principlesfordesig nand g rid applicationofg reenenerg y ...universal principles for design and grid...

19
Princip lesfor D esig n and G rid Ap p lication ofG reen Energ y Storag e Sy stem s Mary am Arbabzad eh, Jerem iah Jo hn so n , G rego ry Keo l eian (11-04-2015)

Upload: others

Post on 17-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Princip lesfor D esig n and G ridAp p lication ofG reen Energ y

Storag eSy stem sMary am Arbabzad eh, Jerem iah Jo hn so n , G rego ry Keo leian

(11-04-2015)

Ou tlin e

In tro d u c tio n Case Stu d y Catego ries o f Prin c ip les fo r D esign an d G rid Ap p lic atio n o f

G reen En ergy Sto rage Sy stem s

D ep lo y m en tfo r G rid Ap p lic atio n s Op eratio n & Main ten an c e D esign an d m an u fac tu rin g

Co n c lu sio n

2

In tro d u c tio n :En ergy Sto rage G rid Ap p lic atio n s

3

• En viro n m en talIm p ac t

• Pric e V o latility• G reen Altern ative

• Challen ges(e.g.interm ittency )

• So lu tio n fo r severalgrid ap p lic atio n ssu c h asrenew ablesinteg ration an d T& D up g rad ed eferral

W hy Prin c ip les fo r G reen En ergy Sto rage ?

4

The integration of energy storagesystems into the grid can lead todifferent environmental outcomes.

The integration of energy storagesystems into the grid can lead todifferent environmental outcomes.

The outcomes depend on the gridapplication, the existing generation mix,and demand profile.

The outcomes depend on the gridapplication, the existing generation mix,and demand profile.

Principles specific to design and gridapplication of energy storage systems aredeveloped.

Principles specific to design and gridapplication of energy storage systems aredeveloped.

Principles can guide design, deployment andoperation of storage systems, given thecomplexity and trade-offs that emerge whenintegrating these systems into the grid.

Principles can guide design, deployment andoperation of storage systems, given thecomplexity and trade-offs that emerge whenintegrating these systems into the grid.

Case Stu d y :A Mic ro -grid Sy stem

Energy Demand, Represents “Grosse Ile, MI”(Annual Demand: 10.6 MWh/capita, Annual

Peak Demand: 22 MW)

VanadiumRedox Flow

Battery

Wind TurbineVestas (3 MW)

Natural GasReciprocatingEngine (3 MW)

5

This case study is used todemonstrate selected

principles (principles# 4, 6, 7).

M. Arbabzadeh, J.X. Johnson, R. De Kleine, G.A. Keoleian, “Vanadium redox flow batteries toreach GHG emissions targets in an off-grid configuration,” Applied Energy, vol. 146, pp.397-408, 2015.

Catego ries o f Prin c ip les fo r D esign an d G ridAp p lic atio n s o f G reen En ergy Sto rage Sy stem s

6

Deploymentfor Grid

Applications

1-2-3-4

Operation &Maintenance

5

Design &Manufacturing

8-9-10-11-12

Design &Manufacturing

8-9-10-11-12The study is submitted as:M. Arbabzadeh, J.X. Johnson, G.A. Keoleian, Levi T.Thompson, Paul G. Rasmussen,“Twelve principles for greenenergy storage,” EnviS c i& Tec h, Under review, Aug 2015.

D ep lo y m en tfo r G rid Ap p lic atio n s

7

1. Charge clean & displace dirty.

2. Energy storage should have lower environmental impacts thandisplaced infrastructure.

3. Match application to storage capabilities to prevent storage systemdegradation.

4. Avoid oversizing energy storage systems.

8

Exam p lePrin c ip le 1:Charge c lean & d isp lac e d irty .

• Netu se-p hase em issio n s in d ifferen tc harge/d isp lac e sc en ario s.

Maximum use-phase emissions

Minimum use-phase emissions

• The im p ac to f battery sizin go n to talem issio n san d sto red elec tric ity u tilizatio n .

9

Exam p lePrin c ip le 4:Avo id o versizin gen ergy sto rage sy stem s.

