samlerapport deepwind 2013

Upload: jormaeher

Post on 01-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Samlerapport DeepWind 2013

    1/274

    SINTEF Energy Research Electric Power Systems 2013 ‐06 ‐28

    TR A7307 ‐ Unrestricted

    Report

    Deep Sea Offshore Wind R&D Conference 24 – 25 January 2013 Royal Garden Hotel, Trondheim

    Author: John Olav Tande (editor)

  • 8/15/2019 Samlerapport DeepWind 2013

    2/274

  • 8/15/2019 Samlerapport DeepWind 2013

    3/274

    PROJECT NO. 12X650

    REPORT NO. TR A7307

    VERSION 1.0

    Document history VERSION DATE VERSION DESCRIPTION

    1.0 2013 ‐06 ‐28

  • 8/15/2019 Samlerapport DeepWind 2013

    4/274

    PROJECT NO. 12X650

    REPORT NO. TR A7307

    VERSION 1.0

    Table of contents

    1 Detailed Programme ........................................................................................................................ 6

    2 List of Participants ............................................................................................................................ 9

    3 Scientific Committee and Conference Chairs ................................................................................... 13

    PRESENTATIONS

    Opening session – Frontiers of Science and Technology Innovations in offshore wind technology, John Olav Tande, SINTEF/NOWITECH............................................................... 15Key research topics in offshore wind energy, Kristin Guldbrandsen Frøysa, CMR/NORCOWE............................................ 19Research at Alpha Ventus deep offshore wind farm, Stefan Faulstich, Fh IWES ..................................................................... 24WindFloat deep offshore wind operational experience, Pedro Valverde, EdP ......................................................................... 28HyWind deep offshore wind operational experience, Finn Gunnar Nielsen, Statoil................................................................. 32

    A1 New turbine technologyDesign Optimization of a 5 MW Floating Offshore Vertical Axis WindTurbine, Uwe Schmidt Paulsen,Technical Uni of Denmark, DTU.............................................................................................................................................. 37Operational Control of a Floating Vertical Axis Wind Turbine, Harald Svendsen, SINTEF Energi AS................................. 44Control for Avoiding Negative Damping on Floating Offshore Wind Turbine, Prof Yuta Tamagawa, Uni. of Tokyo..... ..... 47Towards the fully-coupled numerical modelling of floating wind turbines, Axelle Viré, Imperial College, London..... ...... . 49Geometric scaling effects of bend-twist coupling in rotor blades, Kevin Cox, PhD stud, NTNU.......................................... 52

    A2 New turbine technologyHigh Power Generator for Wind Power Industry: A Review, Zhaoqiang Zhang, PhD stud, NTNU..................................... 56Superconducting Generator Technology for Large Offshore Wind Turbines, Niklas Magnusson, SINTEF Energi AS..... . 60Laboratory Verification of the Modular Converter for a 100 kV DC Transformer-less Offshore Wind Turbine Solution,Sverre Gjerde, PhD stud, NTNU............................................................................................................................................ 63Multi-objective Optimization of a Modular Power Converter Based on Medium Frequency AC-Linkfor Offshore DC Wind Park, Rene A. Barrera, NTNU ................................................................................... ....................... 66

    B1 Power system integrationWind Turbine Electrical Design for an Offshore HVDC Connection, Olimpo Anaya-Lara, Strathclyde Univ..... ..... ...... .... 73Frequency Quality in the Nordic system: Offshore Wind variability, Hydro Power Pump Storage and usage ofHVDC Links, Atsede Endegnanew, SINTEF Energi AS....................................................................................................... 78Coordinated control for wind turbine and VSC-HVDC transmission to enhance FRT capability, A. Luque,Uni. Strathclyde............................................................................................................................ ........................................... 81

    North Sea Offshore Modeling Schemes with VSC-HVDC Technology: Control and Dynamic Performance Assessment,K. Nieradzinska, University of Strathclyde.......................................................................................................... ................... 84Upon the improvement of the winding design of wind turbine transformers for safer performance withinresonance overvoltages, Amir H Soloot, PhD, NTNU ......................................................................................... .................. 89

    B2 Grid connectionPlanning Tool for Clustering and Optimised Grid Connection of Offshore Wind Farms, Harald G. Svendsen, SINTEF .... 93The role of the North Sea power transmission in realising the 2020 renewable energy targets - Planning and

    permitting challenges, Jens Jacob Kielland Haug, SINTEF Energi AS.................................................................................. 96Technology Qualification of Offshore HVDC Technologies, Tore Langeland, DNV KEMA.............................................. 98Evaluating North Sea grid alternatives under EU’s RES-E targets for 2020, Ove Wolfgang, SINTEF Energi AS............... 104

  • 8/15/2019 Samlerapport DeepWind 2013

    5/274

    PROJECT NO. 12X650

    REPORT NO. TR A7307

    VERSION 1.0

    C1 Met-ocean conditionsWave-induce characteristics of atmospheric turbulence flux measurements, Mostafa Bakhoday Paskyabi, UiB.... ...... ...... .. 113Experimental characterization of the marine atmospheric boundary layer in the Havsul area, Norway,Constantinos Christakos, UiB....................................................................................................................................... ........... 118Buoy based turbulence measurements for offshore wind energy applications, M. Flügge, UiB ........................................... 121Effect of wave motion on wind lidar measurements - Comparison testing with controlled motion applied,Joachim Reuder, Univ of Bergen ................................................................................................ ........................................... 123Turbulence analysis of LIDAR wind measurements at a wind park in Lower Austria, Valerie-Marie Kumer, UiB ...... ...... 127

    C2 Met-ocean conditionsWave driven wind simulations with CFD, Siri Kalvig, University of Stavanger / StormGeo .............................................. 133

    New two-way coupled atmosphere-wave model system for improved wind speed and wave height forecasts,Olav Krogsæter, StormGeo / University of Bergen................................................................................................................ 136Measurement of wind profile with a buoy mounted lidar, Jan-Petter Mathisen, Fugro OCEANOR (presentation) ............... 142Measurement of wind profile with a buoy mounted lidar, Jan-Petter Mathisen, Fugro OCEANOR (paper)........................ 145 .

    Numerical Simulation of Stationary Microburst Phenomena with Impinging Jet Model, Tze Siang Sim,

    Nanyang Technological University ........................................................................................................... ........................... 155

    Posters presentations .Magnetically Induced Vibration Forces in a Low-Speed Permanent Magnet Wind Generator with Concentrated Windings,Mostafa Valavi, PhD stud, NTNU.......................................................................................................................................... 161Stability in offshore wind farm with HVDC connection to mainland grid, Jorun I Marvik, SINTEF Energi AS................. 162A Markov Weather Model for O&M Simulation of Offshore Wind Parks, Brede Hagen, stud, NTNU............................... 163Turbulence Analysis of LIDAR Wind Measurements at a Wind Park in Lower Austria, Valerie-Marie Kumer, UiB..... .... 164Investigation of droplet erosion for offshore wind turbine blade, Magnus Tyrhaug, SINTEF.............................................. 165

    NOWIcob – A tool for reducing the maintenance costs of offshore wind farms, Iver Bakken Sperstad, SINTEF Energi AS... 166Methodology to design an economic and strategic offshore wind energy Roadmap in Portugal, Laura Castro-Santos,Laboratório Nacional de Energia (LNEG) (poster) ................................................................................................................. 167Methodology to design an economic and strategic offshore wind energy Roadmap in Portugal, Laura Castro-Santos,Laboratório Nacional de Energia (LNEG) ( paper) ................................................................................................................. 168Methodology to study the life cycle cost of floating offshore wind farms, Laura Castros Santos,Laboratório Nacional de Energia (LNEG ) (poster) ............................................................................................................... 178Methodology to study the life cycle cost of floating offshore wind farms, Laura Castros Santos,Laboratório Nacional de Energia (LNEG ) (paper) ................................................................................................................ 179Two-dimensional fluid-structure interaction of airfoil, Knut Nordanger, PhD stud, NTNU ................................................. 187Experimental Investigation of Wind Turbine Wakes in the Wind Tunnel, Heiner Schümann, NTNU ................................. 188

    Numerical Study on the Motions of the VertiWind Floating Offshore Wind Turbine, Raffaello Antonutti, EDF R&D ...... 189Coatings for protection of boat landings against corrosion and wear, Astrid Bjørgum, SINTEF Materials and Chemistry .. 190

    Numerical model for Real-Time Hybrid Testing of a Floating Wind Turbine, Valentin CHABAUD, PhD stud, NTNU ... 191Advanced representation of tubular joints in jacket models for offshore wind turbine simulation,Jan Dubois, ForWind – Leibniz University Hannover ........................................................................................................... 192Comparison of coupled and uncoupled load simulations on the fatigue loads of a jacket support structure,Philipp Haselbach, DTU Wind Energy .................................................................................................................................. 193

    Design Standard for Floating Wind Turbine Structures, Anne Lene H. Haukanes, DNV .................................................... 194 Nonlinear irregular wave forcing on offshore wind turbines. Effects of soil damping and wave radiation damping inmisaligned wind and waves, Signe Schløer, DTU ..................................................................................................... ........... 195

    D Operation & maintenanceDevelopment of a Combined Operational and Strategic Decision Support Model for Offshore Wind,Iain Dinwoodie, PhD Stud, Univ Strathclyde ........................................................................................................................ 197Vessel fleet size and mix analysis for maintenance operations at offshore wind farms, Elin E. Halvorsen-Weare,SINTEF ICT/MARINTEK .......................................................................................................... .......................................... 200

    NOWIcob – A tool for reducing the maintenance costs of offshore wind farms, Iver Bakken Sperstad, SINTEF .............. 203WINDSENSE – a joint development project for add-on instrumentation of Wind Turbines, Oddbjørn Malmo,Kongsberg Maritime AS .................................................................................................................................................. ...... 207Long-term analysis of gear loads in fixed offshore wind turbines considering ultimate operational loadings,Amir Rasekhi Nejad, PhD stud, NTNU ............................................................................................................................... 211

