optimizing hotgas defrosting

14
By Bruce I. Nelson, P.E., President, Colmac Coil Manufacturing, Inc. “Optimizing Hot Gas Defrost” Introduction Several methods are commonly used to remove accumulated frost from air cooling evaporators which operate below freezing. They include; water, electric, and hot gas defrost. If designed and operated properly, hot gas defrost offers the refrigeration system operator a method which is: Effective Automatic Reliable, and Safe Why is using hot gas an effective method of defrosting evaporators? 1. The evaporator becomes a condenser. During the hot gas defrost process, high pressure hot gas from the discharge side of the compressor is introduced into the evaporator in a controlled fashion where it condenses back to its liquid state. 2. The latent heat of the refrigerant is used. The process of condensing releases a large amount of energy, equal to the mass flow rate of the hot gas entering the evaporator times the latent heat of vaporization of the refrigerant. The heat released during condensing is called “latent” heat since there is no change in temperature during the condensing process (the term latent means “hidden”). If the condensing pressure is held constant, the condensing process will take place at a constant temperature. The amount of heat released during the condensing process is much greater than the amount of heat released when superheated gas is cooled without condensing (called “sensible” cooling). 3. The condensed liquid is “recycled” and sent directly back to other evaporators. The condensed liquid from the defrosting evaporator is expanded into the wet suction line and returned to the Low Pressure Receiver (LPR) or Intermediate Pressure Receiver (MPR) where it is “recycled” and pumped directly back out to evaporators. 4. Hot gas defrost acts like a heat pump to “move” heat. A heat pump moves heat “uphill” by gathering energy at a low temperature level in the evaporator, compressing the evaporated refrigerant to a higher pressure, then releasing the energy at a higher temperature level during the condensing process. This process is 7 to 8 times more energy efficient than burning fossil fuel or electricity directly to produce the same heating effect. In the same way the heat used for hot gas defrosting has actually been gathered from the refrigerated space by the operating evaporators, then “moved” to the defrosting evaporators by the compression process at a refrigerant pressure and temperature high enough to melt the frost. Hot gas defrosting is very energy efficient! Technical Bulletin

Upload: tfmconsult

Post on 13-Sep-2015

10 views

Category:

Documents


1 download

DESCRIPTION

Defrosting

TRANSCRIPT

  • By Bruce I. Nelson, P.E., President, Colmac Coil Manufacturing, Inc.

    OptimizingHotGasDefrostIntroductionSeveralmethodsarecommonlyusedtoremoveaccumulatedfrostfromaircoolingevaporatorswhichoperatebelowfreezing.Theyinclude;water,electric,andhotgasdefrost.Ifdesignedandoperatedproperly,hotgasdefrostofferstherefrigerationsystemoperatoramethodwhichis:

    Effective Automatic Reliable,and Safe

    Whyisusinghotgasaneffectivemethodofdefrostingevaporators?

    1. Theevaporatorbecomesacondenser.Duringthehotgasdefrostprocess,highpressurehotgasfromthedischargesideofthecompressorisintroducedintotheevaporatorinacontrolledfashionwhereitcondensesbacktoitsliquidstate.

    2. Thelatentheatoftherefrigerantisused.Theprocessofcondensingreleasesalargeamountofenergy,equaltothemassflowrateofthehotgasenteringtheevaporatortimesthelatentheatofvaporizationoftherefrigerant.Theheatreleasedduringcondensingiscalledlatentheatsincethereisnochangeintemperatureduringthecondensingprocess(thetermlatentmeanshidden).Ifthecondensingpressureisheldconstant,thecondensingprocesswilltakeplaceataconstanttemperature.Theamountofheatreleasedduringthecondensingprocessismuchgreaterthantheamountofheatreleasedwhensuperheatedgasiscooledwithoutcondensing(calledsensiblecooling).

    3. Thecondensedliquidisrecycledandsentdirectlybacktootherevaporators.ThecondensedliquidfromthedefrostingevaporatorisexpandedintothewetsuctionlineandreturnedtotheLowPressureReceiver(LPR)orIntermediatePressureReceiver(MPR)whereitisrecycledandpumpeddirectlybackouttoevaporators.

