sem4 solid state 1 23a- 22takde

269
2/18/2014 1 Introduction to Solid State Physics What is Solid State Physics? Study of materials in solid form Materials exist in either one or mixture of three states Solid Liquid Gas Solids (crystals) display a long range order Liquid/fluid: displays short range order Gas : non-ordering manner Solids are again classified in to two types: Crystalline Non-Crystalline (Amorphous) Solid state physics deals with the solid crystals which arranged orderly Simplest solids to study

Upload: sscfcrew

Post on 23-Jan-2017

444 views

Category:

Education


20 download

TRANSCRIPT

Page 1: Sem4 solid state 1 23a- 22takde

2/18/2014

1

Introduction to

Solid State Physics

What is Solid State Physics? Study of materials in solid form

Materials exist in either one or mixture of three states

Solid

Liquid

Gas

Solids (crystals) display a long range order

Liquid/fluid: displays short range order

Gas : non-ordering manner

Solids are again classified in to two types:

Crystalline

Non-Crystalline (Amorphous)

Solid state physics deals with the solid crystals which

arranged orderly

Simplest solids to study

Page 2: Sem4 solid state 1 23a- 22takde

2/18/2014

2

In solids atoms vibrate w.r.t a fixed equilibrium

position rigid solid structure

In liquid and gas, atoms or molecules move in a

further distance non-rigid structure.

Distribution of the equilibrium positions of the

atoms determine the structure of a solid

Three main class of solid:

(i) crystal

(ii) polycrystal

(iii) amorphous.

CRYSTAL STRUCTURE

Page 3: Sem4 solid state 1 23a- 22takde

2/18/2014

3

Crystal

Equilibrium positions of atoms form a repeated

geometrical pattern (periodic) throughout

material without variation in composition,

dimension and orientation.

Examples: metals, alloys, semiconductors and some ceramics

Non-Metallic crystals: Ice, Carbon, Diamond, NaCl,

KCl etc…Metallic Crystals: Copper, Silver,

Aluminium, Tungsten, Magnesium etc…

Long range order

A crystal or crystalline solid is a solid material,

whose constituent atoms, molecules, or ions are

arranged in an orderly repeating pattern extending

in all three spatial dimensions.

So a crystal is characterized by regular

arrangement of atoms or molecules

What is a Crystalline solid?

Page 4: Sem4 solid state 1 23a- 22takde

2/18/2014

4

Polycrystals:

Group of crystals called crystallites or grains.

Arrangement of atoms in polycrystals forms

pattern as in a crystal but the orientation

change at the crystallites boundaries

Examples: metals, alloys, semiconductors

Amorphous:

Equilibrium positions of atoms does not form a

repeated pattern even within short range.

Amorphous (Non-crystalline) Solid is composed of

randomly orientated atoms , ions, or molecules that

do not form defined patterns or lattice structures.

Amorphous materials have order only within a few

atomic or molecular dimensions.

Short range order

Page 5: Sem4 solid state 1 23a- 22takde

2/18/2014

5

Amorphous materials do not have any long-

range order, but they have varying degrees of

short-range order.

Examples to amorphous materials include

amorphous silicon, plastics, ceramica and

glasses.

Amorphous silicon can be used in solar cells

and thin film transistors.

Non-crystalline

Page 6: Sem4 solid state 1 23a- 22takde

2/18/2014

6

Examples:

SiO2

amorphous

Different properties

• crystalline polyethylene translucent

• amorphous polyethylene transparent

(a)

(b)

crystal

Examples of crystals:

Diamonds and gems stones shows flat and sharp surfaces.

Most metals are crystals

Page 7: Sem4 solid state 1 23a- 22takde

2/18/2014

7

o Crystals have sharp melting points

o They have long range positional order

o Crystals are anisotropic(Properties change depending on the direction)

o Some crystals exhibit piezoelectric effect & Ferroelectric effect etc…also

Crystal period - lattice

crystal, (natural/synthetic), consists of atoms or group of atoms arranged periodically or repeated in space (3-D)

Atomic arrangement of solid crystal in 2-D

Basis consists of 2 atoms

basis

lattices

replicas of basis positions translated into lattices

i.e. a periodic arrangement of points in 3-D –forms planes separated at the same distances

A group of atoms or molecules identical in composition

is called the basis or

A group of atoms which describe crystal structure

Page 8: Sem4 solid state 1 23a- 22takde

2/18/2014

8

Assume ideal crystal:

No defects/imperfections such as interstice, impurities, voids/vacancies and dislocations

Periodicity in all direction up to infinity

Crystal surface does not exist.

otherwise situation in real crystals

Lattice and Basis Vector

Lattice point gives a

relative position of a

basis replica.

are basic lattice vectors- shortest

displacement vector

Relative position of any point on the plane w.r.t

A represented by

n1 and n2 are integers

aA B

b

C

D

banda

bnanR

21+=

lattice plane for 2-D crystal lattice

R

Page 9: Sem4 solid state 1 23a- 22takde

2/18/2014

9

Examples:

Positions of point B, C and D relative to A are

Procedure for determining of basis lattice vectors:

Determine the shortest displacement vector joining

the two lattice points and label it as

Second vector, is chosen from the shortest

lattice vector which is not parallel to the vector .

The third vector, is chosen from the shortest

vector which is not in the dan plane.

a , 3

a + 2

b , −

a +

b

a

b

b

a

c

a

In 3-D,

the position of any lattice point relative to A is

given by

lattice vector :

Viewed from two different lattice points such

as and and by choosing a suitable

such that

A lattice has a translation symmetry.

Rrr

+='

cnbnanR

321++=

r

'r

R

Page 10: Sem4 solid state 1 23a- 22takde

2/18/2014

10

Position of an atom relative to it lattice point is

given by basis vector

Labelled as P1 and P2 and

atom position in crystal is given by vector

i = label for the related basis atom

The first three terms : determine the lattice point

Last term determine the atom position relative to the

lattice point.

(a) Basis and

basis vector

.

P1

P2

(b) lattice point and

atoms position

.. .. . .

.. .. . .

.. .. . .

ipcnbnanR

+++=321

basis can be bigger so that its consists

twice as many atoms until every part of

the crystal contains only half of the

original lattice points and new basic

lattice is selected

(a)

.P

P1

2.

P4

P3

Basis consists of twice the size of the basis before

a

b

. . .

. . .

. . .

New basic lattice vector

Page 11: Sem4 solid state 1 23a- 22takde

2/25/2014

1

Unit Cell

Is a building block or 3-D

geometrical block

Each unit is equivalent: shape,

volume, composition and same

distribution of atoms

The arrangement of the unit cell

forms the crystal

not unique: various choice of

unit cell

An atom in the unit cell forms 1

crystal basis

Determine by vector a, b and c

a

b

c

x

y

z

. .

.

. .

. .

.

.

. .

.

.

.

. .

.

.

.

. .

.

.

. .

.

. .

. .

.

.

. .

.

.

.

.

. .

.

. .

.

.

The unit cell and, consequently,the entire lattice, is uniquelydetermined by the six latticeconstants: a, b, c, α, β and γ.

Only 1/8 of each lattice point in aunit cell can actually be assignedto that cell.

Each unit cell in the figure can beassociated with 8 x 1/8 = 1 latticepoint.

Unit CellUnit Cell

Page 12: Sem4 solid state 1 23a- 22takde

2/25/2014

2

Crystal Structure 3

UNIT CELL

Primitive Conventional & Non-primitive

Single lattice point per cell

Smallest area in 2D, or

Smallest volume in 3D

More than one lattice point per cell

Integral multibles of the area of

primitive cell

Body centered cubic(bcc)Body centered cubic(bcc)

Conventional Conventional ≠ Primitive cell≠ Primitive cell

Simple cubic(sc)Simple cubic(sc)

ConventionalConventional = Primitive cell = Primitive cell

Primitive Unit Cell

Smallest volume of a unit cell.

Cell contains primitive basis and can be constructed using primitive lattice vector

Not unique: few primitive cells for certain crystal. All cells have the same volume independence of its shape.

Consists of only one lattice point or one basis.

Page 13: Sem4 solid state 1 23a- 22takde

2/25/2014

3

A primitive unit cell is made of primitivetranslation vectors a1 ,a2, and a3 suchthat there is no cell of smaller volumethat can be used as a building block forcrystal structures.

A primitive unit cell will fill space byrepetition of suitable crystal translationvectors. This defined by the parallelpipeda1, a2 and a3. The volume of a primitiveunit cell can be found by

V = a1.(a2 x a3) (vector products) Cubic cell volume = a3

Primitive Unit Cell and vectors

Non Primitive Unit Cell

Consists of more than one primitive

lattice point or basis

Method of counting number of points or

atoms in unit cell. Each point or atom at:

Corner is 1/8

Edge 1/4

Surface is 1/2

Inside is 1

Page 14: Sem4 solid state 1 23a- 22takde

2/25/2014

4

P = Primitive Unit CellNP = Non-Primitive Unit Cell

1a

Primitive and non primitive cell

.. .. . .