  • 8/15/2019 Samlerapport DeepWind 2013

    6/274

    PROJECT NO. 12X650

    REPORT NO. TR A7307

    VERSION 1.0

    E Installation & sub-structuresStructures of offshore converter platforms - Concepts and innovative developments, Joscha Brörmann,Technologiekontor Bremerhaven GmbH ............................................................................................................................ 216Dynamic analysis of floating wind turbines during pitch actuator fault, grid loss, and shutdown,Erin E. Bachynski, PhD stud, NTNU .................................................................................................................. ................ 219Use of a wave energy converter as a motion suppression device for floating wind turbines, Michael Borg,Cranfield University .............................................................................................................................. .............................. 223Loads and response from steep and breaking waves. An overview of the ‘Wave loads’ project,Henrik Bredmose, Associate Professor, DTU Wind Energy ............................................................................................... 226Effect of second-order hydrodynamics on floating offshore wind turbines, Line Roald, ETH Zürich ............................... 235

    F Wind farm modellingWind farm optimization, Prof Gunner Larsen, DTU Wind Energy ..................................................................................... 239Blind test 2 - Wind and Wake Modelling, Prof Lars Sætran, NTNU ................................................................................... 245A practical approach in the CFD simulations of off-shore wind farms through the actuator disc technique,Giorgio Crasto, WindSim AS ................................................................................................................................................ 250

    3D hot-wire measurements of a wind turbine wake, Pål Egil Eriksen, PhD stud, NTNU .................................................... 255 Near and far wake validation study for two turbines in line, Marwan Khalil, GexCon AS ............................................... 258

    Closing sessionDeep offshore and new foundation concepts, Arapogianni Athanasia, European Wind Energy Association ...... ...... ...... ... 262Optimal offshore grid development in the North Sea towards 2030, Daniel Huertas Hernando, SINTEF Energi AS ...... .. 265

    New turbine technology, Svein Kjetil Haugset, Blaaster (no presentation available)

  • 8/15/2019 Samlerapport DeepWind 2013

    7/274

    DeepWind 2013 - 10 th Deep Sea Offshore Wind R&D Conference24 - 25 January 2013, Royal Garden Hotel, Kjøpmannsgata 73, Trondheim, NORWAY

    Thursday 24 January 09.00 Registration & coffee

    Opening session – Frontiers of Science and Technology Chairs: John Olav Tande, SINTEF/NOWITECH and Trond Kvamsdal, NTNU/NOWITECH

    09.30 Opening and welcome by chair 09.40 Innovations in offshore wind technology , John Olav Tande, SINTEF/NOWITECH

    10.05 Key research topics in offshore wind energy, Kristin Guldbrandsen Frøysa, CMR/NORCOWE 10.30 Research at Alpha Ventus deep offshore wind farm, Stefan Faulstich, Fh IWES11.00 WindFloat deep offshore wind operational experience , Pedro Valverde, EdP 11.30 HyWind deep offshore wind operational experience , Finn Gunnar Nielsen, Statoil11.55 Closing by chair 12.00 Lunch

    Parallel sessions A1) New turbine technologyChairs: Michael Muskulus, NTNU Prof Gerard van Bussel, TU Delft

    B1) Power system integrationChairs: Prof Kjetil Uhlen, NTNU Prof Olimpo Anaya ‐Lara, Strathclyde Uni

    C1) Met ‐ocean conditionsChairs: Prof J Reuder, Uni of Bergen Erik Berge, Kjeller Vindteknikk

    13.00 Introduction by Chair Introduction by Chair Introduction by Chair13.10 Design Optimization of a 5 MW

    Floating Offshore Vertical Axis Wind Turbine , Uwe Schmidt Paulsen, Technical Uni of Denmark, DTU

    Wind Turbine Electrical Design for an Offshore HVDC Connection , Olimpo Anaya ‐Lara, Strathclyde Univ.

    Wave ‐induce characteristics of atmospheric turbulence flux measurements , Mostafa Bakhoday Paskyabi, UiB

    13.40 Operational Control of a Floating Vertical Axis Wind Turbine , Harald Svendsen, SINTEF Energi AS

    Frequency Quality in the Nordic system: Offshore Wind variability, Hydro Power Pump Storage and usage of HVDC Links, Atsede Endegnanew, SINTEF Energi AS

    Experimental characterization of the marine atmospheric boundary layer in the Havsul area, Norway , Constantinos Christakos, UiB

    14.00 Control for Avoiding Negative Damping on Floating Offshore Wind Turbine, Prof Yuta Tamagawa, Uni. of Tokyo

    Coordinated control for wind turbine and VSC ‐HVDC transmission to enhance FRT capability , A. Luque, Uni. Strathclyde

    Buoy based turbulencemeasurements for offshore wind energy applications , M. Flügge, UiB

    14.20 Towards the fully ‐coupled numerical modelling of floating wind turbines ,

    Axelle Viré, Imperial College, London

    North Sea Offshore Modeling Schemes with VSC ‐HVDC Technology: Control and Dynamic Performance Assessment , K. Nieradzinska, University of Strathclyde

    Effect of wave motion on wind lidar measurements ‐ Comparison testing with controlled motion applied , Joachim Reuder, Univ of Bergen

    14.40 Geometric scaling effects of bend ‐twist coupling in rotor blades , Kevin Cox, PhD stud, NTNU

    Upon the improvement of the winding design of wind turbine transformers for safer performance within resonance overvoltages , Amir H Soloot, PhD, NTNU

    Turbulence analysis of LIDAR wind measurements at a wind park in Lower Austria , Valerie ‐Marie Kumer, UiB

    15.00 Refreshments A2) New turbine technology Chairs: Michael Muskulus Prof Gerard van Bussel, TU Delft

    B2) Grid connectionChairs: Prof Kjetil Uhlen, NTNU Prof Olimpo Anaya ‐Lara, Strathclyde Uni

    C2) Met ‐ocean conditionsChairs: J Reuder, Uni of Bergen Erik Berge, Kjeller Vindteknikk

    15.30 Introduction by Chair Introduction by Chair Introduction by Chair15.35 High Power Generator for Wind Power

    Industry: A Review, Zhaoqiang Zhang, PhD stud, NTNU

    Planning Tool for Clustering and Optimised Grid Connection of Offshore Wind Farms, Harald G. Svendsen, SINTEF

    Wave driven wind simulations with CFD, Siri Kalvig, University of Stavanger / StormGeo

    15.55 Superconducting Generator Technology for Large Offshore Wind Turbines, Niklas Magnusson, SINTEF Energi AS

    The role of the North Sea power transmission in realising the 2020 renewable energy targets ‐ Planning and permitting challenges , Jens Jacob Kielland Haug, SINTEF Energi AS

    New two ‐way coupled atmosphere ‐wave model system for improved wind speed and wave height forecasts , Olav Krogsæter, StormGeo / University of Bergen

    16.15 Laboratory Verification of the Modular Converter for a 100 kV DC Transformer ‐less Offshore Wind Turbine Solution , Sverre Gjerde, PhD stud, NTNU

    Technology Qualification of Offshore HVDC Technologies , Tore Langeland, DNV KEMA

    Measurement of wind profile with a buoy mounted lidar , Jan ‐Petter Mathisen, Fugro OCEANOR

    16.35 Multi ‐objective Optimization of a Modular Power Converter Based on Medium Frequency AC ‐Link for Offshore DC Wind Park , Rene A. Barrera, NTNU

    Evaluating North Sea grid alternatives under EU’s RES‐E targets for 2020 , Ove Wolfgang, SINTEF Energi AS

    Numerical Simulation of Stationary Microburst Phenomena with Impinging Jet Model , Tze Siang Sim, Nanyang Technological University

    16.55 Closing by Chair Closing by Chair Closing by Chair 17.00 Poster session with refreshments 19.00 Dinner

    6

  • 8/15/2019 Samlerapport DeepWind 2013

    8/274

    Thursday 24 January 17.00 Poster Session with refreshments

    1. Aeroelastc analysis software as a teaching and learning tool for young and old students of wind turbines, Paul E. Thomassen, NTNU

    2. Magnetically Induced Vibration Forces in a Low ‐Speed Permanent Magnet Wind Generator with Concentrated Windings, Mostafa Valavi, PhD stud, NTNU

    3. Coupled 3D Modelling of Large ‐Diameter Ironless PM Generator , Zhaoqiang Zhang, PhD stud, NTNU 4. Stability in offshore wind farm with HVDC connection to mainland grid, Jorun I Marvik, SINTEF Energi AS 5. Perturbation in the acoustic field from a large offshore wind farm in the presence of surface gravity waves, Mostafa

    Bakhoday Paskyabi, UiB 6. Autonomous Turbulence Measurements from a Subsurface Moored Platform, Mostafa Bakhoday Paskyabi, UiB 7. A Markov Weather Model for O&M Simulation of Offshore Wind Parks, Brede Hagen, stud, NTNU 8. Turbulence Analysis of LIDAR Wind Measurements at a Wind Park in Lower Austria, Valerie ‐Marie Kumer, UiB 9. Investigation of droplet erosion for offshore wind turbine blade, Magnus Tyrhaug, SINTEF 10. A Fuzzy FMEA Risk Assessment Approach for Offshore Wind Turbines, Fateme Dinmohammadi, Islamic Azad University 11. NOWIcob – A tool for reducing the maintenance costs of offshore wind farms, Iver Bakken Sperstad, SINTEF Energi AS 12. Long ‐term analysis of gear loads in fixed offshore wind turbines considering ultimate operational loadings, Amir

    Rasekhi Nejad, PhD, NTNU 13. Methodology to design an economic and strategic offshore wind energy Roadmap in Portugal, Laura Castro ‐Santos,

    Laboratório Nacional de Energia (LNEG) 14. Methodology to study the life cycle cost of floating offshore wind farms, Laura Castros Santos,Laboratório Nacional de

    Energia (LNEG) 15. Two ‐dimensional fluid ‐structure interaction of airfoil , Knut Nordanger, PhD stud, NTNU 16. Experimental Investigation of Wind Turbine Wakes in the Wind Tunnel , Heiner Schümann, NTNU 17. Numerical Study on the Motions of the VertiWind Floating Offshore Wind Turbine, Raffaello Antonutti, EDF R&D 18. Coatings for protection of boat landings against corrosion and wear , Astrid Bjørgum, SINTEF Materials and Chemistry 19. Analysis of spar buoy designs for offshore wind turbines, C. Romanò, DIMEAS, Politecnico di Torino 20. Numerical model for Real ‐Time Hybrid Testing of a Floating Wind Turbine, Valentin CHABAUD, PhD stud, NTNU 21. Advanced representation of tubular joints in jacket models for offshore wind turbine simulation, Jan Dubois, ForWind –

    Leibniz University Hannover 22. Comparison of coupled and uncoupled load simulations on the fatigue loads of a jacket support structure, Philipp

    Haselbach, DTU Wind Energy 23. Design Standard for Floating Wind Turbine Structures , Anne Lene H. Haukanes, DNV

    24.

