physics p01 - space-time symmetries p02 - fundamental constants p03 - relativistic reference...

36

Upload: poppy-higgins

Post on 28-Dec-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General
Page 2: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Physics

P01 - Space-Time symmetries P02 - Fundamental constants P03 - Relativistic reference frames P04 - Equivalence Principle P05 - General Relativity P06 - Astrometry, VLBI, Pulsar Timing P07 - Atomic physics for clocks P08 - Astronomy and GNSS P09 - Quantum non-locality and

decoherence

Page 3: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Misje kosmiczne związane z badaniami efektów relatywistycznych

Gravity Probe-B – badanie efektu Lense-Thirringa

LAGEOS I, II, III – różne efekty GPS – różne efekty LISA – zbadanie fal grawitacyjnych STEP – test zasady równoważności BepiColombo – perihelium

Merkurego

Page 4: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Possible detection of the gravity field disturbance with help of gradiometer on the Galileo orbit and higher

Janusz B. Zieliński 1, Robert R. Gałązka 2, Roberto Peron3

1/ Space Research Centre, Polish Academy of Sciences, POLAND2/ Institute of Physics, Polish Academy of Sciences, POLAND3/ Instituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, ITALY

Scientific and Fundamental Aspects of the Galileo ProgrammeToulouse,1-4 October 2007

Page 5: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Introductory remarks

Temporal variations of the gravity field exist in the local inertial space around the Earth

Gradiometry – the differential measurement of the gravitational acceleration

GNSS – the most precise tool for position measurements in space and time

Is it possible to combine Gradiometry + GNNS for the determination of cg ?

Page 6: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Gravity field of the Earth

EIGEN-GRACE02S 150 × 150 from GRACE mission

Page 7: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

2 0

cossincos1n

n

mnmnmnm

n

PmSmCra

rGM

V

Page 8: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

)(/ Galscm978

zW

yW

xW

rddW

dHdW

g 2

2

222

2

2

22

22

2

2

zW

yzW

xzW

zyW

yW

xyW

zxW

yxW

xW

zg

yg

xg

Page 9: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Expression for the vertical component of the gradient Trr

sinsincos nm

n

0m

nmnm

E

N

2n

1n

E2rr PmSmC

aGM

ra

2n1nr1

T

Eötvös unit of the gravity acceleration gradient 1 EU = 10-9 m s-2 / m

Page 10: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

50 100 150 200 250 300 350-1.5

-1

-0.5

0

0.5

1

1.5

longitude West in deg.of arc

grad

ient

in E

U

Gradient profiles along the parallel 0, long. 0 - 360, N=250

200 km

400 km

600 km800 km

1000 km

Gradient Trr profiles along equator, model n,m = 250

Page 11: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

1

1.52

2.53

3.54

4.55

050

100150

200250

300350

400-1.5

-1

-0.5

0

0.5

1

1.5

Height levels: 200-1000 km

Gradient evolution with height - model n=250

long.diff., units=1 deg.arc

grad

ient

in E

U

Gradient Trr evolution with height from 200 km to 1000 km,

model n,m = 250

Page 12: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

1

23

45

0

100

200

300

400-0.3

-0.2

-0.1

0

0.1

0.2

Height levels: 1000-5000km

Gradient evolution with height - model n=250

long.diff., units=1 deg.arc

grad

ient

in E

U

Page 13: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

11.5

22.5

33.5

44.5

5

050

100150

200250

300350

400-4

-3

-2

-1

0

1

2

3

4

x 10-3

Height levels: 7500-17500 km

Gradient evolution with height - model n=250

long.diff., units=1 deg.arc

grad

ient

in E

U

Page 14: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

12

34

5

0

100

200

300

400-1.5

-1

-0.5

0

0.5

1

1.5

x 10-4

Height levels: 20000-24000 km

Gradient evolution with height - model n=250

long.diff., units=1 deg.arc

grad

ient

in E

U

Page 15: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

1

23

45

0

100

200

300

400-4

-2

0

2

4

x 10-5

Height levels: 27000-40000 km

Gradient evolution with height - model n=120

long.diff., units=1 deg.arc

gra

die

nt

in E

U

Page 16: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Upward continuation procedure