.. .. . .

.. .. . .

.. .. . .

.. .. . .

.. .. . .

N.P

P1

P2

P3

W.S

N.P

Examples in 2-D

Page 15: Sem4 solid state 1 23a- 22takde

2/25/2014

5

Wigner-Seitz Unit Cell

Designed such a way one lattice point located in the

center of the cell and every point in the cell closer to the

center than to the other lattice points.

Is a primitive unit cell with full symmetry.

To construct this cell: choose one lattice point at the

center and draw aline from that point to its neighbour

lattice.

Then draw on each line a plane perpendicular to the each

line and divide it into one half

The polyhedron or smallest geometrical shape

boundaried by these planes and centred by the lattice

point is a Wigner-Seitz cell

2-D Wigner-Seitz Cells A Wigner-Seitz cell constructed arround the

reference point A for a lattice

PQRSTU adalah sel Wigner Seitz kekisi dua

dimensi ini

Q

P R

S

A

T

U

PQRSTU adalah sel Wigner Seitz kekisi dua

dimensi ini

Q

P R

S

A

T

U

Page 16: Sem4 solid state 1 23a- 22takde

2/25/2014

6

Wigner-Seitz Method

A simply way to find the primitive

cell which is called Wigner-Seitz

cell can be done as follows;

1. Choose a lattice point.

2. Draw lines to connect theselattice point to its neighbours.

3. At the mid-point and normalto these lines draw newlines.

The volume enclosed is called as a Wigner-Seitz cell.

Construction of a 3-D lattice Wigner-Seitz cell

for a body-centred cubic (bcc)

(a)

(b)

(c)

(d)

(e)

KBJ

Sel Wigner-Seitz

Page 17: Sem4 solid state 1 23a- 22takde

2/25/2014

7

Wigner-Seitz Cell - 3D

a

b c

Simple cubic (sc):

primitive cell=conventional cell

Fractional coordinates of lattice points:

000, 100, 010, 001, 110,101, 011, 111

Primitive and conventional cells

Body centered cubic (bcc):

conventional ≠primitive cell

a

b cFractional coordinates of lattice points in

conventional cell:

000,100, 010, 001, 110,101, 011, 111, ½ ½ ½

Page 18: Sem4 solid state 1 23a- 22takde

2/25/2014

8

Lattice Sites in Cubic Unit Cell

2D Unit Cell example -(NaCl)

We define lattice points ; these are points with identical

environments

Page 19: Sem4 solid state 1 23a- 22takde

2/25/2014

9

This is also a unit cell -

it doesn’t matter if you start from Na or Cl

This is NOT a unit cell even though they are all the

same - empty space is not allowed!

Page 20: Sem4 solid state 1 23a- 22takde

2/25/2014

10

In 2D, this IS a unit cell

Unit Cell in 3D

Page 21: Sem4 solid state 1 23a- 22takde

2/25/2014

11

Three common Unit Cell in 3D

Volume of a Unit Cell

Can be expressed in terms of basic latticevector.

If a, b and c are the basic lattice vector for a

crystal lattice, then

volume of a unit cell:

Density of the crystal or group of cells isuniform through out crystal because all unit cell

contains same number of atomic distribution

Density of crystal ρρρρ = M/V with M = mass of the

atom in the cell.

V =

c •

a ×

b ( )

Page 22: Sem4 solid state 1 23a- 22takde

2/25/2014

12

Example

Basic lattice vector of CsCl

Explain the shape of the unit cell anddetermine the volume of the cell if a =4.11 Å

Solution:

Base of the cell formed by a and b is a square.

Because

the sides of the cell is a parallelogram

( )zyxacandybbxaa ˆˆˆ,ˆ,ˆ ++===

c = a ˆ x + ˆ y + ˆ z ( )

Volume of the cell:

V =

c •

a ×

b ( )= a( ˆ x + ˆ y + ˆ z ) • (aˆ x × aˆ y )

= a( ˆ x + ˆ y + ˆ z ) • (a2 ˆ z )

= a3

= (4.11×10−10)3

= 6.94 ×10−29 m3

Page 23: Sem4 solid state 1 23a- 22takde

2/25/2014

13

Crystal Lattices

Bravais Lattices(BL)

Non-Bravais Lattices(non-BL)

All atoms are the same kindAll lattice points are equivalent

Atoms are of different kinds. Some

lattice points are not equivalent.

Atoms are of different kinds.Some lattice points aren’t equivalent.

A combination of 2 or more BL

2 d examples

Page 24: Sem4 solid state 1 23a- 22takde

2/26/2014

1

SYMMETRY OPERATION

σσσσp

c

σσσσm

Symmetry Operation

4 important factors in determining crystal structure:

Lattice arrangement

Crystal axes a, b and c

Type of basis

set of symmetry operation

Symmetry Operation:

An operation that change the position of a lattice point

however, there is another lattice point at the same

position as before the operation.

Crystal structure similar as before even though an

operation has been done on the crystal.

Crystal surroundings similar as before

Page 25: Sem4 solid state 1 23a- 22takde

2/26/2014

2

Types of symmetry operation:

Point Operation – an operation that consists of a rotation about an axis, reflection on a plane and an inverse on a point

Translation – an operation that satisfies eqn: T = n1a+n2b+n3c

“Majmuk” Operation – a combine operation of translation and point operation

Due to symmetry there are 14 types of lattices for the 3-D system and 5 types of lattices for 2-D system called Bravais lattice

Crystal Structure 4

Each of the unit cells of the 14 Bravais lattices has one

or more types of symmetry properties, such as

inversion, reflection or rotation,etc.

SYMMETRY

INVERSION REFLECTION ROTATION

ELEMENTS OF SYMMETRY

Page 26: Sem4 solid state 1 23a- 22takde

2/26/2014

3

Crystal Structure 5

Rotation Axis

This is an axis such that, if the cell is rotated around itthrough some angles, the cell remains invariant.

The axis is called n-fold if the angle of rotation is 2π/n.

90

°

120° 180°

Crystal Structure 6

Axis of Rotation

Page 27: Sem4 solid state 1 23a- 22takde

2/26/2014

4

Crystal Structure 7

Axis of Rotation

Page 28: Sem4 solid state 1 23a- 22takde

2/26/2014

5

Example: Symmetry Operation for PF3Cl2

molecules

C2 : 180°°°° rotation

about P-F axis

σσσσp : reflection on a

mirror in the plane

consists of Cl, P and

F atoms

σσσσm : mirror reflection on the horizontal

plane

σσσσp

c3

σσσσm

C2

C2

C2

(Main axis)

C2

atom P

atom Cl

atom F

σsσm

C2

C2

C3

Rajah 1.8:Operasi simetri yang boleh dilakukan kepada molekul PF3Cl2.

Page 29: Sem4 solid state 1 23a- 22takde

2/26/2014

6

Main axis:

Highest symmetry axis

Labelled as C or Z axis

E.g: Cl-P-Cl axis Chosed due to the highest number of fold for

a rotational axis, C3.

Not all crystal has a single axis with highest symmetry to be main axis.

E.g. orthorhombus crystal has three two-fold axes or C2.

Page 30: Sem4 solid state 1 23a- 22takde

2/26/2014

7

Point Symmetry Operation

An operation done on a fixed point inspace.

Using Schoenflies notation

Identity, E

A 2ππππ rotational operation arround any axis

(or an operation without any symmetry operation)

Occur on any object.

Can be simplified as:

Er rr = is a vector connecting any origin and a point

Page 31: Sem4 solid state 1 23a- 22takde

2/26/2014

8

Rotation, Cn

Rotational Operation of 2ππππ/n or 360°/n about

an axis that follow screw rotation.

Symbol: or if rotation on an axis

other than main axis.

Cn operation about y-axis.

Cn m times operation.

Example, taking z-axis as the main axis

then:

i)

ii)

'

nC y

nC

y

nCm

nC

( ) ( )zxyzyxC ,,,,4

−→

( ) ( )zyxzyxCy

−−→ ,,,,2

+X

-X

+Y

- Z

-Y

+Z

-Y

+Y

+X

- Z

-X

+Z

C4(x, y, z)

( ) ( )zxyzyxC ,,,,4 −→

Page 32: Sem4 solid state 1 23a- 22takde

2/26/2014

9

+X

-X

+Y

- Z

-Y

+Z

-X

+X

+Y

+ Z

-Y

-Z

Cy2(x, y, z)

( ) ( )zyxzyxCy

−−→ ,,,,2

Inversion, i

Inversion operation on a point via an

origin (inversion center)

5-pointed star and a triangle do not show

this symmetry.

),,( ),,( zyxzyxi −−−→

Page 33: Sem4 solid state 1 23a- 22takde

2/26/2014

10

Inversion Center

A center of symmetry: A point at the center of the molecule.