    Nonlinear irregular

    wave

    forcing

    on

    offshore

    wind

    turbines.

    Effects

    of

    soil

    damping

    and

    wave

    radiation

    damping

    in

    misaligned wind and waves, Signe Schløer, DTU

    19.00 Dinner

    7

  • 8/15/2019 Samlerapport DeepWind 2013

    9/274

    DeepWind 2013 - 10 th Deep Sea Offshore Wind R&D Seminar

    24-25 January 2013, Royal Garden Hotel, Kjøpmannsgata 73, Trondheim, NORWAY Friday 25 January

    Parallel sessions D) Operations & maintenance Chairs: Matthias Hofmann, SINTEF Stefan Faulstich, Fh IWES

    E) Installation & sub ‐structuresChairs: Hans ‐Gerd Busmann, Fh IWES Jørgen Krogstad, Statkraft

    F) Wind farm modellingChairs: Prof Trond Kvamsdal, NTNU Thomas Buhl, DTU Wind Energy

    08.30 Introduction by Chair Introduction by Chair Introduction by Chair08.35 Development of a Combined Operational and Strategic Decision Support Model for Offshore Wind, Iain Dinwoodie, PhD Stud, Univ Strathclyde

    Structures of offshore converter platforms ‐ Concepts and innovative developments , Joscha Brörmann, Technologiekontor Bremerhaven GmbH

    Wind farm optimization , Prof Gunner Larsen, DTU Wind Energy

    09.05 Vessel fleet size and mix analysis for maintenance operations at offshore wind farms , Elin E. Halvorsen ‐Weare, SINTEF ICT/MARINTEK

    Dynamic analysis of floating wind turbines during pitch actuator fault, grid loss, and shutdown , Erin E. Bachynski, PhD stud, NTNU

    Blind test 2 ‐ Wind and WakeModelling , Prof Lars Sætran, NTNU

    09.25 NOWIcob – A tool for reducing the maintenance costs of offshore wind

    farms, Iver Bakken Sperstad, SINTEF

    Use of a wave energy converter as a motion suppression device for floating

    wind turbines , Michael Borg, Cranfield University

    A practical approach in the CFD simulations of off ‐shore wind farms

    through the actuator disc technique , Giorgio Crasto, WindSim AS 09:45 WINDSENSE – a joint development

    project for add ‐on instrumentation of Wind Turbines , Oddbjørn Malmo, Kongsberg Maritime AS

    Loads and response from steep and breaking waves. An overview of the ‘Wave loads’ project, Henrik Bredmose, Associate Professor, DTU Wind Energy

    3D hot ‐wire measurements of a wind turbine wake , Pål Egil Eriksen, PhD stud, NTNU

    10:05 Long ‐term analysis of gear loads in fixed offshore wind turbines considering ultimate operational loadings, Amir Rasekhi Nejad, PhD stud, NTNU

    Effect of second ‐order hydrodynamics on floating offshore wind turbines , Line Roald, ETH Zürich

    Near and far wake validation study for two turbines in line , Marwan Khalil, GexCon AS

    10.35 Closing by Chair Closing by Chair Closing by Chair

    10.40 Refreshments Closing session – Strategic Outlook Chairs: John Olav Tande, SINTEF/NOWITECH and Michael Muskulus, NTNU/NOWITECH

    11.00 Introduction by Chair 11.05 Deep offshore and new foundation concepts , Arapogianni Athanasia, European Wind Energy Association 11.35 Optimal offshore grid development in the North Sea towards 2030, Daniel Huertas Hernando, SINTEF Energi AS12.05 New turbine technology , Svein Kjetil Haugset, Blaaster 12.35 Poster award and closing 13.00 Lunch

    8

  • 8/15/2019 Samlerapport DeepWind 2013

    10/274

    List of participants

    Name

    Institution

    Anaya‐Lara, Olimpo Strathclyde University

    Antonutti, Raffaello EDF R&D LNHEArapogianni, Athanasia European Wind Energy AssociationBachynski, Erin CeSOS/NTNU

    Bardal, Lars Morten NTNUBarrera ‐Cardenas, Rene Alexander NTNUBerge, Erik Kjeller VindteknikkBergh, Øivind Institute of Marine ResearchBjørgum, Astrid SINTEF Materials and ChemistryBolleman, Nico Blue H Engineering BVBorg, Michael Cranfield UniversityBredmose, Henrik DTU Wind EnergyBrörmann, Joscha Teknologiekontor BremerhavenBuhl, Thomas DTU Wind EnergyBusmann, Hans‐Gerd Fraunhofer IWESCastro Santos, Laura University of A CoruñaChabaud, Valentin NTNUChristakos, Konstantinos University of Bergen

    Cox, Kevin NTNUCrasto, Giorgio WindSim ASDe Laleu, Vincent EDF R&Dde Vaal, Jabus NTNUDelhaye, Virgile SINTEF M&C

    Deng, Han NTNUDinwoodie, Iain University of StrathclydeDubois, Jan Leibniz Universitaet Hannover Stahlbau

    Dufourd, Frederic EDFEecen, Peter ECNEgeland, Håkon Statkraft Energi ASEndegnanew, Atsede SINTEF Energi ASEriksen, Pål Egil NTNUEriksson, Kjell Det Norske VeritasFaulstich, Stefan Fh IWESFlügge, Martin University of Bergen

    9

  • 8/15/2019 Samlerapport DeepWind 2013

    11/274

    Fredriksen, Tommy HiT

    Frøyd, Lars 4Subsea ASFrøysa, Kristin Gulbrandsen NORCOWE / CMRGao, Zhen CeSOS/NTNUGjerde, Sverre Skalleberg NTNUGrønsleth, Martin Kjeller Vindteknikk ASHaarr, Geirr Statoil HywindHagen, Brede NTNUHalvorsen‐Weare, Elin Espeland SINTEF IKTHaselbach, Philipp Ulrich DTU Wind Energy

    Haugset, Svein Kjetil ChapdriveHofmann, Matthias SINTEF EnergiHopstad, Anne Lene DNVHuertas Hernando, Daniel SINTEF EnergiIversen, Viggo ProneoJakobsen, Tommy Kongsberg MaritimeJohnsen, Trond MARINTEK ASKalvig, Siri Storm GeoKamio, Takeshi The University of TokyoKarlsson, Sara Hexicon AB

    Kastmann, Pål Arne Innovation Norway / Norwegian Embassy in Beijing Khalil, Marwan GexCon ASKielland Haug, Jens Jakob SINTEF EnergiKjerstad, Einar Fiskerstrand BLRT

    Kocewiak, Lukasz DONG Energy Wind PowerKorpås, Magnus SINTEF EnergiKrogsæter, Olav Storm GeoKrokstad, Jørgen StatkraftKumer, Valerie‐Marie University of BergenKvamme, Cecilie Institute of Marine ResearchKvamsdal, Trond NTNUKvittem, Marit Irene CeSOS/NTNULangeland, Tore DNVLarsen, Gunner DTU Wind EnergyLauritzen, Tore Lennart Access Mid‐NorwayLjøkelsøy, Kjell SINTEF EnergiLund, Berit Floor Kongsberg MaritimeLund,Per Christer Norwegian Embassy in TokyoLunde, Knut‐Ola NTNU

    Luque, Antonio University of StrathclydeLynum, Susanne NTNU

    10

  • 8/15/2019 Samlerapport DeepWind 2013

    12/274

    Magnusson, Niklas SINTEF Energi

    Malmo, Oddbjørn Kongsberg MaritimeManger, Eirik Acona Flow TechnologyMartinussen, Mads BlaasterMarvik, Jorun SINTEF EnergiMathisen, Jan‐Petter Fugro OCEANORMidtsund, Tarjei Statnett SFMuskulus, Michael NTNUNatarajan, Anand DTU Wind EnergyNejad, Amir R. NTNUNiedzwecki, John Texas A/M UniversityNieradzinska, Kamila Strathclyde UniversityNilsen, Finn Gunnar Statoil ASANodeland, Anne Mette NTNUNordanger, Knut NTNUNysveen, Arne NTNU/ElkraftteknikkOggiano, Luca IFEOma, Per Norman Kongsberg Maritime ASOng, Muk Chen MARINTEKPaskyabi, Mostafa Bakhoday Geophysical Institute/NORCOWE

    Paulsen, Uwe Schmidt DTU Wind EnergyRebours, Yann EDF R&DReuder, Joachim UiBRoald, Line ETH Zürich

    Schaumann, Peter Leibniz Universitaet Hannover Stahlbau

    Schløer, Signe DTU Wind EnergySchramm, Rainer Subhydro ASSchümann, Heiner NTNUSeterlund, Anne Marie Statkraft DevelopmentSim, Tze Siang Nanyang Technological UniversitySingstad, Ivar Innovation Norway

    Skaare, Bjørn Statoil ASASoloot, Amir Hayati NTNU

    Sperstad, Iver Bakken SINTEF EnergiStenbro, Roy IFESvendgård, Ole VIVA ‐ Testsenter for vindturbinerSvendsen, Harald SINTEF EnergiSæter, Camilla NTNUSætran, Lars NTNU

    Sørheim, Hans Roar CMRTamagawa, Yuta Tokyo University

    11

  • 8/15/2019 Samlerapport DeepWind 2013

    13/274

    Tande, John Olav SINTEF Energi

    Thomassen, Paul NTNUTveiten, Bård Wathne SINTEF

    Tyrhaug, Magnus NTNUUhlen, Kjetil NTNUUndeland, Tore NTNUValverde, Pedro EDP Inovação, S.A.

    van Bussel, Gerard TU DelftVan Der Pal, Aart ECNVire, Axelle Imperial College LondonWolfgang, Ove SINTEF EnergiZhang, Zhaoqiang NTNUØstbø, Niels Peter SINTEF ICTÖfverström, Anders Hexicon ABØyslebø, Eirik Norges vassdrags ‐ og energidirektorat

    12

  • 8/15/2019 Samlerapport DeepWind 2013

    14/274

    PROJECT NO. 12X650

    REPORT NO. TR A7307

    VERSION 1.0

    3 Scientific Committee and Conference Chairs

    An international Scientific Committee was established with participants from leading research institutes anduniversities for reviewing submissions and preparing the conference programme. The members of theScientific Committee of DeepWind'2013 are listed below.