    4. Hotgasdefrostactslikeaheatpumptomoveheat.Aheatpumpmovesheatuphillbygatheringenergyatalowtemperaturelevelintheevaporator,compressingtheevaporatedrefrigeranttoahigherpressure,thenreleasingtheenergyatahighertemperaturelevelduringthecondensingprocess.Thisprocessis7to8timesmoreenergyefficientthanburningfossilfuelorelectricitydirectlytoproducethesameheatingeffect.Inthesamewaytheheatusedforhotgasdefrostinghasactuallybeengatheredfromtherefrigeratedspacebytheoperatingevaporators,thenmovedtothedefrostingevaporatorsbythecompressionprocessatarefrigerantpressureandtemperaturehighenoughtomeltthefrost.Hotgasdefrostingisveryenergyefficient!

    Technical Bulletin

  • DefiningDefrostEfficiencyAgenerallyaccepteddefinitionofdefrostefficiencyisshownbelow:Theabsoluteminimumamountofheatrequiredforanidealdefrost(100%efficient)wouldequaljustenoughtowarmandmeltthefrostitself.Anyadditionalheatappliedtotheevaporatorreducesthedefrostefficiencytolessthan100%.Unfortunately,heatmustbeappliedatthestartofthedefrostcycletoheatthemetaloftheevaporatorfromtheevaporatingtemperatureupto32F(0C).Thisheatmustthenagainberemovedattheendofdefrostwhentherefrigerationsystemisrestarted.Heatmustalsobeaddedtothedrainpantokeepthemeltedfrostliquidlongenoughtoescapetherefrigeratedspacethroughthedrain.Thisheating(andcooling)ofthecoilanddrainpanmetalisunavoidableandresultsinareductionintheidealmaximumdefrostefficiency.Defrostefficiencyisalsoreducedwhensomeofthedefrostheatislosttotheroomasheatedair(convection)andradiation.Finally,hotgasbypassingthedefrostregulatorattheendofthedefrostcyclerepresentsanotherlossbyimposingafalseloadonthecompressor,andfurtherreducesdefrostefficiency.Improvingdefrostefficiencybyreducingtheselasttwotypesofdefrostheatlossesisthesubjectofthefollowingdiscussion.Howefficientisatypicalfreezerdefrost?Cole(1989)observedthatmostfreezerevaporatorsoperatewithdefrostefficiencyofonly15%to20%.Ofthetotaldefrostenergyinputhedeterminedthat:

    15to20%wasutilizedtomeltthefrost, 60%waslosttotheroomviaconvectionandradiation, 20%wasrequiredtoheatandcoolthemetalintheevaporator,and about5%waslostduetohotgasbypassingthedefrostregulatorattheendofdefrost.

    Colefurthersuggestedthatthemaximumtheoreticaldefrostefficiencywasprobablyintherangeof60%to70%.Defrostefficiencywillbereducedasenergylosttotheroomduringdefrostincreases.Theamountofheatlosttotheroomisdirectlyaffectedbyroomtemperature(acolderroomwillhavelargerconvectivelosses),thedurationofthedefrost(alongerdefrostwillresultinmoreconvectiveheatloss),andthetemperatureofthehotgas(highertemperaturehotgaswillresultinmoreconvectivelosses).

  • Thefrequencyofdefrostsandamountofaccumulatedfrostwillalsoaffectdefrostefficiency,thatis,moreaccumulatedfrostwilldirectlyincreasedefrostefficiencybytheequationshownabove.Aheattransfermodelwaswrittenforatypicalindustrialevaporatortoexaminehowdefrostefficiencyisaffectedby:

    Roomtemperature, Hotgastemperature, Durationofdefrost, Frostthickness,and Materialsofconstruction

    RoomTemperatureAsroomtemperatureisreduced,thedefrostheatlosttotheroomduetoconvectiveheatingofairunavoidablybecomesgreater.Thismeansthatdefrostefficiencyinafreezerroomwillalwaysbelessthandefrostefficiencyinamediumtemperatureroom.Figure1belowillustratesthegreaterconvectiveheatlossinthefreezer(63%)comparedtothemediumtemperatureroom(46%),andtheresultinglowerdefrostefficiencyinthefreezer(17%)versusthemediumtemproom(32%).NotethatthedefrostefficiencyisequaltotheMeltFrostpercentagesshowninthecharts.Thishighlightstherelativelylargeamountofheatthatislosttotheroomduringdefrostduetoconvectiveairheatingregardlessoftheroomtemperature.Reducingthisconvectiveheatlossbychangingthedesignoftheevaporatorcabinetthereforerepresentsanopportunitytosignificantlyimprovedefrostefficiencyandwillbediscussedlater.

