panjinugrahagomis 21030112140038 rabusiang - copy

21
TUGAS KIMIA ANORGANIK SENYAWA KOORDINASI Oleh : Nama : Panji Nugraha Gomis NIM : 21030112140038 Kelas : A JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO 2012

Upload: faqihudinmubarok

Post on 14-Apr-2016

5 views

Category:

Documents


1 download

DESCRIPTION

hcjvk;;vjyklvv

TRANSCRIPT

Page 1: Panjinugrahagomis 21030112140038 Rabusiang - Copy

TUGAS KIMIAANORGANIK

SENYAWA KOORDINASI

Oleh :

Nama : Panji Nugraha Gomis

NIM : 21030112140038

Kelas : A

JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK

UNIVERSITAS DIPONEGORO2012

Page 2: Panjinugrahagomis 21030112140038 Rabusiang - Copy

SENYAWA KOORDINASISenyawa koordinasi atau senyawa kompleks adalah senyawa yang terbentuk karena

ikatan kovalen koordinasi atom-atomnya. Ikatan kovalen koordinasi terjadi karena pemakaian bersama pasangan elaektron yang berasal dari salah satu atomnya.

Senyawa kompleks harus memiliki Ion kompleks yaitu ion yang terdiri dari ion pusat bermuatan positif dan anion yang mengelilinginya (ligan). Ion kompleks juga memerlukan counter ion agar muatannya bersifat netral.

Gambar 1: A. Model (atas), gambar prespektif (tengah), rumus (bawah). Gambar tersebut terdiri dari ion pusat dan enam buah ligan yang mengelilinginya membentuk model oktahedral

B. Ion kompleks dengan ion pusat dan empat buah ligan yang membentuk segiempat planar

Senyawa koordinasi dapat bersifat elektrolit jika berada dalam air. Ion kompleks dan counters ion terpisah antara satu dengan yang lainnya, tetapi ion kompleks bersifat seperti ion polyatomik.

Ion kompleks: bilangan koordinasi, geometri dan liganIon kompleks merupakan bagian dari senyawa kompleks yang terdiri dari ion pusat

(kation) serta ligan yang mengelilinginya. Strukturnya tersusun dari bilangan koordinasi, geometri dan banyaknya atom donor dari setiap ligannya.

B ila n gan k oor d i n asi : yaitu banyaknya ligan dalam suatu ion kompleks yang berikatan langsung dengan ion pusat. Bilangan koordinasi ion CO3+ dalam [Co(NH3)6]3+ adalah 6 karena ad 6 ligan (NH3) tarikat dengan ion pusat.

Page 3: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Ge o me t ri : bentuk ion kompleks bergantung pada bilangan koordinasi dan sifat dasar dari ion logam. Penulisannya memiliki kesamaan dengan teori VSEPR.

Gambar 2. Bilangan koordinasi dan bentuk beberapa ion kompleks.Bentuk ion kompleks berdasarkan bilangan koordinasi 2, 4, dan 6. Bilangan koordinasi 4 memiliki dua bentuk yaitu segi empat planar dan tetrahedral. Ion logam d8 berbentuk segi empat planar dan d10 berbentuk tetrahedral.

A t om d o n or s e t iap ligan : ligan dari ion kompleks adalah molekul atau anion dengan satu atau lebih atom donor yang masing-masing memberikan pasangan elektron pada ion pusat untuk berikatan kovalen. Berasal dari golongan 5A(15), 6A(16), atau7A(17).

Ligan diklasifikasikan berdasarkan jumlah atom donor yang digunakan untuk mengikat atom pusat.

Gambar 3 : Beberapa ligan yang biasa dalam senyawa koordinasi. Monodentat adalah ligan yang memiliki 1 atom donor, biedentat adalah ligan yang memiliki 2 atom donor dan polydentat ligan yang memiliki lebih dari 2 atom donor.