    Anaya-Lara, Olimpo, Strathclyde UniversityBerge, Erik, Kjeller VindteknikkBuhl, Thomas, DTUBusmann, Hans-Gerd, Fraunhofer IWESBussel, Gerard J.W. van, TU DelftFaulstich, Stefan, Fraunhofer IWESKrokstad, Jørgen, StatkraftKvamsdal, Trond, NTNULangen, Ivar, UiSLeithead, William, Strathclyde UniversityMadsen, Peter Hauge, DTUMoan, Torgeir, NTNUMolinas, Marta, NTNUMuskulus, Michael, NTNU

    Nielsen, Finn Gunnar, Statoil Nygaard, Tor Anders, IFEReuder, Jochen, UiBSirnivas, Senu, NRELTande, John Olav, SINTEFUhlen, Kjetil, NTNUUndeland, Tore, NTNU

    The conference chairs were

    - John Olav Giæver Tande, Director NOWITECH, senior scientist SINTEF Energy Research- Trond Kvamsdal, Chair NOWITECH Scientific Committee, Associate Professor NTNU- Michael Muskulus, Vice Chair NOWITECH Scientific Committee, Professor NTNU

    13

  • 8/15/2019 Samlerapport DeepWind 2013

    15/274

    Opening session ‐ Frontiers of Science and technology

    Innovations in offshore wind technology, John Olav Tande, SINTEF/NOWITECH

    Key research

    topics

    in

    offshore

    wind

    energy,

    Kristin Guldbrandsen Frøysa, CMR/NORCOWE

    Research at Alpha Ventus deep offshore wind farm , Stafan Faulstich, Fh IWES

    WindFloat deep offshore wind operational experience,

    Pedro Valverde, EdP

    HyWind deep offshore wind operational experience, Finn Gunnar Nielsen, Statoil

    14

  • 8/15/2019 Samlerapport DeepWind 2013

    16/274

  • 8/15/2019 Samlerapport DeepWind 2013

    17/274

    7

    Exciting floating concepts

    BlueH (2007, 80 kW)HiPRwind

    (2009, 2,3 MW)

    NREL/MIT

    (2011, 2,3 MW)

    New generator concept allowsfor direct HVDC connection toshore and avoiding costlyoffshore sub-station

    New support structure avoidcostly transition piece betweentubular tower and jacket

    NOWITECH 10 MW reference turbine

    The NOWITECH 10 MW referenceturbine introduces a newgenerator and support st ructureconcept

    100 kV

    8

    Innfarm

    Con

    10

    Courtesy AMSC

    100 times the current density compared to copper

    More than doubles the achievable magnetic field

    Eliminates rotor losses

    Operating at 20-50 K

    New materials give new electromagnetic designs

    Possible step-changing technology

    Activity in new FP7 project: InnWind

    Superconducting generators reduce weight

    11

    Optimization of the offshore gridInside and between wind farmsNew market solutions are requiredNew technology (HVDC VSC, multi-terminal, hybrid HVDC/HVAC, .. )Protection, Fault handling, Operation,Control, Cost, Security of Supply

    0 5 10 15 20 25 30100

    1020

    1040

    1060

    1080

    10100

    10120

    10140

    Number of nodes

    N u m

    b e r o

    f c a

    b l e c o n

    f i g u

    r a t i o n s

    R

  • 8/15/2019 Samlerapport DeepWind 2013

    18/274

    Best poster at EOW 2011

    Integrating str uctural dynamics, control and electric model

    75 77 79 81 830

    0.25

    0.5

    0.75

    1

    Time[s]

    U g

    r i d [ p u

    ]

    70 75 80 85 90 95 1003.43.63.8

    44.24.4

    X [ M N m

    ]

    70 75 80 85 90 95 1000

    0.20.40.60.8

    1

    Y [ M N m

    ]

    Time[s]

    xy

    14

    Reducing uncertainties by better models

    Integrated models simulate the behavior of the completeturbine with substructure in the marine environment:SIMO-RIFLEX (MARINTEK) and 3DFloat (IFE)Model capability includes bottom fixed and floating conceptsCode to code comparison in IEA Wind OC3 and OC4

    Model to measurements comparison in progress

    SECmMdpR

    pu

    Users:Research & Industry

    Main Objectives:Industrial value creation, and morecost-effective offshore wind farmsBuild competence and gain newknowledgeDevelop and validate numericaltools and technical solutions

    16

    SmartGridRenewable

    Energy SystemLab

    EFOWI &NOWERI

    (in cooperation

    withNORCOWE)

    Ocean Basinlab

    Wind tunnel++

    Mobiletest labETEST

    Strong research infrastructure in development

    EFOWI

    NOWERI

    From Idea to Commercial Deployment

    Prototype

    Technology Focus

    Cost Focus

    Commercial and Market Focus

    Model test

    Concept

    LargeParks

    Pilot Park

    2001

    2005

    2009

    2014-16

    Graphic is copy from Statoil presentation on HyWindat WindPower R&D seminar; 20-21 January 2011, Trondheim, Norway

    N

  • 8/15/2019 Samlerapport DeepWind 2013

    19/274

    19

    Rounding upRemarkable results are already achieved by industry and R&Dinstitutes on deep offshore wind technologyTechnology still in an early phase – Big potential provided technicaldevelopment and bringing cost downResearch plays a significant role in providing new knowledge asbasis for industrial development and cost-effective offshore wind

    farms at deep seaCooperation between research and industry is essential for ensuringrelevance, quality and value creationTest and demonstration, also in large scale, is vital to bring researchresults into the market place

    Offshore wind is a multidisciplinary challenge – internationalcollaboration is the answer!Outlook is demanding, but prosperous with a growing global market

    20

    NOWITECH is a joint 40M€research effort on offshorewind technology.

    Integrated numericaldesign toolsNew materials forblades and generators.Novel substructures(bottom-fixed andfloaters)Grid connection andsystem integrationOperation andmaintenance

    Ass essm ent o f no velconcepts

    www.NOWITECH.no

    We make it possib le

    Questions?

  • 8/15/2019 Samlerapport DeepWind 2013

    20/274

    Key research topics in offshorewind energy

    DeepWind 2013

    Kristin Guldbrandsen FrøysaDirector NORCOWE

    [email protected]

    Outline

    • Motion compensation• Measurements and database• Wind farm layout• Wind farm power control and prediction

    Slide 2/ 31-Jan-13 Source: http

    Description of wind shear

    • Empirical power law description of the vertical wind shear:

    • The logarithmic wind profile

    ref ref z

    zu zu )(

    0

    * ln)( z z

    k u

    zu

    Wind profiles and stability

    • Measurements at high towers show, that these windprofiles based on surface-layer theory and Monin-Obukhovscaling are only valid up to ca. 50-80 m

    J. ReuInstitu

    O

    F

    MSh

  • 8/15/2019 Samlerapport DeepWind 2013

    21/274

    J. Reuder, GeophysicalInstitute, University of Bergen

    Satellite data (SAR, QuickScat)Ocean wind speed map from ERSSAR from Horns Rev in the NorthSea, Denmark observed 6 October2004. The Horns Rev offshorewind farm is located in thetrapezoid.

    • Source: http://galathea3.emu.dk/satelliteeye/projekter/wind/back_uk.html

    Shortcomings:limited temporal resolutionuncertainty in determinationof relevant wind speed overthe rotor disk

    Lidar going offshore

    • Why?– Poor information on the offshore wind field in the relevant height

    interval (30..200 m)– Corresponding mast structures are expansive and rather inflexible

    • Challenges– Motion avoidance or motion correction– Adaptation to harsh marine environment– Energy for long term deployments

    SeaZe(Natu

    Zephspareleg bu

    Li

    Stewart platform

    • Application of 55 different motion patterns on a 6-DOF motion platform, 3hours each

    Lidar movement testing

    source: Final Report of the project “Measurements of Wind Profile from a Buoy using Lidar” in cooperation between Fugro OCEANOR, Statoil,University of Bergen, Uni Research, Christian Michelsen Research (CMR) and Marintek

    Offshore comparison E

    •••

    Source: M

  • 8/15/2019 Samlerapport DeepWind 2013

    22/274

    HMF 2200-K4 Loader Crane

    • 2012:– Foundation– Instrumentation

    – Modeling & Simulation– (Real Time Simulation)

    • Future work (2013):– Control System– Experimentation

    Source: Magnus B Kjelland, UiA

    Real Time Simulation

    Real Time PC Simulation Model

    Human Operator

    Control System

    Source: Magnus B Kjelland, UiA

    A nof wmod

    Strengths of model reduction technics

    • Physical– The method solves the non-linear flow equations in a reduced space.

    • Fast– The method provides CFD quality results within seconds of

    computational time (single CPU).

    • Power production– Individual turbine production calculated.

    • Turbulence– 3D flow fields for both velocity and turbulent kinetic energy are

    computed.