(x,y,z) --> (-x,-y,-z)

Center of inversion can only be in a molecule. It is notnecessary to have an atom in the center (benzene, ethane).Tetrahedral, triangles, pentagons don't have a center ofinversion symmetry. All Bravais lattices are inversionsymmetric.

Mo(CO)6

Reflection, σσσσ

A reflection on a plane or mirror plane

Reflection on a horizontal plane, σσσσm

Plane of reflection is perpendicular to the main

axis and include the origin

Reflection on vertical plane, σσσσs

Plane of reflection contains the main axis

Plane of reflection is in diagonal, σσσσp

As in σσσσs this plane include the main axis but

divide into halves the 2-fold axes that

perpendicular to the main axis.

)z ,y ,x()z ,y ,x( −−−−→→→→σσσσ

Page 34: Sem4 solid state 1 23a- 22takde

2/26/2014

11

Crystal Structure 21

Reflection Plane

A plane in a cell such that, when a mirror reflection

in this plane is performed, the cell remains invariant.

Page 35: Sem4 solid state 1 23a- 22takde

2/26/2014

12

Non-standard rotation, symbol Sn

A 2ππππ/n rotation followed by a

reflection on horizontal plane

and

Example:

nmn CS σ=

m

nm

m

n

m

n CSS ) ()( σ==

( ) ( )zxyzyxS −−→ , , , ,4

Notations used in the figures:

Circles (⊕⊕⊕⊕), (), and () are for any object or atoms or group of atoms.

+ and - indicate object under or over the plane of the paper.

() is mirror image of () Circle divided into two () : one circle on

the top and the other one is below it. Schoenflies notation is used then

followed by the international notation in bracket.

Page 36: Sem4 solid state 1 23a- 22takde

2/26/2014

13

Solid state physicist use Schoenflies notation,

Crystalogist favors the international or Hermann-Mauguin notation

Few related symbols for both notation:

1 = E, , n = Cn, m = σσσσ, n’ = i Cn

i=1

Page 37: Sem4 solid state 1 23a- 22takde

2/26/2014

14

Rotational axis

+

++

-

++

++

+

+

+

+

+

+

+

+

+

+

+

+ +

Page 38: Sem4 solid state 1 23a- 22takde

3/4/2014

1

SYSTEMS & TYPES OF LATTICES

2-D and 3-D

Crystal Structure 2

Crystal Lattice

Bravais Lattice (BL) Non-Bravais Lattice (non-BL)

All atoms are of the same kind

All lattice points are equivalent

Atoms can be of different kind

Some lattice points are not

equivalent

A combination of two or more BL

Page 39: Sem4 solid state 1 23a- 22takde

3/4/2014

2

Systems and types of 2D lattices

4 systems of lattices : paralellogram

Square

rectangle

hexagonal

5 types of 2-D lattices based on its symmetry: paralellogram lattices

Square lattices

Body centred rectangle lattices

Rectangle lattices

Hexagonal lattices

Systems and types of 2-D lattices; unit cell, symmetry element, lattice types & group

Sel unit Unsur simetri

αa

b

α

b

a

α

b

a

b

αa

b

Lattice type Groupparalellogram C2

a ≠ b any angle α ≠ π/2

rectangle C2, σa ≠ b, α= π/2

Body centered rectangle C2, σa ≠b, α= π/2

Square C4, σa = b, α= π/2

Hexagonal C6, σa = b, α= 2π/3

Petunjuk:

Paksi tiga lipatan

Paksi empat lipatan

Paksi dua lipatan Pantulan cermin

Paksi enam lipatan

Page 40: Sem4 solid state 1 23a- 22takde

3/4/2014

3

Systems and types of 3-D lattices

There are 14 types of lattices called Bravais lattice.

Seven (7) systems with each system has symmetry element from the same point group.

a and b form the sides for base of unit cell and c is upwards.

αααα, ββββ and γγγγ are the angles between b & c, c & a, dan a & b respectively.

In 1850, M. A. Bravais showed that identical points can be arranged

spatially to produce 14 types of regular pattern. These 14 space

lattices are known as ‘Bravais lattices’.

Crystal Structure 6

Page 41: Sem4 solid state 1 23a- 22takde

3/4/2014

4

Simple Face-centred Body-centred

cubic cubic cubic

P F I

simple body-centred hexagonal

tetragonal tetragonal

P I P

Simple body-centred base-centred Face-centred

Orthorhombic orthorhombic orthorhombic orthorhombic

Rhombohedral simple based-centred triclinic

(trigonal) monoclinic monoclinic

P I C F

P P C P

14 Bravais lattices

S.No Crystal Type Bravais

lattices

Symbol

1 Cubic Simple P

2 Body

centred

I

3 Face

centred

F

4 Tetragonal Simple P

5 Body

centred

I

6 Orthorhombic Simple P

7 Base

centred

C

Page 42: Sem4 solid state 1 23a- 22takde

3/4/2014

5

8 Body

centred

I

9 Face

centred

F

10 Monoclinic Simple P

11 Base

centred

C

12 Triclinic Simple P

13 Trigonal Simple P

14 Hexgonal Simple P

Characteristics of 7 crystal systems

Crystal system unit vector angles between axes

Cubic a = b = c α=β=γα=β=γα=β=γα=β=γ=900

Tetragonal a = b ≠≠≠≠ c α=β=γα=β=γα=β=γα=β=γ=900

Orthorhombic a ≠≠≠≠ b ≠≠≠≠ c α=β=γα=β=γα=β=γα=β=γ=900

Hexagonal a = b ≠≠≠≠ c αααα ==== ββββ = 900, γγγγ = 1200

Rhombohedral a = b = c αααα ==== ββββ ≠ γγγγ ≠ 900

Monoclinic a ≠≠≠≠ b ≠≠≠≠ c αααα ==== ββββ = γγγγ ≠ 900

Triclinic a ≠≠≠≠ b ≠≠≠≠ c αααα ≠ ββββ ≠ γγγγ ≠ 900

Page 43: Sem4 solid state 1 23a- 22takde

3/4/2014

6

Symmetry elements of the unit cells

(a)(b)

(c)

(d)

(e) (f)

Cubic tetragonalorthorhombic

monoclinic

hexagonaltrigonal

Cubic System

Lattice is constructed using cubic cell.

Has the most number of symmetry elements: 6 diad (C2 ),

4 triad (C3),

3 tetrad (C4) and

9 σσσσ

3 Bravais lattices. Simple Cubic (SC)

Body-Centred Cubic (BCC)

Face-Centred Cubic (FCC)

Page 44: Sem4 solid state 1 23a- 22takde

3/4/2014

7

i) Simple Cubic (SC):

Lattice points only at all corners.

Primitive cell.

Primitive Lattice Vectors:

a = cube length.

ii) Body-Centred Cubic (BCC):

2 lattice points in one cube:

1 at the centre and 1 at corners.

Basic vectors are contructed from centre to the three nearest neighbours:

z and ,y ,x aaa === cba

( ) ( ) ( ) z+yx ,z+y+x ,zy+x21

21

21 −=−=−= aaa cba

Basis Vectors for (a) BCC and (b) FCC

(a)

a

b

c

(b)

a

bc

( )

( )( ) z+yx

,z+y+x

,zy+x

21

21

21

−=

−=

−=

a

a

a

c

b

a

( )

( )( ) ,z+x

z+y

y+x

21

21

21

a

a

a

=

=

=

c

b

a

Page 45: Sem4 solid state 1 23a- 22takde

3/4/2014

8

1

2

3

1ˆ ˆ ˆ( )

2

1ˆ ˆ ˆ( )

2

1ˆ ˆ ˆ( )

2

a x y z

a x y z

a x y z

= + −

= − + +

= − +

Primitive and conventional cells of BCC

Primitive Translation Vectors:

Primitive and conventional cells of FCC

Page 46: Sem4 solid state 1 23a- 22takde

3/4/2014

9

iii) Face-Centred Cubic (FCC):

4 lattice points:

1 at corners and 3 on the faces.

Non- primitive.

Basis vectors are constructed from one corner to the nearest neighbours at the face centre:

Examples: Cu and NaCl.

( )

( )

( ) ,z+xa=

z+ya=

y+xa=

21

21

21

c

b

a

Tetragonal System

Base is a square and 4 rectangle sides are orthogonal to the base

Symmmetry elements: 1 C4, 4 C2 and 5 σσσσ

2 types of Bravais lattice.

i) Simple Tetragonal (ST):

Lattice points are at the corners.

A primitive cell.

Primitive lattice vector: z cc dan ,y ab ,x aa ============

Page 47: Sem4 solid state 1 23a- 22takde

3/4/2014

10

20

ii) Body-Centred Tetragonal (BCT):

2 primitive lattice points:

1 at the centre and 1 at corners.

Basic Vectors: (from centre to the corners)

Example tetragonal crystal: ββββ-tin (-Sn).

( )( )( ) .z + yx

,z + y+x

,z y+x

21

21

21

21

21

21

ca

ca

ca

−=

−=

−=

c

b

a

Page 48: Sem4 solid state 1 23a- 22takde

3/4/2014

11

21

Ortorombus System

Symmetry elements:3 C2 and 3 σσσσ

4 types of Bravais lattice: 1 P, 1I, 1 F and 1 C.

