxny +=

  • FIR Structure

    § Direct Form

    11

    Signal flow graph

    å=

    -=M

    kk knxbny

    0][][

    Block-diagram structure for the Mth order FIR filter

  • § Time Invariance– “Time-Shifting the input will cause the same time-shift in the output”

    Linear Time-Invariant (LTI) Systems (1/2)

    12

  • § Linearity = Two Properties– SCALING: “Doubling x[n] will double y[n]”– SUPERPOSITION: “Adding two inputs gives an output that is the

    sum of the individual outputs”

    13

    Linear Time-Invariant (LTI) Systems (2/2)

  • LTI systems

    § Completely characterized by– Impulse response h[n]

    – Convolution y[n] = x[n]*h[n]

    – FIR Example: h[n] is same as bk

    § Properties of LTI systems

    – Commutative

    – Associative

    14

    ][*][][*][ nxnhnhnx =

    ])[*][(*][][*])[*][( 321321 nxnxnxnxnxnx =

  • Cascaded LTI systems

    15

  • Frequency Response of an FIR System

    § Sinusoidal Response of FIR systems

    § Frequency-response

    16

    ¥

  • Example 1 (1/2)

    § Show the frequency response of an FIR filter with coefficients

    17

    }1,2,1{}{ =kb

    )ˆcos22()2(

    21)(

    ˆ

    ˆˆˆ

    ˆ2ˆˆ

    wwwww

    www

    +=++=

    ++=

    -

    --

    --

    j

    jjj

    jjj

    eeee

    eeeH

    ww

    www ˆ)( is Phaseand )ˆcos22()( is Magnitude

    0)ˆcos22( Sinceˆˆ -=Ð+=

    ³+jj eHeH

  • Example 1 (2/2)

    18

    )ˆcos22()( ˆ ww +=jeH

    ww ˆ)( ˆ -=Ð jeH

  • Example 2

    § Find y[n] for the following inputs when

    1)

    2)

    19

    njj eenx )3/(4/2][ pp=

    ww w ˆˆ )ˆcos22()( jj eeH -+=

    ( ) njjj eeeny )3/(4/3/ 23][ ppp ´= - njj ee )3/(12/6 pp-=

    )4/3/()4/3/(43 )cos(2][

    pppppp +-+ +=+= njnj eennx

    )4/3/()3/()4/3/(3/2

    )4/3/()3/()4/3/(3/1

    3)(][3)(][

    pppppp

    pppppp

    +-+--

    +-+

    ==

    ==njjnjj

    njjnjj

    eeeeHnyeeeeHny

    )cos(633][ 123)12/3/()12/3/( pppppp -=+= --- neeny njnj

  • Cascaded LTI systems

    § Multiply the frequency responses

    – Equivalent system

    20

    y[n]x[n])( ŵjeH

    x[n])( ˆ1

    wjeHy[n]

    )( ˆ2wjeH

    )()()( ˆ2ˆ

    1ˆ www jjj eHeHeH =

  • L-pt Averager

    21

    § Dirichlet function

  • 22

    11-pt Averager

    NULLS or ZEROS

    pw 5.0ˆ =pw 05.0ˆ =

    LPF

  • Example: L-pt Averager

    § B&W Image

    23

    Filtered by 11-pt averagerOriginal

  • Summary

    § This lecture introduced the concept of FIR filtering.– The weighted running average of a finite number of input sequence

    values defines a discrete-time system.

    § The impulse response of an FIR system completely defines the system.

    § The frequency-response function is a complete characterization of the behavior of the system for any input that can be represented as a sum of sinusoids.

    24

    å=

    -=M

    kk knxbny

    0][][

    ][)(][ ˆ nxeHny jw=