open access tools for the simulation of ultrashort-...

1
Open Access Tools Two-Temperature Model Simulation Setup Aluminum target Gaussian laser pulse, = 1064 nm l Normal incidence = 0.19 - 0.37 - 0.74 - 1.49 - 2.97 J/cm² F = 0.05 - 0.5 - 5 ps t Example IMD Results VLL Results IMD - Molecular Dynamics Open-access software [1] FMQ Stuttgart , g k ei e const., Simulation Details EAM-potential [2] Ionization neglected in EAM potential Input of absorbed energy from VLL 20 nm x 20 nm lateral, periodic boundary 400 ... 850 nm thickness Computation time: 450 ... 700 ps x nm / day / CPU VLL Virtual Laser Lab Online simulations [3] RAS Moscow , wide-range model [4] g k ei e and from EOS [5,6] c c e i Simulation Details Semiempirical multiphase EOS Ionization considered in EOS Computation of absorbed laser energy 1D simulation 1 mm bulk material Computation time: < 2 minutes References [1] J. Stadler et al., : 1131 (1997) Int. J. Mod. Phys. C 8 [2] F. Ercolessi and J.B. Adams, Europhysics Letters : 583 (1994) 26 [3] M.E. Povarnitsyn et al., : 023110 (2012) Physics of Plasmas 19 [4] M.E. Povarnitsyn et al., : 9480 (2012) Appl. Surf. Sci. 258 [5] M.E. Povarnitsyn et al., : 235414 (2007) Phys. Rev. B 75 [6] M.E. Povarnitsyn et al., : 5120 (2009) Appl. Surf. Sci. 255 Knowledge for Tomorrow Institute of Technical Physics Open Access Tools for the Simulation of Ultrashort- Pulse Laser Ablation S. Scharring, D.J. Förster, H.-A. Eckel - DLR Stuttgart J. Roth - FMQ, University of Stuttgart M. Povarnitsyn - Joint Institute for High Temperatures, RAS Moscow 35 l vacuum chamber University of Stuttgart BEP Application Summary EAM potential around normal state (IMD) vs. wide-range EOS (VLL) F = 0.19 ... 0.37 J/cm² IMD: lower F th (melt., ablation) than VLL F = 0.74 ... 1.49 J/cm² IMD: equiv. VLL, and r T T e i higher than VLL F = 2.97 J/cm² IMD: Ionization (VLL) vs. extreme (IMD) T e -50 0 50 100 150 200 250 -10 0 10 20 30 40 50 Time t [ps] Position x [nm] -50 0 50 100 150 200 250 -10 0 10 20 30 40 50 Time t [ps] Position x [nm] -50 0 50 100 150 200 250 -10 0 10 20 30 40 50 Time t [ps] Position x [nm] -50 0 50 100 150 200 250 -10 0 10 20 30 40 50 Time t [ps] Position x [nm] 0.00 0.85 1.70 2.54 3.39 4.24 5.09 5.94 6.36 T i [kK] -50 0 50 100 150 200 250 -10 0 10 20 30 40 50 Time t [ps] Position x [nm] r [g/cm³] 0.00 0.41 0.83 1.24 1.65 2.07 2.48 2.89 3.10 0.00 0.97 1.95 2.92 3.89 4.87 5.84 6.81 7.30 T e [kK] T e T i T i r r 10000 100000 0 10 20 30 40 50 60 70 80 90 100 1.49 1.49 1.49 1.49 1.49 1.49 0.74 0.74 0.74 0.37 0.37 Coupling coefficient c m [μN/W] I l t 0.5 [W s 0.5 m -1 ] IMD - 50 fs VLL - 50 fs IMD - 500 fs VLL - 500 fs IMD - 5 ps VLL - 5 ps 0.37 -50 0 50 100 150 200 250 -10 0 10 20 30 40 50 Time t [ps] Position x [nm] T e

Upload: trinhthu

Post on 08-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Open Access Tools