Eg: Galium (Ga) and argentum nitrat (AgNO3).

Monoclinic system

Symmetry elements: 1 C2 and 1 σσσσ2 types of Bravais lattice: 1 P, 1 C.E.g: αααα-Selenium (αααα-Se) and sodium carbonate (Na2CO3).

Page 49: Sem4 solid state 1 23a- 22takde

3/4/2014

12

Triclinic System Symmetry elements: only E (no

symmetry axis / mirror plane) Eg: hydrated copper sulphate

(CuSO4.5H2O).

Hexagonal System

Symmetry elements: 1 C6, 6 C2 and 7 σσσσ Eg: Zn and silica (SiO2).

Trigonal System

1 C3, 3 C2 and 3 σσσσ Eg: As, CaCO3.

Non-Bravais Lattices

Besides Bravais lattices there are few important structures that can be classified as non-Bravais lattices.

Examples:

diamond structure

zincblend structure

hexagonal closed-packed structure

natrium chloride structure

cesium chloride structure

Page 50: Sem4 solid state 1 23a- 22takde

3/4/2014

13

Diamond Structure

The diamond lattice is consist of two

interpenetrating face centered bravais lattices.

There are eight atom in the structure of diamond.

Each atom bonds covalently to 4 others equally

spread about atom in 3D.

The coordination number of diamond structure is 4.

Formed by carbon atoms that consists of two face-centred cubic (FCC) interpenetrating each other

Lattice can be assumed as FCC with two bases at O and . ( )a x y z

4ɵ ɵ ɵ+ +

( )a x y z4ɵ ɵ ɵ+ +

Page 51: Sem4 solid state 1 23a- 22takde

3/4/2014

14

The diamond lattice is not a Bravais

lattice.

Non-Bravais due to the surroundings

of any point are different in orientation

compared to its nearest neighbour

surroundings.

Eg: diamond (C), grey tin (α-Sn),

germanium (Ge) and silicon

(Si).(Group IV elements)

Zinc Blende Structure

Zinc Blende is the name given to the mineral ZnS. It

has a cubic close packed (face centred) array of S and

the Zn(II) sit in tetrahedral (1/2 occupied) sites in the

lattice. Contains same number of zinc and sulphur ions

distributed within diamond lattice such that each ion

surrounded by 4 different nearest neighbours.

Eg.: ZnS, CdS, CuBr, AgI, GaP, GaAs and InP.

Page 52: Sem4 solid state 1 23a- 22takde

3/4/2014

15

Hexagonal Close-Packed Structure (HCP)

This is another structure that iscommon, particularly in metals.

In addition to the two layers ofatoms which form the base and theupper face of the hexagon, there isalso an intervening layer of atomsarranged such that each of theseatoms rest over a depressionbetween three atoms in the base.

Crystal Structure

Bravais Lattice : Hexagonal Lattice

He, Be, Mg, Hf, Re (Group II elements)

ABABAB Type of Stacking

a=b a=120, c=1.633a,

basis : (0,0,0) (2/3a ,1/3a,1/2c)

Basic structure for the HCP is a simple hexagonal Bravais system

Page 53: Sem4 solid state 1 23a- 22takde

3/4/2014

16

Consist of two simple hexagonal Bravais lattices which interpenetrating each other

c

a120o

c

aa

3x(b)=(a)

13 1 2 3a a a+ +1

312

633.1=a

c

a3

a2

a1

a1

1_

3a

21_

3a

3

1_

2+ +

Page 54: Sem4 solid state 1 23a- 22takde

3/4/2014

17

Sodium Chloride Structure

Sodium chloride alsocrystallizes in a cubic lattice,but with a different unit cell.

Sodium chloride structureconsists of equal numbers ofsodium and chlorine ionsplaced at alternate points of asimple cubic lattice.

Each ion has six of the otherkind of ions as its nearestneighbours.

Page 55: Sem4 solid state 1 23a- 22takde

3/4/2014

18

If we take the NaCl unit cell and remove all the red Clions, we are left with only the blue Na. If we comparethis with the fcc / ccp unit cell, it is clear that they areidentical. Thus, the Na is in a fcc sublattice.

This structure can be

considered as a face-

centered-cubic Bravais lattice

with a basis consisting of a

sodium ion at 0 and a chlorine

ion at the center of the

conventional cell,

LiF,NaBr,KCl,LiI,etc

The lattice constants are in

the order of 4-7 angstroms.

)(2/→→→

++ zyxa

x

y

z

0

x y z+ +( )_a2

a

Page 56: Sem4 solid state 1 23a- 22takde

3/4/2014

19

Cesium Chloride Structure Cs+Cl-

Cesium chloride crystallizes in acubic lattice. The unit cell may bedepicted as shown. (Cs+ is teal,Cl- is gold).

Cesium chloride consists of equalnumbers of cesium and chlorineions, placed at the points of a

body-centered cubic lattice so thateach ion has eight of the other kindas its nearest neighbours.

The translational symmetry of this structure is that of the

simple cubic Bravais lattice, and is described as a simple

cubic lattice with a basis consisting of a cesium ion at the

origin 0 and a chlorine ion at the cube center

)(2/→→→

++ zyxa

x

y

z

0

a

x y z+ +( )_a2

Page 57: Sem4 solid state 1 23a- 22takde

3/4/2014

20

8 cell

Cesium Chloride Cs+Cl-

Page 58: Sem4 solid state 1 23a- 22takde

3/9/2014

1

Position, Direction and Plane in Crystals

Position in a Cell

Choose a corner as origin.

Position of a point in a cell is written as

with p, q, s ≤≤≤≤ 1.

cbar

sqp ++=

a

b

c

Y

Z

X

r

α

β

γ

[pqs]

Position of a point is written as

pqs.

Page 59: Sem4 solid state 1 23a- 22takde

3/9/2014

2

Example:

Centre of a parallelepiped unit

with a position vector

is written as

Point of a quarter diagonal

from origin

Coordinate of the centre face:

; ;

2

1,

2

1,

2

1

02

1

2

12

1

2

1 02

1

2

10

4

1

4

1

4

1

cba

21

21

21 ++

2

1

2

1

2

1

( )zyxr a ˆˆˆ4

++=

Crystal Directions

Fig. Shows

[111] direction

We choose one lattice point on the lineas an origin, say the point O. Choice oforigin is completely arbitrary, sinceevery lattice point is identical.

Then we choose the lattice vectorjoining O to any point on the line, saypoint T. This vector can be written as;

R = n1 a + n2 b + n3c

To distinguish a lattice direction from alattice point, the triple is enclosed insquare brackets [ ...] is used.[n1n2n3]

[n1n2n3] is the smallest integer of thesame relative ratios.

Page 60: Sem4 solid state 1 23a- 22takde

3/9/2014

3

210

X = 1 , Y = ½ , Z = 0

[1 ½ 0] [2 1 0]

X = ½ , Y = ½ , Z = 1

[½ ½ 1] [1 1 2]

Examples

Negative directions

When we write the

direction [n1n2n3]

depend on the origin,negative directionscan be written as

R = n1 a + n2 b + n3c

Direction must be

smallest integers.

Y direction

(origin) O

- Y direction

X direction

- X direction

Z direction

- Z direction

][ 321 nnn

][ 321 nnn

Page 61: Sem4 solid state 1 23a- 22takde

3/9/2014

4

X = -1 , Y = -1 , Z = 0 [110]

Examples of crystal directions

X = 1 , Y = 0 , Z = 0 [1 0 0]

Examples

X =-1 , Y = 1 , Z = -1/6

[-1 1 -1/6] [6 6 1]

We can move vector to the origin.

Page 62: Sem4 solid state 1 23a- 22takde

3/9/2014

5

Direction in a crystal

Represented by [pqs] such that a vector of

is in the determined direction.

Negative index represented by a bar on its magnitude

Eg. is in opposite direction to [111].

[100] is in a direction, [010] in b direction, and [001] in c

direction.

For any paralellepiped unit cell, [111],

, and directions are parallel with all four

diagonals.

]111[___

]111[_

]111[_

]111[__

cbar

sqp ++=

Using right-handed coordinate

system determine two points along

the direction.