Page 4: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Rumus dan Nama Senyawa KoordinasiA d a t iga a tu r a n p e n t i n g d alam p e n u lisan r u m u s s e n ya w a k oor d i n asi :

1. Anion ditulis sebelum kation2. Muatan kation harus seimbang dengan muatan anion3. Dalam ion kompleks, ligan anionik ditulis setelah ligan netral, dan rumus ion tersebut

diletakkan didalam tanda kurung

Penerapan aturan tersebut untuk menentukan muatan ion-ion pada senyawa koordinasi. Contoh K2[Co(NH3)2Cl4], dua K+ bermuatan 2+ sama dengan muatan anion

-kompleks [Co(NH3)2Cl4]2- yaitu 2-, terdiri dari dua molekul NH3 dan empat ion Cl-

sebagai

ligan. Dua NH3 netral, empat Clmuatan Co2+ (ion pusat) adalah :

bermuatan 4- dan ion kom pleks bermuatan 2-, sehingga

Muatan ion kompleks = muatan ion pusat + muatan ligan total

2- = muatan ion pusat + {

(2x0) + (4x1-) } Jadi, muatan ion logam = (2-) – (4-)

= 2+

P en am a a n s e n ya w a k oo r d i n asi bil

Gambar 4. Nama Beberapa Ligan Netral dan Anionik

menjadi

4. Nama imbuhan angka pada ligan menunjukkan jumlah ligan itu sendiri. Contoh-tetraamin menunjukkan empat NH3 dan dikloro menunjukkan dua Cl . Imbuhan lain

seperti tri, penta, dan heksa. Imbuhan ini tidak berpengaruh pada urutan abjad. Beberapa ligan yang sudah memiliki imbuhan angka didalamnya (seperti etilenediamin) digunakan bis(2), tris(3), atau tetrakis(4) untuk menunjukkan jumlah

Page 5: Panjinugrahagomis 21030112140038 Rabusiang - Copy

ligan tersebut. Jadi, ion kompleks yang memiliki dua buah ligan etilenediamin diberi nama bis(etilendiamin).

5. Tingkat oksidasi dari beberapa ion pusat yang mempunyai lebih dari satu tingkat ditulis dengan angka romawi (I), (II), (III) atau (IV). Misalnya [Co(H2O)6]3+

heksaaquokobalt(II) dan [Cu(NH3)4]3+ tetraamintembaga(II).6. Jika ion kompleks adalah anion maka akhiran nama ion pusat adalah nama latin

ditambah –at, contoh K[Pt(NH3)Cl5] yang diberi nama Kalium amina pentakloro platinat(IV).

Gambar 5. Nama Beberapa ion logam pada anion kompleksSejarah Perspektif: Alfred Werner dan Teori Koordinasi

Senyawa koordinasi sudah dikenal hampir 200 tahun. Ditemukan oleh Alfred Werner. Dia meneliti senyawa kobalt yang masing-masing mengandung satu ion kobalt(III), 3 ion klorida dan molekul amonia. Werner mengukur konduktivitas masing-masing senyawa dalam larutan untuk menentukan jumlah ion yang terurai. Dia menambahkan AgNO3 excess

-untuk mengendapkan Cl

-sebagai AgCl dan menentukan jumlah ion Cl bebas setiap unit

formula. Sebelumnya dia mempelajari bahwa NH3 tidak bebas dalam larutan.

Gambar 6. Beberapa hasil percobaan cobalt dari senyawa koordinasi oleh Warner.

Ion logam pusat yang dikelilingi oleh jumlah total konstan molekul/anion yang terikat kovalen. Kompleks koordinasi dapat netral dan bermuatan, jika bermuatan dikombinasikan dengan muatan counter ion yang berlawanan. Dalam kasus ini adalah Cl- membentuk senyawa netral.

Werner mengemukakan dua jenis valensi untuk ion logam yaitu valensi primer dan valensi sekunder. Valensi primer sekarang disebut oxidation state adalah muatan positif

Page 6: Panjinugrahagomis 21030112140038 Rabusiang - Copy

ion logam yang sama dengan muatan negatif. Valensi sekunder biasa disebut bilangan koordinasi adalah jumlah kesatuan total dari anion atau ligan netral dalam ion kompleks. Data Werner menunjukkan bahwa jumlah total ligan pada masing-masing senyawa adalah

-sama, walaupun jumlah ion Cl dan molekul NH3 pada ion kompleks berbeda.

Isomer Dalam Senyawa KoordinasiIsomer adalah senyawa yang memiliki rumus kimia sama tapi struktur dan sifatnya

berbeda.

