photonic network research institute national … network research institute national institute of...

29
Enabling Technologies for New Generation Network Recent Research & Funding Activities in NICT Tetsuya Miyazaki and Naoya Wada Photonic Network Research Institute National Institute of Information & Communications Technology

Upload: voanh

Post on 16-May-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Enabling Technologies for New Generation NetworkRecent Research & Funding Activities in NICT

Tetsuya Miyazaki and Naoya Wada

Photonic Network Research InstituteNational Institute of 

Information & Communications Technology

Page 2: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

1

光ネットワーク領域の研究ビジョン

Integ. modulatorLightwave Devices lab.Dr. Tetsuya Kawanishi

Leading edge  network ICT hardware  

Network Architecture  System Lab.Dr. Hiroaki Harai

NWGN to support the society of 2020Demonstration of NWGN technologies

Photonic Network System Lab.Dr. Naoya Wada

Creating hardware system beyond conventional technical limitations

Link Node

System

We promote R&D to realize sustainable future networks that canaccommodate explosively growing information traffic, while alsoreduce excessive power consumption and maintain availability.

Layer  Integration

Photonic Network Research Institute 

1

Page 3: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Dissemination Phase

Fundamental & Basic Applied Practical Use

Research & Development PhaseProcess of ICT Development

High Risk Low RiskOutcomes needlong time

Outcomes reachedin short time

Sept.  29,  2013※MIC : Ministry of  Internal Affairs and Communications  2

Research done                Research done by Industry by NICT Researchers      and  Academic Institutions

Work   executed  by    NICT

NICT own research NICT Funding

NICT’s Role and Mission

and/orWork executedby Industry

MIC※Funding 

2

Page 4: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Current Photonic NW Project Formation (selected)2005 2010 20152006         2007            2008           2009 2011         2012            2013             2014

2nd Mid‐Term Plan 3rd Mid‐Term PlanPhotonic Network R.I.

NICT ownRESEARCH

100 Tb/s class router architecture

Modulation Format (QPSK +),FEC, Lambda resource sharing 

Terabit LAN, 100 GbE format 

All optical RAMPhotonic crystal integrated bufferfor ultra low power consumption

Transparent expansion from access to core

O‐E Hybrid Packet Router

Optical Packet‐CircuitIntegrated Node Architecture

Wired &Wireless SeamlessTransmission 

Innovative Fiber/ Infrastructure (EXAT)Multi‐core Fiber & Connector

Elastic & resilient NW  

3

Standardization 100GbE,Digital equalization

Underlined projects are proposed by NICT researchers of Photonic Network Research Institute.

MIC PJ100G Digital Coherent Tx/Rx,  100G DSP MIC PJ

400G DSP/MCF Inter Connection in Data 

Center 

MDM Transmission & Networking for SDM

Transparent expansion from access to core

Innovative Fiber/ Infrastructure (EXAT)Multi‐core Fiber & ConnectorMDM Transmission & Networking for SDM

NICT Fund

ing

(COMMISSIONED

 RESEA

RCH)

Page 5: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

4

NICT provides large‐scale  network testbed to promote NWGN R&D activities of Industries and Universities and also  Foreign Research Institutes. 

Fukuoka

Hiroshima Okayama

Osaka

Nagoya

Sendai

Korea

USA Thai Singapore China

International Link

International Link

Sapporo

KanazawaTokyo

NWGN Testbed

Line bit rateNICTHQ

Hokuriku

StarBED3

StarBed Cubic

Nation wide testbed for New Generation NW (NWGN)

4

Dark fiber40 Gbps10 Gbps

Page 6: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

0

200

400

600

800

1000

1200

2005 2012 2020

502 570

1057 

Growth of Traffic and Power of ICT equipment

5

Surveys by Ministry of Internal Affairs and Communications, Japan Dec., 2012

http://www.soumu.go.jp/main_content/000065258.pdfSurveys by Ministry of Internal Affairs and Communications, Japan 

1011Wh Forecast based on conventional technologies

Energy‐saving by innovative technologies

Power of ICT equipment in JapanDownstream  Internet Traffic in Japan

In Japan, 1.9 Tera‐bps in downstream traffic (Dec. 2012).  Tera: 1012 , Peta : 1015

Explosive growth of LTE subscriber number 20 Mill. by few yrs. (cf. FTTH 24 Mill. by 10 yrs)   Power consumption is predicted to increase about 2 times if conventional technologies go on. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2005.11 2006.11 2007.11 2008.11 2009.11 2010.11 2011.11 2012.11

Traffic

 (Gbp

s)

1.9 Tbps

R&D of high capacity & energy efficient network technology is indispensable.

Page 7: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Current Optical Network

•Opaque electrical network•Many Opt.  Elec. conversion

O/E conv.

