opportunities and challenges of next generation power...

31
Opportunities and Challenges of Next Generation Power Electronics for Grid Applications Fred Wang Zijin Forum 2018 Nanjing, China August , 2018 紫金论电

Upload: others

Post on 11-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Opportunities and Challenges of Next Generation Power Electronics for Grid

Applications

Fred Wang

Zijin Forum 2018Nanjing, ChinaAugust , 2018

紫金论电

Page 2: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Outline

• Grid power Electronics Overview and Emerging Needs• WBG Semiconductors and Opportunities• New Challenges and Research Needs

2

紫金论电

Page 3: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Conventional Power Grid Equipment

• Sources – rotating generators etc.• T&D – T&D lines &cables, transformers, switchgear,

series/shunt capacitor/reactor compensators etc.• Loads – motors, lighting, and thermal loads• Limited power electronics

3

紫金论电

Page 4: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Power Electronics for AC Transmission – FACTS

• Shunt connected compensators)

• Series connected compensators)

TCSC SSSC

• Series and shunt connected compensators

SVCTSC STATCOMTSR

TCPST UPFC

Ψ1

Ψ2

XL

XC

Ψ1 andΨ2 are phase-shift elements

IPC

u(t)

Conventional FACTSbased on thyristortechnology,with limited performance and capabilities

4

紫金论电

Presenter
Presentation Notes
To resolve controllability issues. All thyristor based
Page 5: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Power Electronics for AC Distribution – Custom Power

• Power system conditioning and compensation

LOAD

• Power flow control and interruption

SSTS SSCB SSFCL

• Power quality enhancement

SVC TCVRDSTATCOM DVR

LOAD

Shunt AF UPQC5

紫金论电

Page 6: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

High Voltage DC(HVDC) Transmission

• Point to point transmission

• Back-to-back system • Multi-terminal system

HVDC more economical for long-distance transmission; HVDC can decouple dynamics of AC systems, benefiting system stability and protection

6

紫金论电

Page 7: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

HVDC Technology Evolution: VSC Topologies

P

N

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

P

N

+ −

P

N

Two-level Three-level (NPC) Modular multi-level converter (MMC)

• VSC based on switching devices(IGBT/IGCT), with better performance than thyristor based LCC,and significantly converter station footprint and less right-of-way

• MMC latest generation of VSC topology: low loss, and avoid series devices.

7

紫金论电

Page 8: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Grid Power Electronics – More Recent Development

固态变压器Solid-state Transformer 可控网络变压器

Controllable Network Transformer

混合型直流断路器Hybrid DC Circuit Breaker

Main DC breaker

Fast disconnector Auxiliary DC breaker

Disconnect switch

分布式静态串联补偿器Distributed Static Series Compensator

8

紫金论电

Page 9: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Continuously Variable Series Reactor (CVSR)

Grid Power Electronics – More Recent Development

9

紫金论电

Page 10: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Grid Power Electronics – Emerging Needs

• Power electronic loads: data center, EV charging station, large motor drive

• Multi-terminal HVDC, microgrid (AC or DC)

• Renewable energy source interface

• Energy storage systems

10

紫金论电

Page 11: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Needs, Challenges, and Opportunities

新能源 (renewable

energy sources)

电力电子负载(power electronics

loads)

直流电网 (DC grid)

成本,体积,

及可靠性(cost, size, and

reliability)

功能局限性 (limited

functionality)

缺乏对系统影响的

理解(lack of knowledge on system impact)

新器件(new

semiconductor devices

控制及通讯技术

(Control and communication)

信息及数据技术

(IT & data science)

11

Needs

Challenges

Opportunities 紫金论电

Presenter
Presentation Notes
3 circles
Page 12: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

GaN

Saturated Electron Velocity

(107 cm/s)Electron Mobility

(103 cm2/V-s)

Thermal conductivity(W/cm-K)

Energy Gap (eV)

Electric Breakdown field(MV/cm)

SiSiC

543210

Properties of Wide Bandgap Semiconductors

12[1] T. P. Chow, 2014.