Subtract the start coordinate from

the end coordinate

1,1,1

0,0,1

1,1,01,0,0

X

y

c

a

z

b

Convert the fraction into smallest integer and

write in the form of [h k l ]

Miller indices for direction

Page 63: Sem4 solid state 1 23a- 22takde

3/9/2014

6

Eg: Determine the direction of A, B, and C

A direction

(a) Two points: 1, 0, 0 and 0, 0, 0

(b) (1, 0, 0) – (0, 0, 0) = 1, 0, 0

(c) [1, 0, 0]

B direction

(a) Two points: 1, 1, 1 and 0, 0, 0

(b) (1, 1, 1) – (0, 0, 0) = 1, 1, 1

(c) [1, 1, 1]

C direction

(a) Two points: 0, 0, 1 and ½, 1, 0

(b) (0, 0, 1) – (½, 1, 0) = -½, -1, 1

(c) 2 (-½, -1, 1) = -1, -2, 2

(d)

0,0,0

1,0,0

1,1,1

A

B

y

ʓʓʓʓ

C

x

[ ]221

½ ,1,0

0,0,1

Eg: Determine the direction in a cubic system

011

a

-a

a

X

y

z

a

-y[ ]011

Page 64: Sem4 solid state 1 23a- 22takde

3/9/2014

7

Plane in a crystal

Plane can be identified by three lattice points on it

Plane orientation is determined by a vector normal

to the plane.

Set of normal vectors a x b, b x c and c x a formed

a basis vector normal to the lattice plane and can be

written as a linear combination of basic vector set

with respective coefficient of integer.

Plane is written in Miller indices.

If vector and are 2

vectors in the plane, then

−−

−−

zyxxyz

xyyzxz

yaxyz

baaccb

abbcac

bbcrr

+

+

=

)( )( )(=

)( )(= 21

xxx

xxx

xx

bc=r1

yz − ba=r2

yx −

b

c

Y

Z

X

O

a

1 2 r r X

r 2

r 1

Intercepts at X, Y and Z axes are xa,

yb dan zc.

Normal vector to the plane that

contains r1 and r2.

Page 65: Sem4 solid state 1 23a- 22takde

3/9/2014

8

The equation can be rewritten as

h, k and l are smallest integers and N is a number

which does not affect the direction of the vector.

All three integers h, k and l are Miller indices for the

plane and shown as (hkl).

Definition: Miller Indices are the reciprocals of the

fractional intercepts (with fractions cleared) which

the plane makes with the crystallographic x,y,z axes

of the three nonparallel edges of the cubic unit cell.

( ) ( ) ( ) + + = 21 baaccbrr

xxxx lkhN

Method of determining Miller indices of plane

1. Choose an origin at one of the lattice points

2. Determine the intercepts of the plane with all axes

3. Axes can be primitive or non-primitive. Eg: 3, 2, 2

4. Determine their inverse

5. Eg: Inverse of 3, 2, 2 are:

6. Multiply these numbers with common number to get

smallest integers with same ratio

2

1,

2

1,

3

1

Page 66: Sem4 solid state 1 23a- 22takde

3/9/2014

9

5. Result is h, k and l.

6. In the example, common number is 6 and the

three smallest integers are 2, 3, 3.

7. Finally write index as (hkl). Example: (233).

8. If the plane pass through origin move the plane 1

lattice point towards +ve / -ve

9. If the plane does not cross the axis or cross at ∝,

index = 0.

10. Cross point at –ve axis, put a bar on the index.

Example: cross point at -1a

001

_

Examples

(110)

(111)

(100)

(010)

(001)

a

b

c

Page 67: Sem4 solid state 1 23a- 22takde

3/9/2014

10

001 Plane

•If the plane pass

through origin move the

plane 1 lattice point

towards +ve / -ve

110 Planes

Page 68: Sem4 solid state 1 23a- 22takde

3/9/2014

11

111 Planes

Example: Determine Miller indices for A, B and C planes

C

x

z

y = 2

y

A B

Page 69: Sem4 solid state 1 23a- 22takde

3/9/2014

12

A Plane(a) x = 1, y =1 , z = 1(b) 1/x= 1, 1/y= 1, 1/z = 1(c) (1, 1, 1)

B Plane

(a) x = 1, y =2 , z = ∞

(b) 1/x= 1, 1/y = ½ , 1/z = 0

(c) 2 ( 1 ½ 0 )

(d) (2, 1, 0)

)010(

C Plane(a) Move the plane 1 lattice point in -y

x = ∞, y = -1 , z = ∞(b) 1/x = 0, 1/y= -1, 1/z = 0(c) no fraction (d)

C

x

z

y = 2

y

A B

Rules for determining Miller

Indices:

1. Determine the intercepts of the

face along the crystallographic

axes, in terms of unit cell

dimensions.

2. Take the reciprocals

3. Clear fractions

4. Reduce to lowest terms

An example of the (111) plane (h=1,

k=1, l=1) is shown on the right.

Miller Indices

Page 70: Sem4 solid state 1 23a- 22takde

3/9/2014

13

Rules for determining Miller

Indices:

1. Determine the intercepts of the

face along the crystallographic

axes, in terms of unit cell

dimensions.

2. Take the reciprocals

3. Clear fractions

4. Reduce to lowest terms

Another example:

Axis X Y Z

Intercept

points 1 ∞ ∞

Reciprocals 1/1 1/ ∞ 1/ ∞Smallest

Ratio 1 0 0

Miller Đndices (100)

Example-1

(1,0,0)

Page 71: Sem4 solid state 1 23a- 22takde

3/9/2014

14

Axis X Y Z

Intercept points 1 1 ∞

Reciprocals 1/1 1/ 1 1/ ∞Smallest

Ratio 1 1 0

Miller Đndices (110)

Example-2

(1,0,0)

(0,1,0)

Axis X Y Z

Intercept

points 1 1 1

Reciprocals 1/1 1/ 1 1/ 1Smallest

Ratio 1 1 1

Miller Đndices (111)(1,0,0)

(0,1,0)

(0,0,1)

Example-3

Page 72: Sem4 solid state 1 23a- 22takde

3/9/2014

15

Axis X Y Z

Intercept points 1/2 1 ∞

Reciprocals 1/(½) 1/ 1 1/ ∞Smallest

Ratio 2 1 0

Miller Đndices (210)(1/2, 0, 0)

(0,1,0)

Example-4

Axis a b c

Intercept

points 1 ∞ ½

Reciprocals 1/1 1/ ∞ 1/(½)

Smallest Ratio 1 0 2

Miller Đndices (102)

Example-5

Page 73: Sem4 solid state 1 23a- 22takde

3/9/2014

16

Axis a b c

Intercept points -1 ∞ ½

Reciprocals 1/-1 1/ ∞ 1/(½)

Smallest Ratio -1 0 2

Miller Đndices (102)

Example-6

Miller Indices

Page 74: Sem4 solid state 1 23a- 22takde

3/9/2014

17

Reciprocal numbers are: 2

1 ,

2

1 ,

3

1

Plane intercepts axes at cba 2 ,2 ,3

Indices of the plane (Miller): (2,3,3)

(100)

(200)

(110)(111)

(100)

Indices of the direction: [2,3,3]a

3

2

2

bc

[2,3,3]

Page 75: Sem4 solid state 1 23a- 22takde

3/9/2014

18

Indices of a Family or Form

Sometimes when the unit cell has rotational symmetry,several nonparallel planes may be equivalent by virtue of thissymmetry, in which case it is convenient to lump all theseplanes in the same Miller Indices, but with curly brackets.

Thus indices h,k,l represent all the planes equivalent to theplane (hkl) through rotational symmetry.

)111(),111(),111(),111(),111(),111(),111(),111(111

)001(),100(),010(),001(),010(),100(100

1. Plane and its –ve are the same

Eg:

patterned plane:

(0 2 0) – x, y, z coordinate

–x’, y’, z’ coordinate

2. A plane and its multiple are notequals

(1 0 0) ≠ (2 0 0).

z'z

x

½½½½0,0,00,1,0

x'

y, y’

)020()020( =( )020

Rules

Page 76: Sem4 solid state 1 23a- 22takde

3/9/2014

19

3. Group of identical planes are written ashkl

(110)(101)

110 = (011)

4. Example: 100 represents all the face plane of a simple cubic.

5. In a cubic system a direction with an index similar to a plane is orthogonal to the plane

)110(

)101(

)011(

Group of parallel planes (a) Group of (100) planes, (b) group of (111) planes and (c) group

of (221) planes

(a) (b)

(c)

a) 100 b) 111

221

Page 77: Sem4 solid state 1 23a- 22takde

3/9/2014

20

z

x

0 y

Identical (110)planes

(110)

x

z

y0

identical (111) planes

(111)

x

c y

b

a

O

(a)

z z'z

x x'

y

-b

0 0’c/2

plane( )210

Examples: Determine Miller indices for the planes indicated in the figure

Answer: ( )210

Page 78: Sem4 solid state 1 23a- 22takde

3/9/2014

21

f

e

x

y

(b)

z

g

h

plane ( )110a

(b)

Intercept at y-axis x

c

y

b

0

-y

b

z

Bravais indices for hexagonal and trigonal:

For hexagonal and trigonal structure, Bravais

indices involve four indices (hkil).

Where:ikh =+

Page 79: Sem4 solid state 1 23a- 22takde

3/9/2014

22

a1, a2 and a3 axes are orthogonal to the c axis

and making 120o between each other.