    FIGURE1

  • HotGasTemperatureSincetheamountofconvectiveheatlosstotheroomisdirectlyaffectedbythetemperaturedifferencebetweenhotgastemperatureandroomtemperature,anyincreaseinhotgastemperatureabovetheabsoluteminimumrequiredtomeltthefrostresultsinaproportionalincreaseintheconvectiveloss.Itisgenerallyacceptedthatthepracticalminimumhotgastemperatureforeffectivedefrostingisaround50F(adefrostregulatorsettingof75psig).Figure2illustrateshowanincreaseinthehotgastemperatureresultsinanincreaseinconvectiveheatlossandreductionindefrostefficiency.Itistheauthorsobservationthatinmanyfacilities,thehotgastemperatureisraisedabovetheminimumrequired50Finanattempttoclearthecoiloficeduetosomedesignrelatedissue(s)suchasicebuildupindrainpans,orimproperdefrostpiping.

    FIGURE2Inaconventionalhotgascontrolvalvearrangement,hotgaspressure(andthereforedefrosttemperature)isdeterminedbythedefrostregulatorsetting.Itisimportanttorecognizethatsomeminimumpressuredifferencebetweenhotgassupplypressureandthedefrostregulatorsettingmustbemaintainedinordertoprovideenoughpushtokeepclearingthecondensedrefrigerantoutofthe

  • coil.Apressuredifferentialof15to20psigshouldbesufficienttokeepthecoilclearofcondensedrefrigerant.Ifthispressuredifferencebecomestoosmall(eitherhotgassupplypressurefallstooloworthedefrostregulatorsettingistoohigh)thencondensedliquidrefrigerantcanaccumulateinthecoiltubesandbecomesubcooled,typicallyinthebottomrows.Oncetherefrigerantliquidbecomessubcooleditlosesitsabilitytomeltthefrostandicewillaccumulate.Also,coilmanufacturersmustproperlydesignevaporatorstocontinuouslydrainandclearcondensedrefrigerantfromthe:

    Hotgaspanloop, Coilcircuits,and Liquidheaderandconnection

    Designingtheliquidheadertoeffectivelytrapcondensedrefrigerantandformaliquidsealbelowthelowesttubeinthecoilisparticularlyimportanttoavoidtheproblemofaccumulatingsubcooledliquidinthebottomcoiltubesmentionedabove.DurationofDefrostCole(1989)confirmedbyhisownmeasurements,andbytheobservationofothers,thattheminimumtimerequiredtomeltthefrostonevaporatortubesandfinsisonlybetween8and10minutes.However,itistheobservationoftheauthorthatmostevaporatorsinindustrialrefrigerationfacilitieshavehotgasdefrostdurationsettingsinexcessof30minutes,thatis,theperiodoftimethehotgassolenoidisopen.Figure3showsthesignificantreductioninconvectiveheatloss,andtheincreaseindefrostefficiency,resultingfromshorteningthedurationofdefrostfrom30minutesto10minutes.

    FIGURE3

  • Defrostdurationoflongerthantheminimum10minutesshouldnotbeneeded,however,itisquitecommontoseedefrostdurationsof30minutesorlonger.Thisbeingaresultofdeficienciesineitherthedesignoftheevaporator(iceindrainpansorimproperlytrappedcoiloutletconnection),orinthedefrostpipingand/orcontrols.FrostThicknessThedefinitionofdefrostefficiencyimpliesthatincreasingtheamountoffrostmeltedduringdefrostwilldirectlyincreasetheefficiency.Reducingthenumberofdefrostsperdaywillincreasefrostthicknessandincreaseefficiencyofdefrosting.Figure4showstheeffectofincreasingfrostthicknessfrom1mmto2mm,andconfirmsasignificantincreaseinefficiency.

    FIGURE4Reducingthenumberofdefrostsperdaymayormaynotbepossiblewithexistinginstallations,dependingontheevaporatordesign.Inorderforevaporatorstocarrymorefrostonfinsurfacesbetweendefrosts,twodesigncharacteristicsareneeded:

    1. Widefinspacing.Afinspacingof3fpi(8.5mm/fin)willallowmoreaccumulatedfrostbetweendefrostscomparedto4fpi(6.4mm/fin)withlessrestrictionofairflowandlessreductioninevaporatorperformance.

  • 2. Alargeratioofsecondary(fin)toprimary(tube)surface.Evaporatorshavingveryclosetubespacingwillhavereducedtotalsurfaceareaforagivencoolingdutyandreducedfrostcarryingcapability.Evaporatorshavingtubesspacedfartherapartwillhavegreatertotalsurfaceareaandgreaterfrostcarryingcapability.Forexample,anevaporatorwith50mmtubespacingand3fpiwillallowlongerruntimebetweendefroststhananevaporatorwith38mmtubespacingand4fpi.Moretotalsurfaceareaforagivencoolingdutyallowsfewerdefrostsperday.