• Low conduction loss

• High switching speed

• High voltage capability

• High temperature紫

金论电

Page 13: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

State-of-the-art SiC Devices

13

紫金论电

Page 14: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

(High Voltage) WBG Device Applications

Applications should take advantages of • Low loss • Fast switching speed • High frequency application

Benefits of HV SiC can be realized in several ways• Direct substitution – improved efficiency and power density

• Simplified topology – further loss reduction and increased power density

• Enable new capability and functionality for system-level

• Enable new applications or replace the non-PE equipment

Wide band-gap (WBG) vs. Silicon• High breakdown electric field, high voltage rating, low conduction loss• Fast switching speed, high switching frequency• Superior thermal characteristics

• Improved Power Quality• 70% Volume Reduction • 90% Weight Reduction

SiC vs. Silicon1MW Comparison of

Switches

Wolfspeed 10 kV/240ASiC MOSFET

14

紫金论电

Page 15: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

WBG Potential Applications in Grid

• Improve the performance of the existing PE equipment Efficiency improvement for all; density improvement for some; performance improvement (e.g. circuit breakers)

• Replace non-PE equipment Solid-state Transformer, solid-state circuit breaker/current limiter

• Enhance functionality/capability Smart inverter

• Enable new applications DC grid high bandwidth conditioner direct-tied PV inverter

15

紫金论电

Page 16: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

SiC Impact on PV Inverter Benchmark study on MV MW-class Si- and SiC-based PV converter design

• Si solution: 2-level with LF transformer (commercial product)• SiC solution: 3-level NPC & DC/DC with HF transformer (ARPA-e)

Converter comparison• Weight is reduced by 82.9% (1,088 kg for SiC vs. 6,362 kg for Si)• Size is reduced by 73.2% (1.49 m3 for SiC vs. 5.55 m3 for Si)

0

1000

2000

3000

4000

5000

6000

7000

Si Based SiC Based

Wei

ght (

kg)

heatsink with device Cap Filter Bus Housing Transformer

0

1

2

3

4

5

6

Si Based SiC Based

Vol

ume

(m3 )

heatsink with device Cap Filter Bus Other space Transformer

16

紫金论电

Page 17: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

WBG Device Application

6x Specific Power

FSU Gen-I SiC PV converter prototype (~2.5 kw/kg99% peak efficiency

FSU Gen-II SiC PV converter conceptual design (~5 kW/kg)99% peak efficiency

3x Specific PowerHitachi 160 kW SiCPV inverter

High voltage rating for higher power Low loss for higher efficiency/smaller heatsink Fast switching for passive reduction High temperature for cooling reduction

[1] S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franquelo, in IEEE Industrial Electronics Magazine, March 2015[2] S. Wall, R. h. Ruan, C. g. Wang and J. r. Xie, EPE'16 ECCE Europe), Karlsruhe, 2016[3]A. Hatanaka, H. Kageyama and T. Masuda, INTELEC, Osaka, 2015 17

紫金论电

Page 18: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

System Level Benefits of SiC-Based PV Converter Benchmark study on system level benefits of SiC-based PV converter

• Active filter function with SiC-based PV inverter• System stability is improved with the higher control bandwidth enabled by MV SiC converter• SiC-based converter has better dynamic performance during LVRT

1MW PV array 200 kW BESS

400 kW critical Load

PCC switch

AC busDC bus

Medium voltage Grid

200 kW CHP

600 kW non-critical Load

FFT

of P

CC

cur

rent

Si-based solution SiC-based solutionConfiguration of MV microgrid

1 kHz

18

紫金论电

Page 19: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Utility-scale MV Transformer-less PV Inverter• Supported by ARPA-e and collaborated with Wolfspeed

and Danfoss• 12.4 kV, 1 MW PV inverter with 10 kV SiC MOSFET

HS

H2

X1

X2

Q1

Q2

Q3

Q4

D1

D2

D3

D4

T1

T2

Gate drivers

VBUS resistor divider

cable

H1

H2

X1

X2

Q1

Q2

Q3

Q4

D1

D2

D3

D4

T1

T2

H1

H2

X1

X2

Q1

Q2

Q3

Q4

D1

D2

D3

D4

T1

T2

24V PS

H1

H2

X1

X2

Q1

Q2

Q3

Q4

D1

D2

D3

D4

T1

T2

H1

H2

X1

X2

Q1

Q2

Q3

Q4

D1

D2

D3

D4

T1

T2

H1

H2

X1

X2

Q1

Q2

Q3

Q4

D1

D2

D3

D4

T1

T2

24V PS

LCL

12.4kV+/-10%

AUX ISO I/O

Gate drivers

Power supplies

Feedbacks

Q1

Q2

Q3

Q4

1kV30kHz (SS)