(b)(1010)

a 2

C

120o

(a)

(1102)−

120o

120o

a 1

a3

Examples: Determine Miller indices for A and B planes and direction of C & D

A

a2

a1

a3

B

D

c

C

A plane

(a) a1 = a2 = a3 = ∞ , c = 1

(b) 1/a1=1/a2 =1/a3 = 0 , 1/c = 1

(c) (0 0 0 1)

B plane

(a) a1 = 1 , a2 = 1 , a3 = - 1/2, c = 1

(b) 1/a1=1, 1/a2 =1, 1/a3 = -2 , 1/c = 1

(c) ( )1211

Page 80: Sem4 solid state 1 23a- 22takde

3/9/2014

23

C direction

(a) Two points : 0, 0, 1 and 1, 0, 0

(b) ( 0, 0, 1) – (1, 0, 0) =-1, 0, 1

(c)

D direction

(a) Two points: 0, 1, 0 and 1, 0, 0

(b) (0, 1, 0) – (1, 0, 0) = -1, 1, 0

(c)

[ ]011

[ ]101

A

a2

a1

a3

B

D

c

C

Conversion of 3-coordinate into 4-Coordinate system:

h’ k’ l’ h k i l

( )

( )

( )'

''23

''23

nll

khi

hkn

k

khn

h

=

+−=

−=

−=

Page 81: Sem4 solid state 1 23a- 22takde

3/9/2014

24

Bravais indices (hkil) can be converted into

Miller indices (pqs) using:

.+2=

,++=

,+2=

lihs

lihq

lihp

−−

Trigonal System

(111)

a 2

a 1

a 3 α α

α

Page 82: Sem4 solid state 1 23a- 22takde

3/25/2014

1

Determination of Crystal Structure

Introduction How to determine atomic structure or arrangement in a

crystal: Wave diffraction technique Requirement : wavelength is in the order of the atomic

spacing (λ ≈ a).Eg: a for nearest neighbour for the copper crystal(FCC structure) = 2.55 Å.

If λ >> a (eg. Visible light λ = 4000 - 7000 Å):Diffraction effect can not show the crystal structure indetail.

If λ << a: Diffraction angle is too small maximumpeaks are very close together diffraction patterndifficult to see.

Page 83: Sem4 solid state 1 23a- 22takde

3/25/2014

2

Source of Diffraction

von Laue (1912): Crystal as 3-D diffractiongratings

Primary source: X-ray. Secondary sources: Neutron, electron. Electron diffraction is used for surface study

of materials. Neutron diffraction is used for high precision

study

X-ray

Found by Wilhelm Conrad Röntgen (1895) EM wave: high f or small λ (~1 – 100 Å) but λ ≈ a.

rest mass = 0. Energy, E related to λ via Planck’s hypothesis, i.e.

c = speed of light, ν = frequency and h = Planck’s constant = 6.62 x 10-34 Js.

Can also be expressed as,E is in keV and λ in Å.

Range of E in crystallography: 10 - 50 keV.

λλλλνννν

hc=h=E

E

12.4====λλλλ

Page 84: Sem4 solid state 1 23a- 22takde

3/25/2014

3

X-Ray Generation

High energy electrons bombarding metal anode.2 process happened.

Process 1. Deceleration of e in the metal target. electron is decelerated by nucleus field, loss its

kinetic energy in form of EM radiation Spectrum is continuous, or white spectrum or

bremsstrahlung spectrum. Process 2. Non-elastic excitation of core electrons

in the target atoms

If incident electrons has enough E, core electrons inthe target metal can be expelled

Other electron from higher energy level falls intothis vacant level and extra energy is produced inform of photons or EM.

The spectrum is sharp line spectrum that follows

certain series which represents characteristic of the

target material

K series of X-ray is an X-ray radiated whenelectrons from L, M, N shell and so on jump intothe vacant left by electron that come out from Kseries.

Target materials: Cu, Mo and W.

Page 85: Sem4 solid state 1 23a- 22takde

3/25/2014

4

Eg: A difractometer

Example of X-ray spectrum

X-ray Spectrum emitted by Cu source.

Kα-ray: Emitted when e from L shell jump into K shell.

Kβ-ray: Emitted when e from M shell jump into K shell

Keamatan

Spektrum garis

Spektrum selanjar

K β 1

K α 2

K α 1

1.0 2.0 λλλλ Panjang gelombang, Angstrom.

Page 86: Sem4 solid state 1 23a- 22takde

3/25/2014

5

Relation between electron transition and E and λ of X-ray emitted by Cu target

Lines transition E (keV) λ (Å)

Kα1 LIIIK 8.045 1.5405

Kα2 LIIK 8.025 1.5444

Kβ1 MIIIK 8.903 1.393

Kβ3 MIIK 8.900 1.393

Diffraction pattern of an X-ray from a crystal

Page 87: Sem4 solid state 1 23a- 22takde

3/25/2014

6

Neutron

Neutron is used to study magnetic structure ofmaterials – based on its magnetic moment.

Neutron energy is related to λ by de Broglie eqn.

Mn = jisim neutron = 1.675 x 10-27 kg Can also be written as

E in keV and λ in Å. For λ ≅ 1 Å ⇒ E ≅ 0.08 eV. “Thermal neutron” has

E and λ within this range.

2 n

2

M2

hE

λλλλ====

21E 28.0

−−−−≅≅≅≅λλλλ

Radiation from a narrow wavelength band selected using a monochromator

Neutron diffraction is mostsuitable for study of thestructure of normalorganics and non-organics (Basic elementare C and H)

Energy, meV 40 80 120 160 200

0.5 1.0 1.5 2.0 2.5

Wavelength, Angstrom.

Inten

sity

Spectrum of slow neutron

Page 88: Sem4 solid state 1 23a- 22takde

3/25/2014

7

Electrons

Short penetration power⇒ suitable for surface study of crystals, thin films and

thin crystals de Broglie relation for e

E in eV and λ in Å. For λ = 1 Å, E = 150 eV (compare to 12 keV for X-ray)

(((( )))) 21mE2

h====λλλλ 21

E

12≅≅≅≅

Scanning Electron Microscope

Page 89: Sem4 solid state 1 23a- 22takde

3/25/2014

8

Bragg’s Law

W. L. Bragg: Explained the diffracted rays from crystals

Assumption: Specular reflection:

θi = θr

θi = incoming angle,θr = reflection/ dispersion angle.

For elastic dispersion λ constant before and after dispersion.

For a cubic unit cell (dimension a), dhkl

(((( ))))2

1

222

hkl

lkh

ad

++++++++

====

Groups of reflection plane in simple cubic crystals

(010)

(110) (310)

(120)

(130)

Page 90: Sem4 solid state 1 23a- 22takde

3/25/2014

9

dhkl and h, k, l relation

2hkld

(((( ))))2222 lkha ++++++++

(((( )))) (((( )))) (((( )))) 123

22

21 alakah

−−−−++++++++

(((( )))) (((( )))) 123

21

22 alakh−−−−

++++++++

(((( )))) (((( )))) 123

21

22ala3hkkh4

−−−−++++++++++++

(((( )))) (((( )))) (((( ))))[[[[ ]]]] (((( ))))1

221

23

212

ak+kosaahl2al+ahsin

13

−−−−

ββββ−−−−ββββ

Monoclinic

Trigonal

(rombohedron)

Hexagonal (P)

Tetragonal

Orthorhombic

Cubic

System

(((( )))) (((( )))) (((( ))))[[[[ ]]]](((( )))) (((( ))))αααα++++αααα−−−−αααα

αααααααα−−−−αααα++++++++++++++++++++====

322

222222

kos2kos31sin=R

sinkososkhlklhk2lkhT ,TRa

Reflection of rays at two planes

dhkl

d sin θθθθ n

θθθθ n

d sin θθθθ n

θθθθ n

θθθθ n θθθθ n

Page 91: Sem4 solid state 1 23a- 22takde

3/25/2014

10

Wave 1, reflected from the lower plane travelling further compared to wave 2 (reflected from the top plane) deviated by 2dhkl sin θn

Constructively interfered and formed a maximum intensity if the path difference is an integral number of λ, i.e.

Bragg’s law

n = order of reflection; θn = Bragg angle

,...3,2,1,0 ; = sin 2 ±±±=nndnhkl

λθ

Pattern of x-ray diffraction

Page 92: Sem4 solid state 1 23a- 22takde

3/25/2014

11

Example 1:

Aluminium with simple cubic structure and lattice constant a = 4.04 Å is used as a specimen in an x-ray diffraction. What is the 2nd order diffraction angle if wavelength of the x-ray is 1.60 Å?

Answer

Replace n = 2, λ = 1.6 Å and d = 4.04 Å in Bragg’s eqn,

( )( )( )

o

10

10

1

1

33.23

10 04.42

10 6.12sin

=

=

−−

X X

θ

2 ; = sin 2 =nndnhkl

λθ

Page 93: Sem4 solid state 1 23a- 22takde

3/25/2014

12

Example 2:

A crystal of S.C. structure with lattice constant,a = 3.80 Å used to diffract x-ray with 3.50 Åwavelength. Determine all set of planes that satisfyBragg’s condition and for each peak calculateBragg’s angle, θi.

