rahul lakhmani's

Upload: rahullakhmani

Post on 30-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 rahul lakhmani's

    1/15

    1

    Fermentation

    ... when there is no external terminal electron acceptor!

    Substrate-level phosphorylation

    Pyruvate2

    Glycolysis

    Fig.: Brock (mod.)

  • 8/14/2019 rahul lakhmani's

    2/15

    2

    glucose

    2 pyruvate

    GTP

    NADH

    ATP

    NADH

    FADH2

    ATP

    CO2, NADH

    CO2

    reduction

    equivalentsrespiratory chain

    The calvin cycle

    glucose

    2 pyruvate

    GTP

    NADH

    ATP

    NADH

    FADH2

    ATP

    CO2, NADH

    CO2

    reduction

    equivalentsrespiratory chain

    The general priciple of fermentation

    The problem Regeneration of

    NADH2 to NAD+

    The solutionTransfer of reduction equivalents [H] on intermediates

    (e.g. pyruvate) or co-substrates

  • 8/14/2019 rahul lakhmani's

    3/15

    3

    Drawback Excretion of energy rich (reduced) substrates (e.g. ethanol)

    reduced

    products

    organic substrate

    [H]

    ATP

    degradation

    intermediates

    oxidisedproducts

    The general priciple of fermentation

    Bacterial fermentations are named by

    their characteristical end productsalcohol (Ethanol) lactic acidbutyric acid propionic acidmixture of different acids

    Conservation of energy not by

    chemiosmotic mechanisms (proton gradient)

    but by

    Substrate-level phosphorylation

    low ATP- and growth yield!

    Example alcoholic fermentation: little biomass, a lot of alcohol

    The general priciple of fermentation

  • 8/14/2019 rahul lakhmani's

    4/15

    4

    e.g.Lactobacillus spec.

    Lactobacteriaceaehomolactic fermentation

    Photo: M. Dykstra, R. Barrangou,R. Sanozky-Dawes, and T. R. Klaenhammer

    The easiest fermentative pathway

    ... a bit more complicated:

    heterolactic fermentation

    The microbiologcal garden

    www.mikrobiological-garden.net

  • 8/14/2019 rahul lakhmani's

    5/15

    5

    Natural occurance

    Milk and milk products, fruit juice,

    plant products, intestine, mucosa

    Lactobacteriaceae

    gram positive rods or cocci obligate fermenters (no respiratory chain)

    catalase negative (often aerotolerant)

    www.microbiological-garden.net

    Play an important role for

    production of curdled milk products

    also: Sauerkraut and salami

    Lactobacteriaceae classified by:

    shape (cocci or rods) and type of fermentation

    homolactic

    cocci rods

    Lactococcus Lactobacillus

    L. lactis L. plantarumL. casei L. bulgaricus

    L. acidophilusEnterococcus

    E. faecalis

    StreptococcusS. thermophilus

    S. salivarius

    S. mutans

    S. pyogenes

    mainly lactate

    heterolactic

    cocci rods

    Leuconostoc Lactobacillus

    L. mesenteroides L. brevisL. dextranicum L. kandleri

    different fermentation products

  • 8/14/2019 rahul lakhmani's

    6/15

    6

    glucose

    2 pyruvate

    GTP

    NADH

    ATP

    NADH

    FADH2

    ATP

    CO2, NADH

    CO2

    reduction

    equivalentsrespiratory chain

    reducedproducts

    organic substrate

    [H]

    ATP

    degradation

    intermediates

    oxidised

    products

    The general priciple of fermentation

    glucose 2 pyruvate

    2 NADH2 NAD+

    ATP6

    COOH

    C O

    CH3

    Lactate dehydrogenase2 lactate

    COOH

    HC OH

    CH3

    Homolactic fermentation

  • 8/14/2019 rahul lakhmani's

    7/15

    7

    Fig.: Schlegel. (1992)

    Heterolactic fermentation

    Mixed acids fermentation

    Products after fermentation of glucose (e.g. E. coli)

    mol per100 mol Glucose

    2,3-Butanediol CH3-CHOH-CHOH-CH3 0

    Ethanol CH3-CH2OH 42

    Succinate COOH-CH2-CH2-COOH 29

    Lactate CH3-CHOH-COOH 84

    Acetate CH3-COOH 44

    Formiate HCOOH 2

    Hydrogen H2 43

    Carbon dioxide CO2 44 after: Thimann (1955)

  • 8/14/2019 rahul lakhmani's

    8/15

    8

    Ethanol CH3-CH2OH

    Succinate COOH-CH2-CH2-COOH

    Lactate CH3-CHOH-COOH

    Acetate CH3-COOH

    Formiate HCOOH

    Hydrogen H2

    Carbon dioxide CO2

    glucoseglykolysis

    pyruvate lactate

    acetyl~CoA

    formiate

    +

    ethanol

    acetate

    CO2

    H2

    CO2

    succinate

    Mixed acids fermentation

    Fig.: Brock (mod.)