    • Transfer– The model reduction technique can take advantage of improvements in

    the CFD tool, such as improved turbine and turbulence models.

    Illustration of int erfaceR

  • 8/15/2019 Samlerapport DeepWind 2013

    23/274

    Irregular grid

    • Non-regular layout: investigate selected non-regularlayouts. What is the energy yield compared to a regularlayout setup?

    Power production sensitivity

    • Regular / non-regular layout: What is thesensitivity of the power production on variationsof the wind rose?

    • This could highlight how changes in the inflow conditions dueto nearby wind farms potentially would affect the powerproduction of the downstream wind farm.

    W

    Wind farm power control and prediction

    Slide 22/ 31-Jan-13

    Source: Torben Knudsen, AAU

    Can a dynamic controlled power setpoint control of all turbines improvetotal production further?

    Slide 23/ 31-Jan-13

    Source: Torben Knudsen, AAU

    Slide

    Ccle

    Source: T

  • 8/15/2019 Samlerapport DeepWind 2013

    24/274

    Thank you for

    your attention!

    www.norcowe.no

    Slide 25/ 31-Jan-13

  • 8/15/2019 Samlerapport DeepWind 2013

    25/274

    Funding Body Supervisor Coordination

    Research at alpha ventusJoint research at Germany’s first offshore

    wind farm

    Stefan Faulstich, Michael Durstewitz, Bernhard Lange, Eva OttoFraunhofer Institute for Wind Energy and Energy System TechnologyIWES, Kassel, Germany

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway2

    Content

    Alpha ventus,…

    – milestones

    – layout

    …RAVE…

    – Objectives

    – Measurements

    – Exemplary results

    …and beyond

    – Continuation of RAVE

    – Technology monitoring

    TE

    3

    © Fraunhofer

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    Competence CenterRotor Blade

    Climate chamber 200 metermeasuring mast

    The Fraunhofer IWES – experimental facilitiesExemplary Highlights

    www.fraunhofer.iwes.de

    4

    © Fraunhofer IWES

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    alpha ventus and RAVE

    • 2007 in Germany: – Very ambitious offhore plans, but no offshore turbine – German sites: far out and in „deep“ water

    5

    A

    6

  • 8/15/2019 Samlerapport DeepWind 2013

    26/274

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    © DOTI www.alpha-ventus.de

    REpower 5M AREVA Wind M5000

    Fino 1

    • North Sea• 45 km north

    of Borkum• Water depth:

    30 m• 12 turbines• 5 MW class

    -AREVAWind M5000-Repower 5M

    Alpha ventus: project details

    7Research atalpha ventus – Stefan Faulstich

    24.01.2013, DeepWind 2013, Trondheim, Norway

    Alpha ventus / results 2011

    • Production (2011): 267 GWh4,450 full load hours

    8 9

    R

    ••••

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    Main objectives of RAVEDemonstration Development Investigation of OWP issues

    Expand research, experience & expertise

    10

    © DOTI 2009; Boris Valov, FraunhoferIWES; DEWI; Sebastian Fuhrmann;Fraunhofer IWES

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    measurement service

    11

    RAVE – R&D contents

    12

    R

  • 8/15/2019 Samlerapport DeepWind 2013

    27/274

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway13

    • Detailed Load and turbine data fromfour wind turbines

    • SCADA data of all turbines

    • Geological, oceanographic andenvironmental data

    • LiDAR (upwind and downwind)

    RAVE – measurements

    © DOTI

    • Electrical data from substations

    • Meteorological data from FINO1 AREVA Wind

    M5000

    REpower 5M

    © GL

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway14

    Structuraldynamics

    Meteoro-logy

    RAVE – measurements

    Wave water pressure

    Corrosion

    Soundemmission

    Operationaldata

    Hydrology /Geology

    Birdobservation

    In total about 1300 Sensors!Data Warehouse: 10 Tbyte, 85 accredidated users

    R

    15

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    RAVE 2012: exemplary research results

    • Lidar based control can improve theenergetic output of a turbine by 1-2 %

    • Progress in turbulence and wakesimulation and in understandingturbulence interaction betweenoffshore wind farms

    • An operation and failure statisticsdata base is of high relevance – progress is underway

    16

    © G L G a r r a

    d H a s s a n

    © R E p o w e r

    S y s

    t e m s

    S E

    © D O T I

    , 2 0 0 9

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    RAVE 2012: exemplary research results

    • Operational sound is of lowerecological relevance

    • Social acceptance increased2011 compared to 2009;

    17

    • Bubble curtains reduce piledriving noise emissioneffectively

    © H y d r o

    t e c h n i

    k L ü b e c k

    G m

    b H

    © M a r

    t i n - L u t

    h e r -

    U n i v e r s

    i t ä t H a l

    l e - W

    i t t e n

    b e r g

    R

    18

  • 8/15/2019 Samlerapport DeepWind 2013

    28/274

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    RAVE

    RAVE has achieved its goals:• Proven the offshore-capability of the 5 MW turbine class• Facilitated further development of offshore wind technology in many

    areas• Improved the knowledge about offshore wind utilisation• Produced an invaluable and unique data set of measurements

    RAVE will continue, but the focus will move:• from design and erection to operation and maintenance• from demonstration to research

    19Research atalpha ventus – Stefan Faulstich

    24.01.2013, DeepWind 2013, Trondheim, Norway

    What is RAVE today?

    • A research lab in the middle of the North Sea

    • A huge unique set of measurement data

    • A research community dedicated to OWP

    • An interdisciplinary knowledge base for

    OWP topics

    20

    © Fraunhofer IWES; LeibnizUniversität Hannover; REpowerSystems; Reinhold Hill; KlausLucke; BSH

    S ci

    R

    T

    Le

    T

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    Technology Monitoring

    22

    12

    34

    56

    78

    910

    1

    2

    3

    4

    5

    0,00,20,40,60,81,01,21,41,61,82,02,22,42,62,83,03,23,43,63,84,0

    m e a n a

    n n u a

    l f a i l u r e

    f r e q u e n c y

    year of operation year ofproduction

    Research atalpha ventus – Stefan Faulstich24.01.2013, DeepWind 2013, Trondheim, Norway

    To answer fundamentalquestions ondevelopment of windpower offshore

    General monitoring

    To optimize operationand maintenance

    Systematic collectionand evaluation ofoperational experiences

    23

    Technology Monitoring

    24

    T

    W

    W

    R“C

    Al

  • 8/15/2019 Samlerapport DeepWind 2013

    29/274

  • 8/15/2019 Samlerapport DeepWind 2013

    30/274

  • 8/15/2019 Samlerapport DeepWind 2013

    31/274

    The WindFloat Project 13

    Pre-assembly of the columns

    outside the Dry-dock in Setúbal

    The WindFloat Project 14

    Columnsmoved to Dry-dock

    The WindFloat

    The WindFloat Project 16

    Mooring Pre-Lay in parallel

    with the fabrication

    The WindFloat Project 17

    Turbine Installation in the Dry Dock using the

    shipyard’sgantrycrane

    The WindFloat

    Tow from S

    same vessel

  • 8/15/2019 Samlerapport DeepWind 2013

    32/274

    The WindFloat Project 19

    Hook-up at final location

    The WindFloat Project 20

    In Operation since December2011!

    The WindFloat

    The WindPrelim

    The WindFloat Project 22

    Survivability and performance proved in normal and extreme conditionsPreliminary performance analysis

    22 Oct2011Installation complete

    01 Nov201115 meterswave

    20 Dec 2011FirstElectron produced

    03 Jan 2012Operation in Hs=6m andHmax=12,6m

    The WindFloat Project 23

    • The fabrication and installation were successfully complete despite all the challenges faced

    • The technical results of the first 6 months of operation of the WindFloat are very promising

    • The testing and monitoring of the WindFloat will continue during the next years

    • WindPlus will start to prepare the Pre Commercial phase

    • One step towards the development of deep offshore wind

    Conclusions

    The WindFloat

    T

  • 8/15/2019 Samlerapport DeepWind 2013

    33/274

    Hywind. Deep offshore windoperational experience.Finn Gunnar Nielsen, Statoil RDI

    The starting point -2001

    • Inspired by floating sailing marks.

    “Seawind” matured during 2002

    Tong, K.C. OWEMES seminar , Atena,Rome,Feb. 1994

    2

    Ke

    Co

    De

    ”St

    Wa

    Ass

    Re

    Flo

    Ele

    On

    Th

    3

    From idea to commercial concept

    Demo

    Pilot park

    Model test

    Concept & theory

    Onshoreconnectedparks

    2002

    2005

    2009

    Technical Focus

    Cost Focus

    Market Focus

    2013

    Idea

    2003

    4

    Onshoreconnectedparks

    What does it take?

    Demo

    Pilot park

    Model test

    Concept & theory

    Onshoreconnectedparks

    2002

    2005

    2009

    Technical Focus

    Cost Focus

    Market Focus

    2013

    Idea

    2003

    5

    Onshoreconnectedparks

    •Creativity•Competence & experience•Endurance•Business understanding•Professional project execution•Management commitment•Timing•Funding

    M• De• Val• Mo• Irre

    6

  • 8/15/2019 Samlerapport DeepWind 2013

    34/274

    Assembly and installation of Hywind Demo Summer 2009

    7

    Operation in harsh environment

    • Max wind velocity: 40 m/sec

    • Max sign wave height: 10.5 m

    8

    Fu

    9

    Hywind Operation and monitoring

    10

    Databases and datamanagement

    •Integration of people process and technology

    •Use of data, collaborative technology and multidisciplinary work

    Integrated Operations – implementing O&Gexperience

    11

    A b

    12

  • 8/15/2019 Samlerapport DeepWind 2013

    35/274

    Hywind performance in 2012

    • 2 stops in Q1 due to external grid faults, total 57 days. Production loss of ~1,5 GWh

    • Production 2012 is 7,4 GWh(8,9 GWh without grid error)

    • 11% lower than normal wind speed

    • Capacity factor 2012: 37% (would be 44% without grid error)

    • September production 1,1 GWh, Capacity factor 54%.