Optical signal ElectricalFiber

Optical signal

E/O conv.Node

•Electrical processing << 1Tb/s•Parallel electrical processing by multi units    Huge power consumption  

~ 1MW @ 100Tbps

One approach : (Almost) All Optical NetworkFuture Optical Network

•Transparent throughout network(ideal)•Less Opt.  Elec. Conversion

Optical Signal

Transparent optical switching for various bit‐rate, formatLow power consumptionSmall footprint

Digital Signal Processing  Technologies are indispensable at edge or Add/Drop nodes.

6

Page 8: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Remote Medicine

Disaster

Forecast

Taking care of

Children & Elders

E‐mail、Web

Intelligent Transportation

Tele‐working

Remote Reality for business meeting 

Various Services must be covered simultaneously in network. 

Expanding Variety of Network Services 

7

Data Center, Super Computer

Smart phone

7

Page 9: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Remote MedicineData Center Sensor NW Mail, Web

Functional flexibility

Virtualization of  resources 

Software Defined Network : Solution for Diversity of Services  

Flexibility in bandwidth provisioning is important to support increasing demand  of “Isolated Slices” of  optical infrastructure, especially in unpredictcable traffic demand.

8

Page 10: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

9

Inefficiency by individual operation of these switching schemes.Inflexible bandwidth management in circuit switching network.

Packet switching

C

Suitable communication schemes are necessary according to properties of contents. 

Cost Quality

Issues in Switching schemes

Circuit (Path) Switching

Internet service Leased line service

Occupied bandwidth = High quality Bandwidth sharing = Low cost

2012  July9

Page 11: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

• Diversity of Services– Best effort

• C/S, P2P, trillion sensors, …– E2E bandwidth dedication

• Video conf., remote surgery, …• Enhanced Functional Flexibility

– Integration (cf. OpenFlow)– Moving boundary control

• Efficient Energy Consumption– Inclusion of circuit switching– Optics in packet switching– Power saving in IP address lookup

New Generation Network – 3 Design Goals 

H. Harai, IEICE TRANSACTIONS on Communications, Vol.E95‐B No.3 pp.714‐722 (2012).

Moving boundary

Wavelengths

10

Page 12: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

11

Packet switching

C

Circuit (Path) Switching

Cost Quality

Optical packet and circuit integrated networkOptical packet and circuit integrated network

Potential for lower power consumption and large capacity transmission by transparent optical switching technologies.

Providing diverse services, both best-effort (low cost) services and QoS guaranteed (high quality) services by OPS and OCS schemes.

11

Page 13: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

12

Optical Packet & Circuit Integrated Network• “Elastic optical networks” deal with optical paths with various spectral

bandwidth according to required bit-rate and transmission distance.• OPCI networks additionally handle optical signal with various duration time,

such as packet, burst, and stream (path) for further efficient resource usage. Physically, it is regarded as the 2-D elastic network.

2013  September  25  We.1.E.2  ECOC2013 12

tModulated optical signal

OFDMQPSKQAM

Spectral domain Elastic NetTime/Spectral domain Elastic Net

(OPCI Net)

t

Modulated optical signal

OFDMQPSKQAM

Optical Path

Optical Packet

Boundary

Optical Path

Optical Packet

BoundaryModulated

optical signal

OFDMQPSKQAM

tOptical Path

Narrow Wide Bundle Narrow Wide Bundle

We demonstrate the dynamic change between OPS and OCS links in one waveband.

M. Jinno, et.al, IEEE Commun. Mag., Vol. 47, 2009.

“Moving boundary between wavelength resources in Optical Packet and Circuit Integrated Ring Network” H.Furukawa et al., We.1.E.2, ECOC 2013 

Page 14: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

2013  September  25  We.1.E.2  ECOC2013

2013  September  25  We.1.E.2  ECOC2013 13

OPCI Node @2011• OPCI node for optical ring network (Client port, Network port)• 100Gbps OPS links, 10Gbps x 7‐wavelegth OCS links (OTN)• Client side: 10GbE (10GBASE‐LR, 10.3125Gbps, 1310nm)

H. Furukawa, et.al, Optics Express, vol.19, no.26, pp.B242‐B250, 2011.13

100GbpsOptical Packet (100G‐OP)Transponder

Optical Amplifiers

Switch Controller

4 x 4 SOASwitch Subsystem

10 Gbps OTNTransponders(10GbE/OTN)

WSS(Mux/Demux,OCS)

Optical Amplifiers

ROADM OPS

OPCI Node (2011)

Page 15: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

14

Multi‐ring OPCI‐Net and 3x3 Node with Optical Buffers• Developing both network‐layer and physical‐layer 

technology to realize OPCI network• In 2011, a new OPS/OCS node has been developed 

for ring networks.• Optical buffers were installed to the node. • 5‐node hopping and 244 km transmission in OPS 

links and optical buffering operation for various length optical packet were reported in ECOC 2012.