    MaterialsofConstructionNelson(2003)showedthatmoreenergyisrequiredtoheatandcoolthemetalinagalvanizedsteelevaporatorcomparedtoanaluminumtube/aluminumfinevaporatorduringadefrostcycle.Thisisdueprimarilytothegreatermassofmetalinthegalvanizedsteelconstruction.Figure5showsthereductionindefrostefficiencyforagalvanizedevaporator(Stl/Zn)comparedtoanallaluminum(Al/Al)one.

    FIGURE5

  • Summary:DefrostEfficiencyFromtheprecedingdiscussionwecansummarize:

    1. Colderroomtemperatureswillunavoidablyhavelowerdefrostefficiencies.2. Defrostefficiencyimprovesas:

    a) Hotgastempislowered,and/orb) Defrostdurationisshortened,and/orc) Timebetweendefrosts(frostthickness)isincreased.

    3. Convectiveheatlossisasignificantpenaltyinallcases. 4. Reducingdurationandincreasingfrostthicknessimproveddefrostefficiencyfrom17%to44%in

    thefreezer.5. Allaluminum(Al/Al)constructionimproveddefrostefficiencyfrom29%to34%inthefreezer

    comparedtogalvanizedsteel(Stl/Zn).Notethatallaluminumconstructionwillalsodefrostfasterthangalvanizedsteelduetothemuchhigherthermalconductivityofaluminum.

    ReducingConvectiveHeatLossAsshownabove,reducingconvectiveheatlossesduringdefrostrepresentsasignificantopportunitytoimprovetheenergyefficiencyofhotgasdefrosts.Figure6belowfromCole(1989)showsfieldmeasuredairmovementpatternsandvelocitiestakenduringdefrost.

    FIGURE6CONVECTIVEAIRMOVEMENTDURINGDEFROST

    Theuseofreturnairhoods,andfandischargesocksisarecentdevelopmentnowavailableasanoptionfromseveralevaporatormanufacturers.Returnairhoodsincombinationwithfandischargesocks

    Takenfrom:Cole,R.A.1989.RefrigerationLoadsinaFreezerDuetoHotGasDefrostandTheirAssociatedCosts.ASHRAETransactions,V.95,Pt.2.

  • effectivelyeliminateconvectiveairmovementandheatlossduringdefrost.Figure7showstypicalreturnairhoodsandfandischargesocksinstalledonanevaporator.

    FIGURE7EVAPORATORWITHRETURNAIRHOODANDDISCHARGESOCKINSTALLED

    Returnairhoodssuchasthoseshownareveryeffective.However,ifcareisnottakento(a)insulatethehood,and(b)activelyheattheinsidesurfacesofthehoodduringdefrost,thenhoarfrostandicecanbuildupontheinsidesurfacesofthehoodandeitherblockairfloworfalltothefloorbelow.Also,fandischargesocksmayrequireperiodicremovalforcleaninganddeicing.OptimizingHotGasDefrost:ConclusionsFromtheabovediscussion,itcanbeseenthathotgasdefrostingofevaporatorscanbemadesignificantlymoreefficientbydoingthefollowing:

    1. Minimizeconvectiveheatloss. Uselowestpracticaldefrostregulatorsetting.75to90psig(50to60F)shouldbe

    adequate.Note:Ifhigherpressuresareneeded,lookforproblemselsewhere. Capturedefrostheat(i.e.installReturnAirHoods).

    2. Shortendefrostduration. UsetopfeedorDX(directexpansion)evaporatorfeedtoreducetimerequiredforpump

    out. Openthehotgassolenoidonlylongenoughtoclearcoil(810minutes). Installaseparatehotgassolenoidanddefrostregulatorforpreandpostheatingofthe

    panloop.Alternately,installelectricresistancedrainpanheating.3. Reducethenumberofdefrostsperday.

    Reducethenumberofdefrostsperdaytomatchthefrostload. Chooseevaporatorswithwidefinspacing(3fpiinsteadof4fpi)andlargesecondary

    (fin)surfaceareatomaximizefrostcarryingcapacity.