85kW

6kV

5kHz50kW

6kV

6kV

6kV

6kV

6kV

Grid Voltage Fbk

PV Sub-Combiner

12-24 Strings

72-144kW

PV Sub-Combiner

12-24 Strings

72-144kW

PV Sub-Combiner

12-24 Strings

72-144kW

PV Sub-Combiner

12-24 Strings

72-144kW

Non-IsolatedDC/DC Boost

Converter withMPPT

Non-IsolatedDC/DC Boost

Converter withMPPT

COMM

DC/DC ENABLELV INU ENABLELV INU RAMP

PLC

TX1

TX2

20mH

15mH

160nF

15mH15mH

1m

Designed for 10% current

ripple

20mH20mH

UPS120VAC

Gate drivers

Power supplies

Feedbacks

Q1

Q2

Q3

Q4

1kV

30kHz 85kW

Gate drivers

Power supplies

Feedbacks

Q1

Q2

Q3

Q4

1kV

30kHz 85kW

Non-IsolatedDC/DC Boost

Converter withMPPT

Non-IsolatedDC/DC Boost

Converter withMPPT

Fieldbus

I/O

H1

HS

PEBB-A1

PEBB-B1

PEBB-C1

HS

PEBB-A2

HS

PEBB-B2

PEBB-C2

HS

HS

CFB-A1

CFB-B1

CFB-C1

Gate drivers

Feedbacks

cable

Gate drivers

Feedbacks

cable

Gate drivers

cable

Gate drivers

cable

Gate drivers

cable

Power supplies

Feedback VCOs

Power supplies

Feedback VCOs

Power supplies

Feedback VCOs

Power supplies

Power supplies

Feedback VCOs

Power supplies

VBUS fdbkDelta-Sigma[AMC1304L25]

Common Control BdFieldbus

I/O

Fiber count per PEBB:(4) gate command(4) gate feedback (Concept gd format)(1) DC voltage feedback

DSPDecimator

Interface?

Power supply

Feedback VCOs

Feedbacks

Feedbacks

Feedbacks

15kVVCB

A B C

N

Wizard

12 cmd signals06 fdbk signals

8 analog ch

12 cmd signals06 fdbk signals

8 analog ch

12 cmd signals12 fdbk signals

8 analog ch3 VCO fdbks for DCV

12 cmd signals12 fdbk signals

8 analog ch3 VCO fdbks for DCV

6kHz50kW

5kHz50kW

5kHz50kW

5kHz50kW

5kHz50kW

Sigma/delta

Sigma/Delta

CFB-A1CFB-B1CFB-C1

CLKs forDelta-Sigma ?

Optical interface

Common Control BdFieldbus

I/O

DSPDecimator

Interface?

Power supply

12 cmd signals06 fdbk signals

8 analog ch

12 cmd signals06 fdbk signals

8 analog ch

Cap bleeder resistor

MW-scale MV PV inverter topology

19

紫金论电

Page 20: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

HV SiC-enabled Solid-state Transformer

20

Prototype 1 MW, 4160-V AC/1000-V DC converter紫金论电

Page 21: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Research Needs

Converter

• Device module &packaging

• Gate drive & protection• Parasitics impact• Control• Passives & filters (dv/dt,

di/dt, EMI etc.)• Thermal management• Insulation (dv/dt, lightning

and switching overvoltage)• Reliability and

management

Scaling

• Device module seriesand paralleling

• Converter stackingand paralleling

• Modular topology

Grid Condition Tolerance

• Faults• Unbalance• Grounding• Fault detection and

protection coordination

Grid Support

• Frequency andvoltage support

• Inertia emulation• Low voltage ride

through• Stability

enhancement• Active filtering• Black start

WBG-based converter Issues due to fast switching, high dv/dt & di/dt, high voltage, high temperature, high power; unique grid application requirements

21

紫金论电

Page 22: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

SiC Module with Low Inductance

22

紫金论电

Page 23: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Switching Results of 10 kV SiC MOSFET

23

11.384 mJ Eon

6.42 mJ Eoff

103.7 V/ns dv/dt54 ns voltage fall time

77.8 V/ns dv/dt72 ns voltage fall time

紫金论电

Presenter
Presentation Notes
56.2 V/ns turn on and 83.3 turn off dv/dt at 20 A
Page 24: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Short Circuit Protection Test of 10 kV SiC MOSFET

24

Threshold voltage is ~22 V1032 V voltage dip

Low voltage overshoot

Ch1: drain-source voltageCh2: drain currentCh3: gate-source voltageCh4: monitored Vds in desat circuit

Imax = 240 A

Response time = 1.2 us

紫金论电

Page 25: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Impact of Motor & Cable on Drive Design

IL (A)

― DPT (Esw)― Motor (Esw)

― Motor + Cable (Esw)

Esw

(pu)

Esw (600 V/ 5 Ω)

Cooling system cannot be designed based on switching loss from typical DPT Switching frequency and dead time cannot be set based on switching time from DPT

IL (A)

t sw (p

u)

― DPT (ton or toff)― Motor (ton)--- Motor (toff)tsw (600 V/ 5 Ω)

― Motor + cable (ton)--- Motor + cable (toff)

* *

* Other data are normalized based on DPT

25

紫金论电

Page 26: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Control Challenges of WBG Converters

26

紫金论电

Page 27: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Converter Fault Current and Protection

VSC

Motor RLC

0.05 p. u.