Network layer(Routing, Signaling, Resource assignment)

Network layer(Routing, Signaling, Resource assignment)

Physical layer(EDFA, Switch, Buffer, Tx&Rx)

Physical layer(EDFA, Switch, Buffer, Tx&Rx)

Single‐ring topology Multi‐ring topology Mesh topology

2 x 2 OPS/OCS Node(2011)

3 x 3 OPS/OCS node 

w/ optical buffers(2012)

Development roadmap

14

H.Furukawa et al., “A Multi‐Ring Optical Packet and Circuit Integrated Network with Optical Buffering” , Optics Express, Vol. 20, No. 27, pp. 28764‐28771, 2012.

Page 16: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Hierarchical & Automatic Numbering Assignment for IP Address (HANA)

Current Internet

IP address allocation regardless of networkstructure, causes excessive routing table sizeand convergence time.

1.2.101.XX

Where is 「 1.2.100.10」 ?

3.2.100.XX

1.3.100.XX 1.2.010.XX

1.2.201.XX

3.2.111.XX

1.0.100.XX 

1.2.001.XX 1.2.110.XX

1.2.000.XX

1.1.100.XX 1.2.100.XX

15

Hierarchical Address Assign

• Down sizing (1/100) of routing table sizein 90% of BGP routers※

• High‐speed locator lookup• Energy saving in routing engineare possible.

1.2.XX.XX 3.2.XX.XX

1.2.100.XX3.2.100.XX

Where is 「 1.2.100.10」 ?

※Y. Song, L. Gao, and K. Fujikawa, "Resilient routing under hierarchical automatic addressing," in Proceedings of IEEE GLOBECOM 2011.

Page 17: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Low‐Power Packet Header Processing  assisted by HANA• Power consumption bottleneck lies in TCAM based forwarding engine .• 40nm embedded DRAM based chip is 5 % of TCAM based one. 

Multi‐Homing by HANA

Internet Backbone

HANA Router

2.2.X.X

2.2.22.X

1.1.X.X

1.1.22.X

1.1.22.1,2.2.22.1

Introducing into JGN‐X @2012 

ISP2ISP1

DHCP

Currently, HANA‐capable routers have been working in JGN‐X's virtual routers.HANA with this chip  is planned to be implemented in OPCI Node. 16

Y. Kuroda et al., CICC 2012.0

200

400

600

800

1000

1200

1400

Conventional TCAM Proposal

LogicStand-byBit line & sens amp.Word lineSearch lineMatch line

Curren

t Con

sumption[mA]

1325 mA

55.4mA

condition : process‐40 nm, R.T., 1.1 V,250Msps, 64k entries

Less than 5%

The chip was manufactured by NICT funding. 

Page 18: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

1P

100T

10T

1T

100G

10G

1G

100M1980 1985 1990 1995 2000 2005 2010

[bit/s]

Transm

ission Capacity per fibe

r

Year

Physical Limit (OSNR, Nonlinearity, fiber fuse)

Space Division Multiplexing to overcome the physical limit of SMF

ETDM

WDM

Modulation format

SDM

17

Page 19: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Data Center  ‐Power Consumption Problem‐

Power consumption > 100 MegaW !?

MIC  project : “Multi‐Core Fiber Inter Connection in Data Center  (2012‐14)”Simplified backplane connectionMuch easier daily management and faster disaster/ failure recoveryImproved cooling efficiency     

18

Page 20: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Sept.  29,  2013 IWOO 2013 19

TX RXOA OA OA

TX RXOA OA OA

TX RXOA OA OA

SDM : Parallelization in spaceWhy not simply using multi‐SMF transmission systems?

TX RXOA OA OA

Reduction of cost & energy per bit is essential

Integration19

Page 21: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

IsolatorWDMcoupler

EDF(Single core)

Pump LD

・・・・・・・・・・

EDFA

MCF

Single core fiber

Fan‐inFan‐out

Separate core pumping

v

Shared Core Pumping

Core‐number of individual EDFAs(single core) arerequired.

19‐core EDFA

Pump LD

MC‐EDF

9.6mm

47mm

Φ 18mmΦ 9mm

Pump LD

10

・・・ MC‐isolator

19‐core EDF

Single integrated multi‐core EDFA prototype.