1. Isomer KonstitusionalYaitu senyawa dengan rumus sama tapi terikat pada atom yang berbeda. Biasa juga

disebut dengan isomer struktur. Isomer ini dibagi menjadi 2 jenis, yaitu: Isomer koord in asi , terjadi jika komposisi ion kompleksnya berubah, tetapi

senyawanya tetap. I s omer Li n k ag e , terjadi jika komposisi ion kompleksnya sama tetapi ikatan ligan atom

donornya berubah.2. Isomer Stereoisometri

Yaitu senyawa yang memiliki ikatan atom yang sama tetapi tempat penyusunannya berbeda. Terbagi menjadi 2, yaitu:

Isomer Geo met ri , biasa juga disebut isomer cis-trans atau diastereomers terjadiketika beberapa atom disusun pada tempat yang berbeda tetapi merupakan ion yang sama. Isomer cis terjadi jika ion yang sama berada dalam ruang yang sama, sedangkan isomer tras terjadi jika ion yang sama berada dalam ruang yang berbeda.

Gambar 7. Isomer cis-trans. I s omer Op t ik , biasa disebut enansiomer adalah isomer yang didasarkan kepada arah

rotasi terhadap sumbu polarisasi.

Page 7: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Rangkuman

Senyawa koordinasi terdiri dari ion kompleks dan counter ion dimana ion kompleks

terdiri dari ion pusat (kation) yang dikelilingi oleh ligan netral atau anion, yang memiliki satu atau lebih atom donor yang masing-masing menyediakan pasangan elektron bebas. Kebanyakan bentuk senyawa koordinasi adalah oktahedral (ikatan atom dengan enam ligan). Rumus dan penamaan senyawa koordinasi mengikuti aturan yang sistematik. Werner menetapkan struktur dasar senyawa koordinasi. Senyawa koordinasi memiliki isomer konstitusional (koordinasi dan linkage) dan stereoisomer (isomer geometri danoptik).

TEORI DASAR IKATAN DANSIFAT KOMPLEKS

Penerapan Teori Ikatan Valensi pada ion kompleksTeori ikatan valensi digunakan untuk membantu mengetahui ikatan dan struktur

golongan utama suatu senyawa. Teori ini juga digunakan untuk menjelaskan ikatan pada ion kompleks. Ligan menyumbangkan pasangan elektron dan ion logam menerimanya untuk membentuk suatu ikatan kovalen menjadi ion kompleks.

Gambar 8. Ikatan dan ikatan hibrida pada ion OktahedralGambar A : Gambaran ikatan valensi ion [Cr(NH3)6]3+

Gambar B : Pengisian 6 pasang elektron NH3 bergabung dengan Cr3+ mengisidua 3d, satu 4s dan tiga 4p membentuk d2sp3

Page 8: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Kompleks OktahedralSebagai contoh adalah ion heksaaminakromiun(III), Cr3+ memiliki 6 orbital kosong

yang energinya lebih rendah yaitu dua 3d, satu 4s dan tiga 4p membentuk d2sp3. Enam molekul NH3 menyumbangkan sepasang dari nitrogennya untuk membentuk enam ikatan logam-ligan.

Kompleks Segi Empat PlanarIon logam dengan konfigurasi d8 biasanya membentuk square planar complexes.

Contohnya ion [Ni(CN)4]2- . Model ini mengusulkan satu orbtal 3d, satu orbital 4s dan dua orbital4p dari Ni2+ membentuk empat orbital dsp2.

Gambar 9. Ikatan dan orbital pada segi empat planarBerdasarkan gambar tesebut ion Ni2+ memiliki dua orbital 3d yang berisi masing-

masing satu elektron, kemudian bergabung, empat pasang ion CN- mengisi satu orbital 3d, satu orbital 4s dan dua orbital 4p membentuk dsp2 .

Kompleks Tetrahedral

Gambar 10. Ikatan dan orbital tetrahedralDari gambar 9 terlihat orbital 3d sudah terisi penuh sehingga empat ion OH- mengisi

orbital 4s dan 4p membentuk sp3 .

Page 9: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Teori Bidang KristalTeori ni menjelaskan sedikit pengertian ikatan metal-ligan, warna dan sifat magnetik

kompleks. Dia juga menyoroti energi orbital d ion pusat oleh ligan yang mengikatnya.

Pemisahan Orbital d pada Ligan OktahedralTeori ini menjelaskan mengenai sifat kompleks hasil dari pemisahan energi orbital d.