    • Focus on improvements, lower O&M cost

    Grid faults

    13

    Production during a storm condition

    • 24 hour period duringstorm “Dagmar”, Dec2011

    • Avg. wind speed 16m/sec

    • Max wind speed 24m/sec

    • Max significant waveheight 7.1m

    • Power production 96.7%of rated

    14

    MeWind

    WEST

    15

    Data interpretation and validation

    0 100 200 3000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Amplitude[ton 2-s -1]

    F r e q u e n c y

    [ H z

    ]

    Hull_MoorForceX_Pos1_Backup- Black curveis generatorspeed[RPM/1e4]

    Time

    F r e q u e n c y

    [ H z

    ]

    Oct/100

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Gen. below800Gen. above800

    3P

    Surge

    Pitch

    Poor/No data

    • Spectrogram of mooringline force

    • 1 month of data shown

    • Used for:

    Error detection

    Identification ofnaturalfrequencies.

    16

    Full scale versus computations• Wind speed 17.5 m/sec, Significant wave height 4.0m, Current 0.4 m/sec

    • Estimated wave time history.

    • Computed motion response

    • Wind forces included from measured wind spectrum

    • Visualization

    Tower pitch motion

    17

    Be

    • Me

    • Ea

    00

    1

    2

    3

    4

    5

    6

    7

    8x

    b e n

    d i n g m o m e n

    t [ ( k N m ) 2 s

    ]

    18

  • 8/15/2019 Samlerapport DeepWind 2013

    36/274

    Importance of motion controller

    50 100 150 200 250 300 350 400 450 500 550-6

    -4

    -2

    0

    2

    4

    6

    time [s]

    t o w e r p

    i t c

    h a n g

    l e [ d e g

    ]

    Conventional controller

    Motion stabilizing controller

    Shut down

    19

    Hywind evolutionUse of experience - Improved design

    Hywind Demo Hywind II

    • Bigger turbine

    • Smaller hull• Lower costs• Site specific

    20 21

    Floasolu

    The next step

    22

    Presentation title

    Presenters namePresenters titleE-mail address ……@statoil.comTel: +4700000000

    www.statoil.com

    Thank You23

  • 8/15/2019 Samlerapport DeepWind 2013

    37/274

    A1 New turbine technology

    Design Optimization of a 5 MW Floating Offshore Vertical Axis Wind

    Turbine, Uwe Schmidt Paulsen, Technical Univ. of Denmark, DTU

    Operational Control of a Floating Vertical Axis Wind Turbine,

    Harald Svendsen, SINTEF Energi AS

    Control for Avoiding Negative Damping on Floating Offshore Wind Turbine,

    Prof Yuta Tamagawa, Uni. of Tokyo

    Towards the fully ‐coupled numerical modelling of floating wind turbines,

    Axelle Viré, Imperial College, London

    Geometric scaling effects of bend ‐twist coupling in rotor blades,

    Kevin Cox, PhD stud, NTNU

    36

  • 8/15/2019 Samlerapport DeepWind 2013

    38/274

    Design Optimization of a 5MW FloatingVertical-Axis Wind Turbine

    DeepWind’2013-10 th Deep Sea Offshore Wind R&D Conference24-25 January 2013 Trondheim, No

    Uwe Schmidt Paulsen [email protected]

    bHelge Aagård Madsen, Per Hørlyck NielsencJesper Henri Hattel, Ismet Baran

    a,b DTU Department of Wind Energy, Frederiksborgvej399 Dk-4000 Roskilde Denmark c DTU Department of Mechanical Engineering, ProduktionstorvetBuilding 425 Dk-2800 Lyngby Denmark

    DTU Wind Energy, Technical University of Denmark

    DeepWindContents• DeepWind Concept• 1 st Baseline 5 MW design outline• Optimization process• Results• Conclusion

    2 Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU W

    DeepWConte• Deep• 1 st B• Optim• Resu• Conc

    3

    DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept

    • No pitch, no yawsystem

    • Light weight rotorwith pultrudedblades

    4 Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept

    • No pitch, no yawsystem

    • Floating androtating tube as aspar buoy

    • Light weight rotorwith pultrudedblades

    • Long slender androtating underwatertube with littlefriction

    5 Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU W

    DeepWThe C

    • No pitcsystem

    • Floatingrotating tuspar buoy

    • C.O.G. counter wbottom of

    6

  • 8/15/2019 Samlerapport DeepWind 2013

    39/274

    DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept

    • No pitch, no yawsystem

    • Floating androtating tube as a

    spar buoy• C.O.G. very low –counter weight atbottom of tube

    • Safety system

    • Light weight rotorwith pultrudedblades

    • Long slender androtating underwatertube with littlefriction with littlefriction

    • Torque absorptionsystem

    7 Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept

    • No pitch, no yawsystem

    • Floating androtating tube as a

    spar buoy• C.O.G. very low –counter weight atbottom of tube

    • Safety system

    • Light weight rotorwith pultrudedblades

    • Long slender androtating underwatertube with littlefriction

    • Torque absorptionsystem

    • Mooring system

    8 Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU W

    DeepWThe Co

    • The b

    DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept- Blades technology

    • The blade geometry is constant along the blade length

    • The blades can be produces in GRP

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 201310 DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept -Blades technology

    • The blade geometry is constant along the blade length

    • The blades can be produces in GRP

    • Pultrusion technology:

    outlook- 11 m chord, several 100 m long blade length

    11Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU W

    DeepWThe Co

    • The b

    • The b

    • Pultru

    • Pultruat sit

    outlo

  • 8/15/2019 Samlerapport DeepWind 2013

    40/274

    DTU Wind Energy, Technical University of Denmark

    DeepWindThe Concept- Blades technology

    • The blade geometry is constant along the blade length

    • The blades can be produces in GRP

    • Pultrusion technology:

    • Pultrusion technology could be performed on a shipat site

    • Blades can be produced in modules

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    13

    outlook- 11 m chord, several 100 m long blade length

    DTU Wind Energy, Technical University of Denmark

    DeepWind

    Concept- Generator configurations• The Generator is at the bottom end of the tube; several configuration

    are possible to convert the energy

    14Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU W

    DeepW

    Conce• The G

    are p

    • Three

    DTU Wind Energy, Technical University of Denmark

    DeepWind

    Concept- Generator configurations• The Generator is at the bottom end of the tube; several configuration

    are possible to convert the energy

    • Three selected to be investigated first:1. Generator fixed on the torque arms, shaft rotating with the tower

    1

    16Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    DTU Wind Energy, Technical University of Denmark

    DeepWind

    Concept- Generator configurations• The Generator is at the bottom end of the tube; several configuration

    are possible to convert the energy

    • Three selected to be investigated first:1. Generator fixed on the torque arms, shaft rotating with the tower2. Generator inside the structure and rotating with the tower. Shaft

    fixed to the torque arms

    1 2

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    17 DTU W

    DeepW

    Conce• The G

    are p

    • Three1.2.

    3.

  • 8/15/2019 Samlerapport DeepWind 2013

    41/274

  • 8/15/2019 Samlerapport DeepWind 2013

    42/274

    DTU Wind Energy, Technical University of Denmark

    DeepWind2 nd iteration 5 MW Design Rotor

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    25

    0

    1

    2

    3

    4

    5

    6

    0.0 0.5 1.0 1.5 2.0 2.5H/(2R 0)

    Sref/R02demo

    Sref/(sR0) demo

    Sref/R0**2

    (Sref/sR0)

    1 st DeepWind 5 MW

    2 nd DeepWind 5 MWEOLE 4 MW (1.5,25)

    GeometryRotor radius (R 0 ) [m] 58.5H/(2R 0 ) [-] 1.222

    Nc/R 0 ) [-] 0.15Swept Area (S ref ) [m 2 ] 12318

    DTU Wind Energy, Technical University of Denmark

    DeepWind2 nd iteration 5 MW Design Rotor

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    26

    0

    1

    2

    3

    4

    5

    6

    0.0 0.5 1.0 1.5 2.0 2.5H/(2R 0)

    Sref/R02demo

    Sref/(sR0) demo

    Sref/R0**2

    (Sref/sR0)

    1 st DeepWind 5 MW

    2 nd DeepWind 5 MWEOLE 4 MW (1.5,25)

    GeometryRotor radius (R 0 ) [m] 58.5 (-8%)H/(2R 0 ) [-] 1.222

    Nc/R 0 ) [-] 0.15 (-33%)Swept Area (S ref ) [m 2 ] 12318(+15%)

    DTU W

    DeCP

    DTU Wind Energy, Technical University of Denmark

    0 0.01 0.02 0.03 0.04 0.05 0.060.3

    0.35

    0.4

    0.45

    0.5

    0.55

    Ixx /t w/c 3 %

    Cp

    AH93W145 AH93W174

    AH93W215

    DU00W2401

    DU91W2250

    DU97W300

    FX84W218

    NACA0009NACA0012 NACA0015

    NACA0018 NACA0020

    NACA0024 NACA0025

    NACA0028 NACA0030

    NACA0032

    NACA0034

    NACA0038

    NACA0040

    NACA0042

    NACA23015

    NACA4409

    NACA4412

    NACA643618

    StandardaerofoilsOptimisationresults

    DeepWind

    CP vs dimensionless flapwise Inertia(bending stiffness )

    CP

    0.4

    0,5

    0.30.02 0.04 0.060.0

    I xx /t c3 c©DeepWind,TUDelft

    DTU Wind Energy, Technical University of Denmark

    DeepWind2 nd iteration 5 MW Design Rotor

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    29

    • uniform blade profiles NACA00xx, constant chord

    • piecewise uniform profilesNACA0025,18,21, constant chord, Case-1,Case-2

    DTU W

    DeepWConte• Deep• 1 st B• Optim• Resu• Conc

    30

  • 8/15/2019 Samlerapport DeepWind 2013

    43/274

    DTU Wind Energy, Technical University of Denmark

    DeepWindResults uniform profiles Case-1

    31 Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    - Highest stiffness in NACA0025 profile leading the smallest displacement field andlinear elastic strain level

    - NACA0015 has the highest weight- The tips of the rotor are fully constrained in all directions. Therefore, the maximum

    elastic strain occurs close to the tips.- Apart from in the area of the tips, smaller strains, i.e. smaller than 5000 /m

    strain are obtained.DTU Wind Energy, Technical University of Denmark

    DeepWindResults-Constant blade chord withdifferent profile thickness Case-2

    Section-1 (Bottom)

    Section-2 (Middle)

    Section-3 (Top)

    Case-1 NACA0025 NACA0021 NACA0018 Case-2 NACA0025 NACA0018 NACA0021

    - Similar strain distribution for Case-2 as compared to the one obtained for the uniformrotor having the NACA0025 profile except at the middle section. are obtained.