0

0.002

0.004

0.006

0.008

410415420425430435440445

0 50 150 250 350 450 550 Sto

red

ele

ctri

city

de

live

red

tod

em

and

(%)

Tota

lEm

issi

on

s(g

of

CO

2e

q/k

Wh

)

Battery Capacity (MWh)

Total Emissions(g/kWh)

Stored electricitydelivered todemand(%)

0

0.05

0.1

0.15

0.2

0.25

0

50

100

150

200

250

0 50 150 250 350 450 550 Sto

red

ele

ctri

city

de

liove

red

tod

em

and

(%)

Tota

lEm

issi

on

s(g

of

CO

2e

q/k

Wh

)

Battery Capacity (MWh)

Total Emissions (g/kWh)

Stored electricitydelivered to demand(%)

25 ×

5 ×

Op eratio n & Main ten an c e

10

5. Maintain to limit degradation.

6. Design and operate energy storage for optimal service life.

7. Design and operate energy storage with maximum round-tripefficiency.

• To talem issio n s o f the o ff-grid c o n figu ratio n after 20 y earsin 2 sc en ario s:

10 an d n o rep lac em en tsc en ario .

11

Exam p lePrin c ip le 6:D esign an d o p erate en ergy sto rage fo r o p tim alservic e life.

Less emissions after20 years in case ofreplacing battery

D esign & Man u fac tu rin g

12

6. Design and operate energy storage for optimal service life.

7. Design and operate energy storage with maximum round-trip efficiency.

8. Minimize consumptive use of non-renewable materials.

9. Minimize use of critical materials.

10. Substitute non-toxic and non-hazardous materials.

11. Minimize the environmental impact per unit of energy service formaterials and manufacturing.

12. Design for end-of-life.

* Several principles in this category has overlaps with : P. Anastas, J. Zimmerman, “Design through the12 principles of green engineering,” Env. Sci.&Tech., vol. 37, pp. 94A-101A, 2003.

13

• Netu se-p hase em issio n s in d ifferen tc harge-d isp lac e sc en ario s,assu m in g3 valu es fo r the battery ro u n d -trip effic ien c y

Environmental benefits are increasing by increasing the round-trip efficiency.

Exam p lePrin c ip le 7:D esign an d o p erate en ergy sto rage with m axim u m ro u n d -trip effic ien c y .

Exam p lePrin c ip le 11:Min im ize the en viro n m en talim p ac tp er u n ito f en ergy servic e

fo r m aterialp ro d u c tio n an d p ro c essin g.

• The red u c tio n in to talem issio n sissteep er when thebattery p ro d u c tio n bu rd en is d ec reased .

14

Co n c lu sio n s & Cu rren tResearc h

15

Universal principles for design and gridapplication of green energy storage areproposed.

Universal principles for design and gridapplication of green energy storage areproposed.

The application of selected principles aredemonstrated using a case study.The application of selected principles aredemonstrated using a case study.

A systematic sustainability assessmentalgorithm will be proposed to apply principlesinto both development and deployment ofenergy storage systems.

A systematic sustainability assessmentalgorithm will be proposed to apply principlesinto both development and deployment ofenergy storage systems.

Ac kn o wled gm en ts

Iwan tto than k:• Pro f.G rego ry Keo leian (U n iversity o f Mic higan )• Pro f.Jerem iah Jo hn so n (U n iversity o f Mic higan )• Pro f.LeviTho m p so n (U n iversity o f Mic higan )• Pro f.Pau lRasm u ssen (U n iversity o f Mic higan )• Pro f.Ro bertSavin ell(Case W estern U n iversity )

Thiswo rkissu p p o rted by the Natio n alSc ien c e Fo u n d atio n ’sSu stain able En ergy Pathway sPro gram an d D o w D o c to ralSu stain ability Fello wship .

16

Than k y o u fo r y o u r atten tio n !

17

Su stain ability Assessm en t

18

Therefore,assessment is

required to resolvethe trade-offs and

improve the overalldesign.

Therefore,assessment is

required to resolvethe trade-offs and

improve the overalldesign.

But theymay conflict

with eachother.

But theymay conflict

with eachother.

Principleslead to

sustainabilityimprovementindividually.

Principleslead to

sustainabilityimprovementindividually.

G reen En ergy Sto rage D esign Algo rithm

19

• The p rin c ip lesareap p lied in the d esignalgo rithm , where theyin flu en c e developmento f en ergy sto ragetec hn o lo gy an d itsdeployment in p o wersy stem .