  • CalculatingtheCostofDefrostIthasbeenshownthatdefrostefficiencycanbesignificantlyimprovedbyreducingtheamountofenergylosttotheroombyconvectionduringdefrost.Thenextlogicalquestionbecomes:HowmuchmoneycanIreallysavebyoptimizinghotgasdefrost?Toanswerthisquestion,thedefrostmodeldescribedintheprecedingsectionswasusedtocalculatethecostsavingsresultingfrom:

    1. Reducingdefrostdurationfrom30minutesto10minutes,and2. Increasingfrostthicknessfrom1mmto2mm(reducingthenumberofdefrostsperdaybyhalf).

    Thecalculationsassume:

    Evaporatorcapacity:100TR Compressorruntime:16h/day CostofElectricity:$0.10/kWh

    Table1showscalculatedcostsavingsforfourdifferentroomtemperatures.Asroomtemperatureislowered,lessmoistureisheldintheair(thehumidityratioisreduced).i.e.Coldairisdrierthanwarmair.Hence,atfreezertemperaturesthelatentcomponentofthetotalrefrigeratingloadislower(lessfrostaccumulatesforeachtonofrefrigeration)comparedtohigherroomtemperatures.ThisisreflectedintheSensibleHeatRatio(SHR)showninthetable.Tomakethecostsavingscalculation,systemCoefficientofPerformance(COP)alsoneedstobeassumed.TheCOPvaluesinthetableassumesinglestagecompressionforthe0C(+32F)and18C(0F)roomtemperatures,andtwostagecompressionforthe23C(10F)and34C(30F)roomtemperatures.

  • TABLE1CALCULATEDCOSTSAVINGS($/y/100TR)FOROPTIMIZEDVSCONVENTIONALDEFROST

    SmartHotGasDefrostPipingConventionalammoniaevaporatorsaretypicallyarrangedforbottomfeedwiththehotgaspanlooppipedinserieswiththecoil.Asmentionedabove,asmarthotgaspipingarrangementresultinginhigherdefrostefficiencyandreducedoperatingcostsutilizestopfeed(orDX)withthehotgaspanlooppipedseparatelyfromthecoil.ThisSmartHotGasDefrostpipingarrangementisshowninFigures8and9.Withconventionalbottomfeedandhotgasdefrostpipingarrangement,duringdefrost,hotgasisfirstsentthroughthedrainpanloopandtheninseriesthroughthecoilblock.Thiscommonlyusedarrangementiseffectiveandsimple,however,itrequiresthatthehotgassolenoidremainsopentokeepthedrainpanheatedlongenoughforallwatertocompletelydrainandexitthroughthedrainpiping.Convectiveheatlosstotheroomcontinuesafterthecoilisclearoffrostwhilethepanisdraining.Amoreefficient(andcosteffective)arrangementistocontrolhotgastothecoilblockandtothedrainpanloopseparatelythroughtwoseparatelytimedhotgassolenoidvalves.Thisseparatecontrolofpanheatingcanalsobeaccomplishedbyelectricallyheatingthedrainpan.Thisarrangementshortenstheamountoftimehotgasisflowingthroughthecoilblock,minimizingtheconvectiveheatlossandmaximizingdefrostefficiency.

    0 (+32) -18 (0) -23 (-10) -34 (-30)SHR 0.66 0.89 0.93 0.97System COP: 3.2 2.5 2.2 2Frost Removed, kg/day: 2,778 899 572 245Frost Removed, kg/y: 1,014,096 328,090 208,784 89,479I. Baseline (30 min, 1 mm)Defrost Efficiency, % 32% 18% 17% 14%Defrost Convective Losses, %: 46% 61% 63% 65%Defrost Convective Losses, kWh/y: 1,012,438 753,334 545,922 283,071Baseline Cost of Defrost (Convective), $/y: $31,639 $30,133 $24,815 $14,154II. Optimized (10 min, 2 mm)Defrost Efficiency, % 61% 46% 43% 40%Defrost Convective Losses, %: 15% 26% 27% 30%Defrost Convective Losses, kWh/y: 168,740 125,556 90,987 47,178Optimized Cost of Defrost (Convective), $/y: $5,273 $5,022 $4,136 $2,359

    Savings Optimized vs Baseline, $/y: $26,366 $25,111 $20,679 $11,795

    Room Temp, C (F)

  • ItisinterestingtonotethatthecontrolvalvesfortheSmartHotGasDefrostpipingarrangementshowninFigures8and9arelessexpensivethanaconventionalbottomfeedhotgasdefrostpipingarrangementwithdefrostregulator.