    - It should be noted that the total weight of the sectionized rotor in Case-2 is lower thanthe uniform rotor having the NACA0025 profile which has the highest stiffness.

    - Using a thicker blade profile at the top (Case-2) decreases the strain values as

    compared to Case-1 in which a thicker profile is used at the middle

    DTU W

    DeepWResul

    33

    DTU Wind Energy, Technical University of Denmark

    DeepWindResults case-2

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    34 DTU Wind Energy, Technical University of Denmark

    DeepWindResults case-2+ 1iteration

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    35 DTU W

    DeepWConte• Deep• 1 st B• Optim• Resu• Conc

    36

  • 8/15/2019 Samlerapport DeepWind 2013

    44/274

    DTU Wind Energy, Technical University of Denmark

    DeepWindConclusion• Demonstration of a optimized rotor design

    Stall controlled wind turbine Pultruded sectionized GRF blades 2 Blades with 2/3 less weight than 1 st baseline 5MW design Less bending moments and tension during operation

    Potential for less costly pultruded blades

    • Use of moderate thick airfoils of laminar flow family with smaller CD 0 andgood CP

    • Exploration of potential for joints• Investigation for edgewise vibrations due to deep stall behavior

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    37 DTU Wind Energy, Technical University of Denmark

    DeepWindConclusion

    Thank YouQuestions?

    Design Optimization of a 5 MW Floating OffshoreVertical-Axis Wind Turbine 24/1 2013

    38

    Thanks to the DeepWind consortium & EU

  • 8/15/2019 Samlerapport DeepWind 2013

    45/274

    12/02/2013

    1

    Technology for a better society

    10 th Deep Sea Offshore Wind R&D conferenceTrondheim, 24 – 25 Jan 2013

    1

    Harald G Svendsen

    Karl O Merz

    Operational Control of a Floating Vertical Axis Wind Turbine – start ‐up and shut ‐down

    Technology for a better society

    • Control system for the DeepWind turbine• Start ‐up and shut ‐down scheme

    2

    Overview

    Technology for a better society

    • Floating VAWT• Rotating spar buoy• Stall ‐regulated• No pitch, no yaw, no gearbox• Simple blade geometry, simple installation

    • EU FP7‐project led by DTU ("DeepWind") – www.deepwind.eu

    3

    The DeepWind concept

    Technology for a better society

    • Objectives• Maximise energy capture• 2p variations• Limit over ‐speed and over ‐torque• Start and stop

    • How?• Via generator torque

    4

    Control system

    Technology for a better society

    • Basic structure:

    5

    Control architecture

    Rotor speed

    Notchfilter

    LP

    LP

    Electricaltorque

    Lookuptable Ref.

    speed

    PIDElectricaltorque set ‐point

    2p damping

    Aerodynamic efficiencySpeed limitation

    Technology for a better society

    • Aerodynamics: Fourier approximation that includes 2p and 4p variations

    , ,Ω cos 2 cos 4 • = turbine azimuth angle relative to the wind speed• , , , , given by look ‐up tables for wind = and rotor speed = Ω,

    computed by a BEM model and includes dynamic stall effects (Merz)• Hydrodynamics and mooring system: Bottom end assumed fixed except in yaw

    • Magnus lift force• torque absorption (one degree of freedom) spring–damper mooring system

    • Structural mechanics: Spring–damper representations of tower twisting and tilting• Electrical system: Generator torque = controller set ‐point

    6

    Simulation model

    44

  • 8/15/2019 Samlerapport DeepWind 2013

    46/274

    12/02/2013

    2

    Technology for a better society

    • Achieved by adjusting the speed reference value• Start: 0 → target value• Stop: present value → 0

    • Avoid conflict between normal/start/stop/parked operation by defining operational states

    7

    Turbine start ‐up and shut ‐down

    Technology for a better society 8

    Operational states

    Technology for a better society

    0 5 10 15 20 25 30 35 40 45 500

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    • Torque–speed map

    • High wind: Reduced reference speed (storm control)• Based on wind measurements• Limit torque• Capture more energy

    9

    Normal operation

    0 5 10 150

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Optimal speed

    Limited speed

    Rated torque

    R e f . s p e e d ( r a d

    / s )

    R e f . s p e e d ( r a d

    / s )

    Wind speed (m/s)

    Torque (MNm)

    Cut ‐in

    Storm control

    Cut ‐out

    (Use torque–speed map)

    Technology for a better society

    • Speed ramp ‐up profile with end ‐point determined from slow ‐filtered wind measurement

    • Cross ‐fade to speed reference given by torque–speed map (normal speed control)

    10

    Start ‐up

    Start ‐up profile

    Target speed – torque mapTarget speed – wind map

    Cross ‐fade

    completed

    time

    R e f . s p e e d

    Technology for a better society

    • Smooth start• Critical: Transition from ramp ‐

    up to steady speed• Increased integral gain for

    faster response during start

    11

    Start ‐up: Example (high wind)

    Wind threshold

    Start ‐up initiated

    W i n d ( m / s )

    speed (pu)

    torque (pu)power (pu)

    G e n e r a t o r o u t p u t

    Time (s)

    Time (s)

    Technology for a better society

    • Speed ramp ‐down to zero• Extra torque needed to initiate shut ‐down• Parked state: Reference speed = 0, integral path in PI control disabled

    12

    Shut ‐down

    Shut ‐down profile

    Normal operation speed reference

    completed

    time

    R e f . s p e e d

    45

  • 8/15/2019 Samlerapport DeepWind 2013

    47/274

    12/02/2013

    3

    Technology for a better society

    • Critical: Wind gust at the same time as braking is initiated

    large torque

    13

    W i n d ( m

    / s )

    Storm controlShut ‐down

    S p e e d ( r a d

    / s )

    G e n e r a t o r

    ( p u ) torque (pu)

    power (pu)

    Parked

    Shut ‐down:

    Example (high wind)

    Technology for a better society

    • Baseline control system for the Deepwind floating VAWT turbine has been completed• Damps 2p variations• Minimises stress on mooring system• Maximises energy capture• Safe start ‐up and shut ‐down procedures

    14

    Conclusions

    Technology for a better society

    Technology for a better society

    15 Technology for a better society 16

    Basic parameters – initial 5 MW design

    Parameter Value

    Under ‐water length 108 m

    Darrieus rotor height 130 m

    Darrieus rotor radius 64 m

    Rated wind speed 14 m/s

    Rated rotational speed 0.52 rad/s (5 rpm)

    Rated torque 9 ·106 Nm

    Technology for a better society 17

    Control architecture

    46

  • 8/15/2019 Samlerapport DeepWind 2013

    48/274

    2013/2/12

    1

    Control for Avoiding Negative Dampingon Floating Offshore Wind Turbine

    2013/1/24Yuta Tamagawa, Tokyo univ.

    Makoto Iida, Tokyo univ.Chuichi Arakawa, Tokyo univ.

    Toshiki Chujo, NMRI

    Introduction• Demand for renewable energy is increasing

    Securing laying area for wind farmWind is consistent and strong over the sea

    Establish offshore wind turbine technology – Floating Wind Turbine

    • Able to use on Deep Water • Unstable foundation

    2013/2/12J.M.Jonkman. (2007). Dynamics Modeling and Loads Analysis of anOffshore Floating Wind Turbine. Technical Report. NREL/TP-500-41958.November 2007

    Verification test casesHywind (statoil, Norway)Small test turbine (Nagasaki Japan)

    Negative damping of Floating Wind Turbine

    Pitch ControlChange blade pitch depend on the wind speed variation. – Torque Constant Thrust Vary

    • Relative wind speed vary dew to the motion of tower. – Lean to the front (back) Relative wind speed increase decrease

    Thrust decrease (increase)Negative damping

    2013/2/12

    Thrust

    Wind

    Wind

    ThrustWind load

    Wind load Thrust

    Rotor disk

    Rotor diskPitch angle

    Pitch angle

    Torque

    Torque

    Purpose of research

    2013/2/12

    Applying conventional pitch control

    Motion of float is negative damped

    Reducing rated power Power decrease

    Increasing fatigue load

    We needs to develop new pitch controlcorresponding to floating wind turbine

    Larsen, T. J., & Hanson, T. D. (2007). A method to avoid negative dampedlow frequent tower vibrations for a floating, pitch controlled wind turbine.Journal of Physics: Conference Series , 75

    1)

    We propose a new control method for floating turbine tosuppress the negative damping with power kept to rate.