Solution

Using Bragg’s law and equation

( ) 21222

2

2sin

lkha

n

d

n

hkl

n

++=

=

λ

λθ

( ) 21222

10

10

10 80.32

10 50.3lkhn ++

××

×=

( ).1

4605.021222

<

++= lkhn

Calculate for various values of h, k and l and its relation with Bragg’s angle.

Allowable values for each plane and order of Bragg’s reflection.

(hkl) n 0.4605n(h2 + k2 + l2) 1/2 θ (θ (θ (θ (°°°°))))

(100) 1 0.4605 27.4

(100) 2 0.9210 67.1

(110) 1 0.6510 40.6

(111) 1 0.7980 52.9

Page 94: Sem4 solid state 1 23a- 22takde

3/25/2014

1

RECIPROCAL LATTICE

A crystal contains many set of planes in a crystal

Thus a wave propagating through a crystal will be diffracted by various set of planes

various diffraction angle

Which plane that satisfy Bragg’s law?

use the idea of reciprocal lattice

A reciprocal lattice is a construction in a reciprocal space.

A translation lattice vector represents an infinite lattice points

for all integer ni.332211 aaaR

nnn ++=

Page 95: Sem4 solid state 1 23a- 22takde

3/25/2014

2

Groups of reflection plane in simple cubic crystals

(010)

(110) (310)

(120)

(130)

(sh/λ - s

o/λ) = h a* + k b* + l c*,

Planes in real lattice become points

in reciprocal lattice and vice-versa

Page 96: Sem4 solid state 1 23a- 22takde

3/25/2014

3

Reciprocal Lattice

(01)

(10)(11)

(21)

10 20

11

221202

01 21

00

The reciprocal lattice has an origin

1a

2a

1a1

1a

*

11g *

21g*b2

*b1

2D reciprocal lattices

Example-1

Each one of these points correspond to

a set of ‘planes’ in real space

2

1a

Note that vectors in reciprocal

space are perpendicular to planes

in real space (as constructed!)

Overlay of real and

reciprocal lattices

g vectors connect

origin to reciprocal

lattice points

1a

2a

*b2

*b1

Note that vectors in reciprocal space

are perpendicular to planes in real

space (as constructed!)

The real lattice

The reciprocal lattice

Example-2

Page 97: Sem4 solid state 1 23a- 22takde

3/25/2014

4

Lattices constructed by a set vector R normally

known as direct lattice or crystal lattice.

An equaivalent 3-dimensional reciprocal lattice can

be obtained using

for all R.

A reciprocal lattice is define by a set of vector K

that satisfy eqn:

m1, m2 and m3 are any integer

Lattice points formed by set of vector K form a

reciprocal lattice

1 = e )R.K(

i

332211 bm + bm + bm =K

b1, b2 and b3 are primitive translation vectors of the reciprocal lattice

These are related to the primitive translation vectors of the direct lattice a1, a2 and a3 by:

These equation satisfy as reciprocal lattice in the equation by this relation:

δij is Kronecker delta with this properties

1 = e)R.K(

i

a a . a

a a2b

321

321

x

xπ=

321

132

a a . a

a a2b

x

xπ=

321

213

a a . a

a a2b

x

xπ=

ijji δπ 2a . b =

ji

jiij

≠=

==

if ,0

if ,1δ

Page 98: Sem4 solid state 1 23a- 22takde

3/25/2014

5

From these equation, b1 is normal to both a2 and a3, and its component on a1, is 2π/a1.

b2 is normal to both a3 and a1, and its component on a2 is 2π/a2

b3 is normal to both a1, and a2, and its component on a3, is 2π/a3.

b1, b2 and b3 vectors are not necessary orthogonal to each other and none are parallel with any lattice vectors.

|a1. (a2 x a3)| is the volume of primitive unit cell, Vk

of a direct lattice.

Volume of a parallelepiped define by b1, b2 and b3

is volume of the reciprocal lattice,

Vks = |b1. (b2 x b3)| = (2π)3/Vk.

Vks is called “volume” although having the unit of

reciprocal lattice.

Can be shown that reciprocal lattice vector

Khkl = h b1 + kb2 + lb3

is orthogonal to the plane of a direct lattice with

Miller indices (hkl).

Page 99: Sem4 solid state 1 23a- 22takde

3/25/2014

6

Reciprocal Lattice its relation to the crystal lattice

( )32

*

1

1aa

Vb

×= ( )13

*

2

1aa

Vb

×= ( )21

*

3

1aa

Vb

×=

B

O

P

M

A

C

*b3

2a

1a

3a

( )

OPCellHeight of OAMBArea

OAMBArea

aaV

bb

1

)(

)(

121

*

3

*

3

=⋅

=

×==

001

*

3

1

db =

B

21

*

3 to is aandab

It is defined as;

A reciprocal lattice vector is ⊥ to the corresponding real lattice plane

*

3

*

2

*

1

*blbkbhghkl

++=

hkl

hklhkld

gg1** ==

The length of a reciprocal lattice vector is the reciprocal of the

spacing of the corresponding real lattice plane

Planes in the crystal become lattice points in the

reciprocal lattice AN ALTERNATE CONSTRUCTION OF THE REAL LATTICE

Reciprocal lattice point represents the orientation

and spacing of a set of planes

Page 100: Sem4 solid state 1 23a- 22takde

3/25/2014

7

Example

Simple cubic (SC) lattice with primitive unit cell with sides a form an SC reciprocal lattice with sides 2π/a. Prove it.

Solution

Primitive lattice vector for SC

From the Figure, primitive lattice vectors can be written as

i j

k

b

c

a 1

a 2

a 3

kaajaaiaa ˆˆˆ321 ===

From the equation:

Using the same method we can obtain

This prove that primitive lattice vector is a SC with

sides 2π/a.

i

ii

i

kji

kj

ˆ2=

ˆ .

ˆ2=

ˆ ˆ .

ˆ ˆ 2=

a a . a

a 2=b

321

321

a

aaaa

aa

π

ππ

π

x

x

x

xa

ka

bja

b ˆ2ˆ232

ππ==

kaajaaiaa ˆˆˆ321 ===

Page 101: Sem4 solid state 1 23a- 22takde

3/25/2014

8

Example

Prove that the reciprocal lattice of a face-centered

cubic with standard cell a is a body-centered cubic

with sides 4π/a.

Solution

Primitive lattice vector of FCC

i j

k

a

a 1

a 2

a 3

(((( )))),1 ji +a2

a==== (((( )))),2 kj +a

2

a====

(((( )))).3 ki +a2

a====

(((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( ))))

(((( )))) (((( )))) (((( ))))[[[[ ]]]]

(((( ))))

−−−−

−−−−

kji

kikjji

kji

kikjji

kikj

+ =

+ + +

+ =

+ + +

+ + =

a a a

a a=b

2

1

a

4

a

4

2

a

2

a

2

a

2

a

2

a

2

2

ππππ

ππππ

ππππ

ππππ

x

x

x

x

x

.

.

. 321

321

i j

k

a

a 1

a 2

a 3

Page 102: Sem4 solid state 1 23a- 22takde

3/25/2014

9

Using the same method can be obtained:

BCC lattice can have a set of basic primitive vector as above with sides 4π/a and each unit vector in the figure represent set of that vector.

(((( ))))

−−−−==== kji + + b2

1

a

4ππππ2

(((( ))))

−−−−==== kji + b2

1

a

4ππππ3

Primitive lattice

vector of a BCC

i

j

k

b1

b2

b3

4 /aπ

In general, a direct lattice and its reciprocal are in the same lattice system, even though probably from different type.

If the basic reciprocal lattice is known, the basic lattice vectors for the direct lattice are

b b b

b ba

321

321

. x

xππππ2====

b b b

b ba

321

132

. x

xππππ2====

b b b

b ba

321

213

. x

xππππ2====

Page 103: Sem4 solid state 1 23a- 22takde

3/25/2014

10

1

2

3

1ˆ ˆ ˆ( )

2

1ˆ ˆ ˆ( )

2

1ˆ ˆ ˆ( )

2

a x y z

a x y z

a x y z

= + −

= − + +

= − +

Primitive and conventional cells of BCC

Primitive Translation Vectors:

Page 104: Sem4 solid state 1 23a- 22takde

4/12/2014

1

Ewald construction

The Ewald Sphere

• Paul Peter Ewald (German physicist and crystallographer; 1888-1985)

Reciprocal lattice/crystal is a map of the crystal in

reciprocal space → but it does not tell us which

spots/reflections would be observed in an actual

experiment.

The Ewald sphere construction selects those points

which are actually observed in a diffraction

experiment

Page 105: Sem4 solid state 1 23a- 22takde

4/12/2014

2

The reciprocal lattice points are the values of momentum

transfer for which the Bragg’s equation is satisfied.