19‐core integrated single optical amplifier 

WDMcoupler

J. Sakaguchi, et al., Th.1.C.6, ECOC 2013 20

Page 22: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

2008  2009 2010 2011 2012 2013 2014 2015 2016 2017

EXAT Project (NICT funding) Timeline  

Toward SDM fiber production•Long‐length, High core density MCF•Few mode + Multi core•Standardization of MCF

★ EXAT study group  was founded by NICT with Industrial‐Academic‐GovernmentCooperation in January 2008.

Innovative Optical Comm. Infra.•Repeater amplifier•Connector•Transmission

Innovative Optical Fiber•Preform Design &manufacturing•Interface (Fan In/Out)•Splicing

21

Page 23: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Sept.  29,  2013 IWOO 2013

Integration of the transmission channels

SMF 7‐core MCF(homogeneous core)

>7‐core MCF(e.g. 12 cores,19 cores & beyond)

Few‐mode MCF※Ultimate solution ?

7‐core MCF(heterogeneous core)

Few‐mode fiber

※ For example : C. Xia et. al.,  TuC4.2, pp.206‐207, IEEE Photonics Society Summer Topical Meeting Series, 2012.22

Page 24: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Elastic Time and Frequency plus Space Allocation• Elastic frequency allocation to enable: 

– Support for high‐speed channels with arbitrary bandwidth requirements– Better spectral efficiency for lower bit rates

• Elastic time allocation for:– Efficient all‐optical switching of sub‐wavelength traffic– Finer all‐optical bandwidth granularities

• Space domain provides:– Additional dimension, e.g. for contention resolution– Increased capacity

time λ

Continuous channels at various bit‐rates

User traffic at various bit‐rates and modulation formats

Space

N. Amaya et al., Th.3 D3, ECOC Postdeadline Paper.  23

Page 25: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Frequency‐Stabilized Optical Two‐Tone Gen.

• Frequency quadrupler based on dual‐parallel MZM under high‐extinction‐ratio operation.• Even order harmonic tones is enhanced at bias voltage set at TOP point.• This technology has been applied to generate standard signal (103.97 GHz) in the Atacama 

Large Millimeter/submillimeter Array (ALMA) Project, radio wave astronomy. 

A. Kanno et al., IEEE Photon. J. 12, 2196 (2012).

25 GHz

A. Kanno et al., “Coherent Optical and Radio Seamless Transmission based on  DSP‐aided Radio‐over‐Fiber Technology” OTu3D, OFC 2013. 24

Page 26: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Coherent Optical & Radio Seamless Transmission on DSP‐aided Radio‐over‐Fiber (RoF) Technology

• Exclusion of DSPs at RAU reduce the latency (and power consumption?)• Transmission impairments can be compensated by Coh. Rx.

Radio access unit

OpticalTx

O/E con

v.

DSP

Opt. sig.

Des.

Radio FE

Large latency

RoF‐based O‐R‐O system

Conventional Optical‐Radio‐Optical system

Opt. Sig.E/O con

v.

DSP

Ser.

Radio FE Optical

Rx

RoF TxRoF sig. Ra

dio FE

RoF sig.E/O con

v.

Radio FE Optical

coherent Rx

O/E con

v.

25

A. Kanno et al., “Coherent Optical and Radio Seamless Transmission based on  DSP‐aided Radio‐over‐Fiber Technology” OTu3D, OFC 2013.

Page 27: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Concept of Wired and Wireless SeamlessTransmission for Resilient Network

• Agile deployment capability for• Protection link against fiber being cut at disaster• Temporal link to temporary station at disaster recovery• “Last mile” solution until optical fiber deployment

High‐speed radio (> 10 Gbps)

Optical fiber

Temporary station

Radio Access Unit(RAU)

(> 100 Gbps)

26

Page 28: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Foreign Object Debris (FOD) Detectionfor Airport Runways

Debris Examples of FOD

FOD on runways would be harmful for airplanes.

How to detect?By high resolution cameras or millimeter‐wave radars. 

Coverage should be 3000m x 60m. Resolution should be better than a few inches.Reasonable CAPEX and OPEXRapid detection (faster than 30s)

Requirements

Concord was crashed by 3‐inches debris. Photo by Telegraph, UK.

27

Page 29: Photonic Network Research Institute National … Network Research Institute National Institute of ... Solution for Diversity of Services ... 19‐core integrated single optical amplifier

Conclusion1. How to cope with • Unpredictable growth of traffic demand  • Increase  of network power consumption• Service divergence, network resiliency … are technical issues in current optical network. 

2. We are investigating  • Hierarchical & Automatic Numbering Assignment for IP address• Optical Packet & Circuit Integrated (OPCI) node• Space Division Multiplexing(SDM) transmission• Wireless‐Wired seamless transmission  by cross layer integration approach for  future New Generation Network.

3. Global alliance is indispensable to accelerate research activities and also promote commercial use of research outcomes (ex. standardization).    

28