    The horror scheme

    Fig.: Brock

  • 8/14/2019 rahul lakhmani's

    9/15

    9

    Where can we find fermenters in nature?

    the anaerobic food web

    The anaerobicfood web

    CH4, CO2CO2

    secundary fermenters, syntrophs

    methanogens

    sulfate reducers

    primary fermenters

    formiate, H2,CO2, methanol

    fatty acids, succinate,

    alckohols, lactate

    acetate

    polymers

    monomes

  • 8/14/2019 rahul lakhmani's

    10/15

    10

    Where can we find fermenters in nature?

    alimentary systems

    mouth stomachhindgut or colon rectumoesophagus duodenum

    rumen,pre gastricfermentation chamber

    cecum, post gastricfermentation chamber

    Herbivoric vertebrates fermentation chamber for plant material

    Ruminants (cow, sheep, camel) fermentation chamber (rumen) in front of the

    stomach

    Other herbivors (e.g. rodents, horse) between duodenum and colon

    Some omnivors (e.g. human) strongly reduced (appendix)

    General structure of the vertebrate alimentary system

  • 8/14/2019 rahul lakhmani's

    11/15

    11

    Can we live without microbes?

    Experiments on animal without intestinal flora

    aseptic breeding, no developement of gut flora

    high dosage of antibiotics, destruction of gut flora

    Why?

    As a general rule signs of strong underfeeding, often lethal herbivors cant live at all without their gut flora

    Vitamine excretionThiamine, Riboflavine, Pyridoxine, Vit. B12 und Kessential amino acids, ...

    Homo sapiens

    stomachpH 1,5

    duodenumpH 2-5

    colonpH 7

    normaly free of bacteria

    102-103 cellsml-1 in initial partprimarily Lactobacillussp. andEnterococcussp.

    1-31011 cellsml-1

    e.g. Bacteroides, Bifidobacterium,Enterococcus, Bifidobacterium,Peptococcus, Enterobacteriaceae, ...

    Human faeces up to 30-50% bacterial biomass

    continuous increase of pH

  • 8/14/2019 rahul lakhmani's

    12/15

    12

    The rumen ecosystem

    Enlargement of the oesophagus

    Fermentation chamber (large volume) cow app. 100-250 l

    sheep app. 6 l

    residence time 9-12 h

    Physico-chemical conditionspH 5,5 - 6,9 (mean: 6,4)temperature 37-42Cdry mass 10-18 %redox potential -350 to -400 mVgas phase 65 % CO2, 27 % CH4, 7 % N2, 0,6 % O2, 0,2 % H2dissolved fatty acids 68 mM acetate, 20 mM propionate, 10 mM butyrate, 2 mM FA > C 4ammonium 2-12 mM

    Biologyprokaryontes 1010 - 1011 g-1 (more than 200 species)ciliates 104 - 106 g-1

    fungy 102 - 104 g-1 (zoospores)

    Mouth: food is roughly hackled, swallowed, mixed with spittle(bicarbonate buffered)

    Rumen: mass is mixed thoroughly (muscle movement of rumen wall)

    Reticulum: fibrous compounds are sieved, densified to chunks, refluxed andruminated

    Omasum : water removal

    Abdomasum: normal digestion

    How does the cow eat?

    duodenum

    reticulum

    oesophagus

    omasumabdomasum

    Fig.: Campbell und Reece 2003 (mod.)

    rumen

  • 8/14/2019 rahul lakhmani's

    13/15

    13

    starch cellulose pectine hemicelluloses

    glucose fructose

    pyruvate

    CH4 acetate CO2 butyrate (lactate) propionate

    What happens in the rumen?

    Fermentation of plant material100 Glucose 113 acetate + 35 propionate + 26 butyrate+ 104 CO2 + 61 CH4 + 43 H2O

    What is the benefit for the cow?

    fermentation products (acetate, propionate and butyrate)

    bacterial biomass, gets into abdomasum after reflux

    N2 fixation in the rumen by anaerobic microorganisms

  • 8/14/2019 rahul lakhmani's

    14/15

    14

    What groups of microorganisms are found in the rumen?

    Cellulose degrader Ruminococcus albus, Butyrivibrio fibrisolvens,Fibrobacter succinogenes, Clostridium locheadii

    Hemicellulose degrader Ruminococcus albus, Butyrivibrio fibrisolvens,Fibrobacter succinogenes, Lachnospira multiparus

    Sarch and sugar degrader Selenomonas ruminantium, Succinomonas amylolytica,Bacteroides ruminicola, Streptococcus bovis

    Lactate utiliser Selenomonas lactilytica, Megasphaera elsdenii,Lac Prop + Ac Veillonella sp.

    Succinate utiliser Selenomonas ruminantium, Veillonella parvulaSucc Prop + CO2

    Methanogens Methanobrevibacter ruminantium,CO2 + H2 CH4 Methanomicrobium mobile

    Fungi and ciliates play a minor role: degradation of polymeric substancesCiliates feed on bacteria: important for a stable microbial community

    Wood feeding termites (e.g. Reticulitermes flavipes, app. 3 mm long)

    have an enlarged hindgut as a fermentation chamber.

    The termite gut

  • 8/14/2019 rahul lakhmani's

    15/15

    Measurement of physico chemical parameter within the gut

    embedding of gut in agarose (the tip of the microelectrode is marked)

    Oxigen profiles

    within the hindgut of

    Reticulitermes flavipes

    polysaccharides from wood

    disolved disaccharidesand oligosaccharides

    homoacetogenicbacteria

    CO2, H2, acetate, propionate, butyrate,

    lactate, formiate

    fermenters

    protozoa

    absorption by termite

    CH4

    homoacetogenicbacteria

    methanogens

    CO2, H2acetate

    What happens in the termite gut?