Pemisahan ini didasarkan pada interaksi elektrostatis antara ion logam dengan ligan. Model ini mengasumsikan bahwa ion kompleks terbentuk dari hasil tarikan elektrostatis antara logam positif dengan ion negatif dari ligan.

Gambar 11. Enam buah ligan yang bergerak menuju atom logan untuk membentuk geometri oktahedral. Ligan menghampiri atom pusat untuk meminimalisir energi pada sistem

Gambar 12. Gambar tersebut memperlihatkan bahwa 5 orbital d memiliki energi yang lebih tinggi dalam membentuk kompleks dibandingkan ion logam bebas, tapi energi orbital d dibagi lagi menjadi 2 dimana 2 buah orbital lebih tinggi dari yang lainnya.

Page 10: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Pemisahan energi pada orbital d seperti yang terlihat pada gambar diatas disebut efek bidang kristal. Perbedaan energi antara 2 orbital d dengan 3 orbital d lainnya disebut energi pemisah kristal. Ligan terbagi menjadi ligan kuat yaitu ligan yang memiliki energi pemisah besar serta ligan lemah yaitu ligan yang memiliki energi pemisah yang kecil.

Penjelasan Warna pada Logam TransisiBeberapa warna dari senyawa koordinasi berasal dari perbedaan energi pada

orbital dalam ion kompleks. Elektron berpindah dari energi yang rendah ke energi tinggi ketika ion menyerap warna. Perbedaan energi pada orbital sebanding dengan energi penyerapan foton.

Gambar 13. Gambar tersebut memperlihatkan pada gelas A larutan [V(H2O)6]2+

berwarna ungu berbeda dengan larutan yang memiliki ligan yang sama namun ion logamnya berbeda seperti [V(H2O)6]3+ yang berwarna kuning. Hal serupa juga terlihat pada gambar B, senyawa [Cr(NH3)6]3+ yang berwarna kuning memiliki perbedaan warna dengan[Cr(NH3)6]2+ yang berwana ungu.

Dari keterangan tersebut dapat disimpulkan bahwa warna pada logam transisi dipengaruhi oleh jenis ligan.

Penjelasan Sifat Magnetik Logam Transisi KompleksPemisahan tingkat energi berpengaruh terhadap sifat logam mengakibatkan

sejumlah elektron pada orbital d ion logam tidak berpasangan. Sesuai aturan Hud, elektron menempati satu orbital selama dalam tingkatan yang sama.

Cara orbital mempengaruhi ligan ada 2, yaitu:

Weak-field ligans and hight-spin complexes. Ligan H2o pada mn2+ memiliki kecil sehingga energi untuk berpindah kecil dan energi untuk berpasangan lebih besar dibandingkan energi pemisahan

Page 11: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Strong-field ligans and low-spin complexes. Ligan CN- pada Mn2+ memiliki besar sehingga energi untuk berpindah besar dan energi untuk berpasangan lebih kecil dari energi pemisahan

Tempat Pemisahan Kristal dalam TetrahedralEmpat ligan mengelilingi ion logam juga menyebabkan orbital d berpisah, tapi besar

dan pola pemisahan bergantung pada apakah ligan tersusun tetrahedral atau segi empat planar.

Gambar 14. Pemisahan orbital d oleh bidang ligan tetrahedral

Gambar 15. Pemisahan orbital d oleh bidang ligan segi empat planar

Page 12: Panjinugrahagomis 21030112140038 Rabusiang - Copy

Rangkuman

Teori ikatan valensi menggambarkan ikatan dalam ion kompleks yang timbul dari ikatan kovalen koordinasi antara basa lewis (ligan) dan asam lewis (ion logam). Sepasang ligan bebas menempati orbital ion logam untuk membentuk ion kompleks dengan bentuk yang khas.

Teori bidang kristal menjelaskan secara jelas mengenai warna dan sifat magnetik suatu senyawa. Sebagai akibat dari mengelilingi bidang ligan, energi orbital d membagi ion logam. Sifat magnetik dari pembagian bidang kristal membelah energi bergantung pada tuntutan ion logam dan kekuatan bidang kristal ligan. Hasilnya mempengaruhi energi foton untuk menyerap warna dan jumlah elektron yang tidak berpasangan.