0.5 p. u. 0.5 p. u.

0.01 p. u.

Case study of the VSC with 2X rated current capability• A short-circuit fault can be distinguished from the induction motor start with a time delay shorter than 5s• Utilizing the bus voltage can distinguish the short-circuit fault from induction motor start within 0.1s• VSC has similar performances for different fault locations, so a larger time delay is needed to avoid relay

protection misoperation• RLC load branch can distinguish the short-circuit fault quickly based only on the current• Short-circuit faults within the induction motor branch can be detected quickly by the current

Motor

CurrentVoltage

27

紫金论电

Presenter
Presentation Notes
Component Connection Method Generalized Nyquist stability criterion Stable if zero encirclement of point (0, j0) Avoid pole calculation
Page 28: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Power Electronics Grid Emulation Hardware Testbed (HTB)

Generator I

Output Inductors

Generator II

Load I

RectifierBuilding Power

DC Bus Short Distance Transmission

Line Emulator

Cluster 1

Cluster 2

Cluster n

Cluster n+1

Long Distance Transmission Line Emulator

HVDC

Cluster n+2

Cluster m

Monitoring

Hardware Room

Visualization and Control Room

CTs, PTs FDR, PMU Control

CAN Bus

28

DC Line 2-3

DC Line 2-6

1 39

L2L9

Area 2 Area 3

Area 1

Multi-terminal HVDC

G1

11

c

L11PV7 PV5

L7

5

Area 4

G2

2

L8

7

PV6L6

6

L10

WT 3

WT 4

10

4

c

VSC 1 VSC 2

VSC 3

DC Line 3-6

T 11-6

T 8-2 T3-4

550 km

580 km355 km

969 km

1674 km1625 km

260 km

S8

S9

S10

S11

Back rowMiddle rowFront row

紫金论电

Page 29: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Renewable Converter Stability Analysis and Controller Design

29

Impedance-based stability analysis in d-q frame Adaptive passivity compensation

Comp. enabling signal [t: 20 ms/div]

Grid current[20 A/div]

Inverter 1 current

[10 A/div]

Inverter 2 current

[10 A/div]

Without compensationUnstable

With compensationStable• Component Connection

Method• Generalized Nyquist

stability criterion• Stable if zero encirclement

of point (0, j0)• Avoid pole calculation

Frequency (Hz)

Phas

e (D

egre

e)M

agni

tude

(d

B)

Stable Case Unstable Case

-50

0

50

100

-900-720-540-360-180

0180360540

−180°×4

100 101 102 103 104

100 101 102 103 104

*clc9 9G I

Yoc9

Zov1*

clv1 1G V

Z1-6

Zov2 Z2-6*clv2 2G V

Z6-7

Z7-9

Z9-10

Zov3

Zov4

*clv3 3G V

*clv4 4G V

Yoc7

*clc7 7G I

Z3-10

Z4-10

6 7 9 10G1

G2

L7 L9

G3

G4

+−+−

+ −+ −

1

2

3

4

Connection network

Components

I1 (V1)

I2 (V2)

I3 (V3)

I4 (V4)

I7 (V7) I9 (V9)

Yoc Yoc_new

Yvp

Re

Im Passive region Yoc: inverter admittance without compensation

Yvp: virtual resistance for passivity compensationYoc_new: inverter admittance with compensation

紫金论电

Presenter
Presentation Notes
Page 30: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Conclusion

• The power grid becomes increasingly based on power electronics, due to the changing sources, loads, and T&D technologies.

• WBG devices and other new technologies provide new opportunities for power electronics in grid applications.

• The emerging needs and technologies also pose many new challenges, requiring new paradigm for power electronics and grid.

30

紫金论电

Page 31: Opportunities and Challenges of Next Generation Power …meeting.aeps.cc/uploadfile/IFSGPC/20180827/Fred Wang.pdf · 2018-08-27 · Modular multi -level ... • Improve the performance

Acknowledgements

This work was supported by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other government and industry sponsors are also acknowledged.

Thank You!

31

紫金论电