    FIGURE8SMARTHOTGASDEFROSTPIPINGDIAGRAM(ELECTRICALLYHEATEDPAN)

    HGS

    HPL

    LPS

    DRAIN

    PAN HEATER

    EEV LLS

    HGS

    PSV

    HEVSSV

    LEGEND:- HAND EXP. VALVE- SUCT. STOP VALVE- PILOT SOLENOID VALVE- HOT GAS SOLENOID VALVE- ELECTRONIC EXP. VALVE- LIQ. LINE SOLENOID VALVE- LOW PRESS. SUCTION- HOT GAS SUPPLY- HIGH PRESS. LIQUIDHPL

    HGSLPSLLSEEVHGSPSVSSVHEV

    AIR

    (or HEV)

  • FIGURE9SMARTHOTGASDEFROSTPIPINGDIAGRAM(WITHPANLOOP)

    TypicalSmartHotGasDefrostSequenceofOperation

    1. Defrostisinitiated.Defrostinitiationcanbetimedorondemandbyanairpressuredifferentialsensor(indicatesfrostedcondition)

    2. LiquidLineSolenoid(LLS)closes3. Timedpumpoutfor510minutes4. Fan(s)stop5. Panheaters(orpanloopsolenoid)energizedfortimedpanpreheat(23minutes)6. Coilhotgassolenoidandpilotsolenoid(closessuctionstopvalve)open7. Timeddefrost(810minutes)8. Coilhotgassolenoidcloses9. Aftercoilpressureisequalizedtosuctionpressure(35minutes),SuctionStopValveopens

    HGS

    HPL

    LPS

    DRAIN

    EEV LLS

    HGS

    PSV

    HEVSSV

    LEGEND:- HAND EXP. VALVE- SUCT. STOP VALVE- PILOT SOLENOID VALVE- HOT GAS SOLENOID VALVE- ELECTRONIC EXP. VALVE- LIQ. LINE SOLENOID VALVE- LOW PRESS. SUCTION- HOT GAS SUPPLY- HIGH PRESS. LIQUIDHPL

    HGSLPSLLSEEVHGSPSVSSVHEV

    AIR

    (or HEV)

    HGS

    HEV

  • 10. OpenLLS11. Panheater(orpanloopsolenoid)deenergized12. After5minutecooldowndelayfansrestart

    DesignforReliabilityReliableoperationofthehotgasdefrostsystemdependsonanadequatesupplyofhotgasthroughoutthedefrostcycle.Rememberto:

    1. CorrectlysizeandinsulatehotgaslinesaccordingtoIIARguidelines(IIAR2004).2. Makesure2coilsarerunningforeverycoilthatisdefrosting.Thisisbecausetheevaporatorhas

    approximatelytwicethecondensingcapacityasevaporatingcapacityduringdefrost.Reliablehotgasdefrostoperationalsodependsoncorrectselectionandsizingofcontrolvalves.Controlvalvemanufacturersliteratureandguidelinesshouldbeconsulted.DesignforSafetySafetymustalwaysbeaprimaryconsiderationwhendesigningandoperatinganammoniahotgasdefrostsystem.Remember,asaminimum,todothefollowing:

    1. UsegoodpipingpracticepertheIIARPipingHandbook(2004).2. Keephotgaslinesclearofliquidbypitchingdowntowardliquiddrainers.3. UseatwopositionSuctionStopValvetoallowthecoiltoallowthecoiltograduallycomeback

    downtosuctionpressureattheendofdefrost.4. DevelopandmaintainacompletePSMRMP(ProcessSafetyManagementRiskManagement

    Program)foryourammoniarefrigerationsystem.5. Developandmaintainacultureofsafetytrainingandpreparednessthroughoutalllevelsofyour

    organization.ReferencesCole,R.A.1989.RefrigerationLoadsinaFreezerDuetoHotGasDefrostandTheirAssociatedCosts.ASHRAETransactions,V.95,Pt.2.IIAR.2004.AmmoniaRefrigerationPipingHandbook.InternationalInstituteofAmmoniaRefrigeration.ColmacCoilManufacturing,Inc.2003.BulletinENG00014424:UnitCoolers,Installation,Operation,andMaintenance.ColmacCoilManufacturing,Inc.Colville,WA.Nelson,B.I.2003.MadeforAmmonia.ProcessCooling&Equipment.July/August2003.

    Formoreinformation,pleasecontactColmacCoilManufacturing,Inc.Phone:800.845.6778or509.684.2595

    P.O.Box571,Colville,WA.991140571;www.colmaccoil.comCopyright2011ColmacCoilManufacturing,Inc.