    Control method

    2013/2/12

    PID Blade PitchRotorSpeed

    Pitch Control

    PIDTower anglevelocity θ tower

    Motion Control

    Pitch Control

    θ tower

    Combining two control Mixed controlPitch Control (Make rotational speed constant)Motion Control (Suppress tower motion θ tower )

    Experiment and Simulation• Set floating wind turbine model on

    test tank with fan.Cooperated with NMRI : National

    Maritime Research Institute)

    • Software for numerical simulation FASTDeveloped by NREL (National Renewable Energy

    Laboratory)Able to compute floating wind turbine

    NREL 5MW

    2013/2/12

    Test tank and turbine model

    OC3-Hywind des gnJ.M.Jonkman. (2007). Model Development and Analysis of an OffshoreWind Turbine on a Tension Leg Platform, with a Comparison to OtherFloating Turbine Concepts. Subcontract Report. NREL/SR-500-45891.February 2010

    Tenson eg platform

    47

  • 8/15/2019 Samlerapport DeepWind 2013

    49/274

    2013/2/12

    2

    Turbine and condition

    Wind turbine Blade Length 600mmNumber 3Ro tor di ame ter 1 30 0mm

    Nacelle Weight 1150gTower Hub height 900mm

    Float Float Diameter 160mmDraft 1270mmDisplacedvolume of water

    23kg

    Mooring line Number 6

    2013/2/12

    830

    5deg. Nacelle

    Tower

    Blade

    Hub

    1220

    φ160 t7

    Wind speed [m/s] 3.9

    Wave (regular) Height [cm] 4.22 6.3 8 8.7

    Period [s] 3.0 2.5 1.8 1.4

    Validation of simulation

    • Aero dynamic force of blade and float response to thewave are generally consistent

    2013/2/12

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    0 2 4 6 8

    C t

    Tip speed ratio

    E xp F AS T

    0

    10

    20

    30

    40

    50

    60

    0,5 1 1,5 2

    T o w e r P i t c h a m p l i t u d e

    Wave eriod [s]

    FASTExp FAST

    Tower amplitude of floating test turbine with wave and nowind.

    Tower amplitude is non-dimensionalizedby wave height andwave number )

    Thrust coefficient of test turbine in onshore.

    Blade load (Thrust) Float response to the wave

    Change blade pitch on wind speed 3.9 m/s )

    Negative damping on experiment(Wind speed:3.9m/s, Wave period:2.5s, Wave height:6cm)

    • Tower pitch amplitude : increase rotor speed vibration : decrease• Negative damping has occurred on experiment

    2013/2/12

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 5 10 15 20

    T o w e r p i t c h a n g l e [ d e g ]

    Time[s]

    250

    270

    290

    310

    330

    350

    370

    390

    0 5 10 15 20

    R o t o r s p e e d [ r p m ]

    Time[s]

    Tower pitch angle of test turbine on experiment Rotor speed of test turbine on experiment

    Negative damping on simulation(Wind speed:3.9m/s, Wave period:2.5s, Wave height:6cm)

    • Tower motion and rotor speed vibration are smallerthan experiment.

    • Trends of parameter are matched with experiment.

    2013/2/12

    10

    12

    14

    16

    18

    20

    100 105 110 115 120

    T o w e r p i t c h a n g l e [ d e g ]

    Time[s]

    Pitch C on tro le d No Control

    300

    305

    310

    315

    320

    325

    330

    335

    340

    345

    350

    100 105 110 115 120

    R o t o r s p e e d [ r p m ]

    Time[s]

    Pitch C on tr ol ed N o Control

    Tower pitch angle of test turbine on simulation Rotor speed of test turbine on simulation

    Mixed control on simulation(Wind speed:3.9m/s, Wave period:2.5s, Wave height:6cm)

    • Kp: Control parameterof motion controller onmixed control.

    • Basis of rate on rightside is parameter onconventional control.(when K p=0)

    2013/2/12

    Controlparameter

    Kp

    Θ tower Amplitude(deg)

    Rotor speed average(rpm)

    0 5.51 (100%) 336 (100%)0.0001 5.38 (97.6%) 336 (99.97%)

    0.001 5.24 (95.1%) 335 (99.7%)

    0.01 3.70 (67.2%) 326 (97.1%)

    0.1 5.01 (91.0%) 239 (71.3%)

    1 5.32 (96.6%) 74.7 (22.2%)

    As K p=0.01, Tower motion is much suppressedthough rotor speed is not so much changed.

    Mixed control can suppress the negativedamping with little affect to the rotor speed.

    Conclusion• On simulation aero dynamic force of blade and float response to

    the wave are generally match to experiment.• We confirmed that tower motion is amplified by onshore pitch

    control on experiment and simulation.• We proposed the new control, mixed control, and shows that

    mixed control can reduce the tower motion with maintaining rotorspeed.

    • Improving simulation model, we will apply this control to practicalturbine, verification test turbine or full scale turbine and investigatethe applicability and effectiveness of this control in actual seas.

    2013/2/12

    48

  • 8/15/2019 Samlerapport DeepWind 2013

    50/274

    Towards the fully-coupled numericalmodelling of oating wind turbines

    Axelle Vir é, J Xiang, M Piggott, C Cotter, J Latham, C Pain

    [email protected] Modelling and Computation Group (AMCG)

    Department of Earth Science and Engineering

    10th Deep Sea Offshore Wind R&D Conference – 24 January 2013

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    MotivationScope of a 2-year Marie Curie Intra-European Fellowship

    Couple two nite-element models for modelling uid-structure interactions Apply them to the various components of a oating wind turbine

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    Outline

    1. Modelling uid-solid interations for oating solids

    2. Parameterisation of wind turbines

    - Actuator-disk modelling- Results for a xed turbine

    3. Tracking of an interface between two uids

    - Conservative advection method- Results for a oating pile

    4. Future work

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interationsCoupling between two unstructured nite-element models

    Mesh adaptivity tore ne the solidconcentration eld

    A.Viré,Reviews in Environmental Science and Bio/Technology (2012)

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interationsCoupling between two unstructured nite-element models

    ACTION=

    REACTION

    The uid and solid models use different spatial and temporal discretisations

    Mesh adaptivity tore ne the solid

    concentration

    eld

    A.Viré,Reviews in Environmental Science and Bio/Technology (2012)

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interationsFluid-dynamics model: Fluidity-ICOM

    Solid-dynamics model: Y3D-Femdem

    The equations are solved for a monolithic velocity: ū = α f ū f + α s ū s

    ∇̄ · ū = 0

    An additional force accounts for the presence of the solids:

    β = fctρf ∆ t

    , ν L 2

    DDt

    (ρs ū s ) = ∇̄ · ¯̄τ s + F̄ s

    F̄ f = β (α s ū s − α s ū) = F̄ 2 − F̄ 1

    ρf ∂ ̄u∂t

    + ρf ū · ∇̄ ū = − ∇̄ p + ∇̄ · ¯̄τ + F̄ f

    F̄ s = F̄ 1 − F̄ 2

    Conservation V

    F f dV = − V s

    F s dV s

    (ρf = constant)

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    49

  • 8/15/2019 Samlerapport DeepWind 2013

    51/274

    1. Modelling uid-solid interationsFluidity-ICOM

    Solid meshSolid meshFluid mesh

    in

    Sub-timestep i = 0

    Compute F n = F n1 − βu n+ i

    s

    outCompute F n1 = βα

    n

    s un

    1 F 1

    o ve or u s= + 1

    o ve or un = n +

    Time-averaged solid velocity ¯ u s2

    Y3D - Femdem

    Compute F = − F 1 + F 2

    Viré et al. , Ocean Dynamics, Vol. 62 (2012)

    Time step n : (u, α s )n Time step n : (x s , u s )n

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interations

    .

    1

    0 0.5 1

    .

    − .

    Solid element s

    Fluid element

    Galerkin projectionfrom solid to uid mesh

    V s

    F s2 dV s = V

    F f 2 dV

    F s2

    F f 2

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interationsFluidity-ICOM

    Solid meshSolid meshFluid mesh

    in

    u -timestep i =

    Compute F n = F n1 − βu n + is

    outCompute F n1 = βα

    n

    s un F n1 1

    o ve or u s= + 1

    o ve or un = n + 1

    ime-average so i ve ocity ¯ u s

    Y3D - Femdem

    Viré et al. , Ocean Dynamics, Vol. 62 (2012)

    F n2Compute F = − F 1 + F 2

    Minimally-diffusiveGalerkin projection

    Time step n : (u, α s )n Time step n : (x s , u s )

    n

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interations

    .

    1

    .5 1

    .

    − 0.25

    Solid element s

    Fluid element

    . 1

    Solid element s

    Fluid element

    0.5

    1

    0

    Galerkin projectionfrom solid to uid mesh

    Galerkin projectionfrom uid to solid mesh

    .

    1

    V s

    F s2 dV s = V

    F f 2 dV

    F s2

    F f 2

    F f 1

    F s

    1

    V ∩ V s

    F f 1 dV ∩ = V s

    F s1 dV s

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    1. Modelling uid-solid interationsFluidity-ICOM

    Solid meshSolid meshFluid mesh

    in

    u -timestep i =

    Compute F n = F n1 − βu n + is

    outF 1

    o ve or u s= + 1

    o ve or un = n + 1

    ime-averaged solid velocity ¯ u s2

    Y3D - Femdem

    Compute F = − F 1 + F 2

    Minimally-diffusiveGalerkin projection

    Supermesh

    n

    1 = βαn

    s un

    Fluid mesh

    Solid mesh

    Portion of a supermesh

    Viré et al. , Ocean Dynamics, Vol. 62 (2012)

    Time step n : (u, α s )n Time step n : (x s , u s )n

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    2. Parameterisation of wind turbines

    The turbine is parameterised through an actuator-disk model

    The thrust force is spread uniformly across a thin disk

    u 0 u1A1A0T

    uhub Ahub

    (Conway, J Fluid Mech, 1995)

    The disk is meshed separately from the uid domain

    The uid mesh is adapted dynamically in time

    The reference velocity is computed from and

    T = 12

    ρu 20 Ahub C T

    a = 1 − u hub

    u 0=

    12

    1 − 1 − C T u 0 C T uhub

    Dr Axelle Vir éTowards the fully-coupled numerical modelling of oating wind turbines

    50

  • 8/15/2019 Samlerapport DeepWind 2013

    52/274

    2. Parameterisation of wind turbinesUniform ow past a 3D turbine of constant thrust coefcient and Re D = 1000

    The size of the uid domain is 25 D × 10 D × 10 D

    The disk thickness is 2 % of the disk diameter D

    The uid mesh adapts to the curvatures of the velocity and pressure elds

    Reference: Potential ow past an actuator disk with constant loading(J. Conway, J. Fluid Mech. 297, 327–355, 1995)

    C T = 0 .2

    C T = 0 .