UCrtTrtT 11rr21rr ),(),(

Page 17: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

t

Earth's rotation

r1Trr(ti,r1)

r2

Trr(ti,r2)

t1

t2

P0

(f ixed direction in space)

Fig 8a. Newtonian propagation of the rotating Earth's gravitational field

Page 18: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Lense-Thirring precession

mΩ 2

cLT

gradzyx

,,

0.042”/y

Page 19: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

t

Earth's rotation

r1Trr(ti,r1)

r2Trr(ti,r2)

t1

t2

P0

Fig 8b. Einstein's propagation of the rotating Earth's gravitational field

Page 20: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Upward Continuation in ECIR(Earth Centered Inertial Reference Frame)

tdt

TdUCrtTrtT rr

12rr21rr

),(),(

dtTd rr ),(),( 1irr2irrrr rtTrtTT - rate of change of the

Page 21: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

with

t = δTrr = Trr(t2,r1)۞UC –Trr(t1,r2)

and

cg=(r2 – r1)/Δt

or

cg =

dtTd rr

g

12

crr

t

dt

Td

T

rr rr

rr

12 .

)(

Page 22: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

50 100 150 200 250 300 350-1.5

-1

-0.5

0

0.5

1

1.5x 10

-4

longitude West in deg.of arc

grad

ient

in E

U

Einstein's shadow function

GPS altitude

Galileo altitude (Newton)Galileo altitude(Einstein)

/\t

g

12

crr

t

Page 23: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

For GPS-Galileo case

For r2 – r1 ≈ 3000 km and cg=c Δt ≈ 0.01 s ≈ 0.15 a.s. ≈ 18 m for Galileo orbit

Page 24: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Period of the signal ≈ 12 hours and the amplitude 1*10-4 EU. It means that from the bottom to the peak of the signal we have about 6 hours. With the linear approximation we can tell that for 1 s we get the 0.5*10-8 EU change of the gradient. As we are interested in the ±0.001 s accuracy in the determination of the signal arrival time it means that equivalent accuracy in the measurement should be ± 0.5*10-11 EU.

Page 25: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

GOCE Mission (ESA)

Circular orbit, mean altitude ≈ 250 km, i = 96.50 , launch spring 2008

Page 26: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

To accurately measure the Earth's gravity field, the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite is equipped with a core instrument called the Electrostatic Gradiometer, which consists of three pairs of identical ultra-sensitive accelerometers, mounted on three mutually orthogonal 'gradiometer arms'.

Page 27: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

GO

CE

gradiometer

Length of Baseline for an accelerom

eter pair: 0.5 m

Accelerom

eter noise:  < 3 m

EU

= 3 * 10-12

s-2

Page 28: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Experimental activity at IFSI-INAF

Since many years the Experimental Experimental GravitationGravitation group (head V. Iafolla) is active in the field of gravitation physics with a number of projects:

GravimetrySupport to satellite missionsGeophysicsFundamental physics

Page 29: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

ISA (Italian Spring Accelerometer)

High sensitivity three axes accelerometer

Page 30: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

ISA accelerometer

BepiColombo GEOSTAR

Page 31: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

STEP accelerometer

sensitivity 18-18 g ~ to 10-17 m s-2

Page 32: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Expected development in gradiometry

GOCE 10-3 EU IFSI 10-4 EU Paik 10-5 EU STEP 10-8 EU

Page 33: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

If we have the accurate theoretical model of the curve that should be fitted by measurements then only one term of the zero order has to be determined. The accuracy of this term is roughly described as

M0 = ± σ0 /√n

where σ0 is the standard deviation of the measurement and n is the number of measurements.

Page 34: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Supposing that the measurement is done with the frequency 1 Hz, during 24 hours we have 86400 measurements and during 12 days more than one million. With the individual measurement error ±10-8 EU and 12 days measurement interval we can get close to the desired accuracy ± 10-11

Page 35: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Conclusions

It seems that concept for the determina-tion of the velocity of the gravitational signal, using the rotating Earth as the signal generator, and GNNS plus gradio-metry as detector, is realistic, but of course not easy. It should provide the motivation for the development of the gradiometry technology and could widen the spectrum of scientific applications of GNSS.

Page 36: Physics  P01 - Space-Time symmetries  P02 - Fundamental constants  P03 - Relativistic reference frames  P04 - Equivalence Principle  P05 - General

Thank you for your attention