Two-Temperature Model

Simulation Setup

� Aluminum target

� Gaussian laser pulse, = 1064 nm�

� Normal incidence

� = 0.19 - 0.37 - 0.74 - 1.49 - 2.97 J/cm²�

� = 0.05 - 0.5 - 5 ps�

Example

IMD Results

VLL Results

IMD - Molecular Dynamics

� Open-access software [1]� FMQ Stuttgart

� ,� �ei e const.,

Simulation Details

� EAM-potential [2]� Ionization neglected in EAM potential� Input of absorbed energy from VLL� 20 nm x 20 nm lateral, periodic boundary� 400 ... 850 nm thickness� Computation time:

450 ... 700 ps x nm / day / CPU

VLL Virtual Laser Lab

� Online simulations [3]� RAS Moscow

� , wide-range model [4]� �ei e

� and from EOS [5,6]c ce i

Simulation Details

� Semiempirical multiphase EOS� Ionization considered in EOS� Computation of absorbed laser energy� 1D simulation� 1 mm bulk material� Computation time: < 2 minutes

References[1] J. Stadler et al., : 1131 (1997)Int. J. Mod. Phys. C 8[2] F. Ercolessi and J.B. Adams, Europhysics Letters : 583 (1994)26[3] M.E. Povarnitsyn et al., : 023110 (2012)Physics of Plasmas 19[4] M.E. Povarnitsyn et al., : 9480 (2012)Appl. Surf. Sci. 258[5] M.E. Povarnitsyn et al., : 235414 (2007)Phys. Rev. B 75[6] M.E. Povarnitsyn et al., : 5120 (2009)Appl. Surf. Sci. 255

Knowledge for Tomorrow

Institute ofTechnical Physics

Open Access Tools for the Simulation of Ultrashort-Pulse Laser Ablation

S. Scharring, D.J. Förster, H.-A. Eckel - DLR StuttgartJ. Roth - FMQ, University of StuttgartM. Povarnitsyn - Joint Institute for High Temperatures, RAS Moscow

35 l vacuum chamber

University of Stuttgart

BEP ApplicationSummary

EAM potential around normal state (IMD)vs. wide-range EOS (VLL)

��= 0.19 ... 0.37 J/cm²

IMD: lower �th (melt., ablation) than VLL

��= 0.74 ... 1.49 J/cm²

IMD: equiv. VLL, and�� T Te i higher than VLL

��= 2.97 J/cm²IMD: Ionization (VLL) vs. extreme (IMD)Te

-50 0 50 100 150 200 250

-10

0

10

20

30

40

50

Tim

et

[ps]

Position x [nm]

-50 0 50 100 150 200 250

-10

0

10

20

30

40

50

Tim

et

[ps

]

Position x [nm]

-50 0 50 100 150 200 250

-10

0

10

20

30

40

50

Tim

et

[ps

]

Position x [nm]

-50 0 50 100 150 200 250

-10

0

10

20

30

40

50

Tim

et

[ps

]

Position x [nm]

0.00

0.85

1.70

2.54

3.39

4.24

5.09

5.946.36

Ti[kK]

-50 0 50 100 150 200 250

-10

0

10

20

30

40

50

Tim

et

[ps

]

Position x [nm]

� [g/cm³]

0.00

0.41

0.83

1.24

1.65

2.07

2.48

2.893.10

0.00

0.97

1.95

2.92

3.89

4.87

5.84

6.817.30

Te[kK]

Te

Ti

Ti

10000 100000

0

10

20

30

40

50

60

70

80

90

100

1.49

1.49

1.49

1.49

1.49

1.49

0.740.740.74

0.370.37

Co

up

lin

gc

oe

ffic

ien

tc

m[µ

N/W

]

I ���0.5

[W s0.5

m-1]

IMD - 50 fs

VLL - 50 fs

IMD - 500 fs

VLL - 500 fs

IMD - 5 ps

VLL - 5 ps

0.37

-50 0 50 100 150 200 250

-10

0

10

20

30

40

50

Tim

et

[ps

]

Position x [nm]

Te