Geometrically ⇒ if the origin of reciprocal space is

placed at the tip of ki then diffraction will occur only for

those reciprocal lattice points that lie on the surface of the

Ewald sphere.

nλ = 2 dhkl sinθhkl sinθhkl =λ 2

dhkl

=1 dhkl

2 λ

Draw a circle with diameter 2/λ

Construct a triangle with the diameter as the hypotenuse and 1/dhkl

as a side (any triangle inscribed in a circle with the diameter as the hypotenuse is a right angle triangle: ∠APO = 90°): AOP

The angle opposite the 1/d side is θhkl

From Bragg’s equation Rewrite

Page 106: Sem4 solid state 1 23a- 22takde

4/12/2014

3

hklhklhkl d

gg1**

==

Overlaying ‘real space’ information on this:

The incident ray along AC and the diffracted ray along CP. Then

automatically the crystal will have to be considered to be located at

C with an orientation such that the dhkl planes bisect the angle OCP

(∠OCP = 2θ).

OP becomes the reciprocal space vector ghkl

01

10

02

00 20

(41)

Ki

KD

∆K

Reciprocal Space

∆K = K = g = Diffraction Vector

The Ewald Sphere touches the reciprocal lattice (for point 41)

⇒ Bragg’s equation is satisfied for 41 reflections

The Ewald Sphere touches the reciprocal lattice point →→→→ that

reflection is observed in an experiment (41 reflections).

Page 107: Sem4 solid state 1 23a- 22takde

4/12/2014

4

λ(Cu Kα) = 1.54 Å, 1/λ = 0.65 Å−1 (2/λ = 1.3 Å−1), aAl = 4.05 Å, d111 = 2.34 Å, 1/d111 = 0.43 Å−1

Ewald sphere → X-rays

Row of reciprocal lattice pointsRows of reciprocal lattice points

Diffraction from Al using Cu Kα radiation

The 111 reflection is observed at a smaller angle θ111

as compared to the 222 reflection

Bragg reflected ray

Bragg’s rule: specular reflection can be seen in reciprocal lattice

Assume Bragg specular reflection, incident wave vector and reflected wave vector are q and q’

Change of wave vector

in a specular reflection

on (hkl) plane

θ

plane (hkl)

q

q

q'

q=K∆∆∆∆

Page 108: Sem4 solid state 1 23a- 22takde

4/12/2014

5

Bragg’s rule for a specular reflection: reflection is elastic i.e. ray energy is conserved

with ω' and ω are frequency of incident and reflected waves respectively.

c velocity of electromagnetic wave.

ω ' = cq' and ω = cq, then

qc

ωπν

π

λλν === 2

2

' ωω ℏℏ =

2

π== qq

KK

qqqq

θ

λ

πθ

λ

π

θ

sin4ˆsin

4

ˆsin2'

==

=−=∆

n

n

Defined that d = 2π/|K|

K is reciprocal lattice vector.

If θ, λ and d satisfy Bragg’s rule,

then ∆q = K

Then relationship between q and q' can be

written as

q’ = q + K

equation of momentum conservation in

crystal

q’2 = q2 + K2+2qK

K2+2qK = 0

Kd

q

θλ

sin2

=∆

Page 109: Sem4 solid state 1 23a- 22takde

4/12/2014

6

If (q’ – q) is a reciprocal lattice vector

(q – q’) is also a reciprocal lattice vector

i.e. component of wave vector q in the direction of reciprocal vector K with magnitude ½ that of K

(b) 2

1ˆ.

)(ˆ.2

ˆ

KKq2

)2()()'q(

Kq'-qK'q-q

2

2

2222

Kn

aKKnq

KnwithKreplace

KKqqKq

=

=

=•

+•−=−=

=⇒=

q

Equation (a) and (b) form the

Ewald construction i.e. a

geometrical confirmation for the

requirement of the diffraction

peaks

The figure shows reciprocal

lattice points for positions that

determine by

hb1+ kb2 + lb3

h, k and l are integers.

K

K1_2

K1_2

O

q

q'

O

A

B

q

q'K

Page 110: Sem4 solid state 1 23a- 22takde

4/12/2014

7

Incident wave vector q is drawn with its tail at any

point, O,

A sphere of radius 2π/λ is then drawn centered at the

end of q vector.

If the surface of the sphere pass through a reciprocal

lattice point, a diffraction peak occurs at that angle.

States where Bragg’s rule are fulfilled:

Reciprocal lattice points touching the surface of

the sphere (points A and B) Bragg’s diffraction

occur

If none of lattice points touching the surface

Bragg’s rule are not fulfilled (no diffraction).

For the sphere surface to touch other points

reciprocal lattice points can be rotated, around O

for example

Bragg’s rule or Laue satisfiable by two main methods.

By changing the wavelength λ so that thereciprocal lattice can either shrink or expand lattice points touching the sphere surfaceand Bragg’s or Laue requirements arefulfilled Laue technique

Fixing λ but moving and turning thereciprocal lattice points (similar to movingand turning of crystal) Powder technique

Page 111: Sem4 solid state 1 23a- 22takde

4/12/2014

1

Experimental Diffraction Technique

Experimental Diffraction Technique

Objective:to obtain various peaks that satisfy Bragg’sreflection using: broad band spectrum various crystal orientation

Three techniques available based on Ewaldconstruction for crystal study: Laue technique Crystal rotation technique Powder technique

Page 112: Sem4 solid state 1 23a- 22takde

4/12/2014

2

Laue technique

The incident ray comprises of variouswavelength from λmin to λmax.

Typical values: λmin ∼ 0.2 Å and λmak ∼ 3.0 Å.

Sample is a single crystal.

Two types:

Transmission technique: Film use forrecording the diffraction pattern is placedbehind the sample and records theforward diffracted ray.

Reflected ray technique:

Film use for recording the diffraction pattern is placed between source and sample.

Back reflected Photographic film, F2 Transmission

photographic film, F1

Incident X-ray

Black spots Goniometerxyz

Transmitted X-ray

Sample, S

Page 113: Sem4 solid state 1 23a- 22takde

4/12/2014

3

Dots pattern:

(b)

Zone axis

F1

S

(c)

F2

Zone axis

S

hyperbolic shape Ellipse and hyperbolic shape

Transmission technique Back reflected technique

Example of diffraction pattern

Page 114: Sem4 solid state 1 23a- 22takde

4/12/2014

4

Ewald Construction for Laue

Technique

Two incident wave vectors inthe same direction with theirtails on the same reciprocallattice point.

|q2| = 2π/λmin and |q1|= 2π /λmax

For each vector, draw anEwald sphere centered at thehead of the vector and itsradius is the magnitude ofeach vector.

O

A

B

q1

q2

All reciprocal lattice points that touch the surface of theEwald sphere between the two limiting spheres will satisfyLaue requirement

Other Ewald spheres with its ownwavelength (radius) are located in betweenthe these two limiting spheres.

Diffraction peaks occur for each reciprocallattice points located within these twolimiting spheres.

Laue can be used for mapping of reciprocallattice but often used for determining oflattice symmetry.

Laue patterns are often used for crystalorientation.

Page 115: Sem4 solid state 1 23a- 22takde

4/12/2014

5

Crystal Rotation Technique

Arrangement

Diffraction pattern is formed on the cylindrical shaped photographic film.

Black spots are the peaks of maximum intensity

(b)

Photographicfilm

incidentX-ray

emergingX-ray

Crystalsample

(a)

incidentX-ray

emergingX-ray

Photographic film

Use monochromatic X-ray.

Crystal is rotated around an axis perpendicular to the incident X-ray.

Cylindrical shaped film is wrapped inside the camera’s wall and around the crystal which is placed on the axis of the cylinder.

When the crystal rotates the reciprocal lattice also rotates.

During this rotation, some reciprocal lattice points pass through the surface of the Ewalds sphere.

Page 116: Sem4 solid state 1 23a- 22takde

4/12/2014

6

Diffraction peaks will occur and points of maximum intensity will be recorded on the film as black spots.

There will be more than one image from the same lattice point as this lattice point can touch the surface at different positions

To avoid repetition of recording of the same lattice points angle of rotation can be limited.

The crystal is also swung around the axis to record the same pattern – image enhancement

Crystal rotation is often used to determine the shape and size of a unit cell

Ewald Construction diagram for

crystal rotation technique

Reciprocal lattice points in theplane of the screen is rotatedaround an axis perpendicular tothis plane and at the end pointof the incident wave vector, q.

When a crystal is rotated itsreciprocal lattice also rotates

Wave vector is also in thisplane.

Co-axis circles are therotational orbits of the reciprocallattice.

Each intersection of thesecircles with the Ewald sphereproduces a wave vector for theBragg’s reflected ray

q

Page 117: Sem4 solid state 1 23a- 22takde

4/12/2014

7

Powder Technique Single or polycrystals are ground into

powder form.

The orientation of the tiny powder crystal arerandomly oriented.

Sample powder is put into a container atplaced in the line of monochromatic X-ray.

Let say that a crystal is oriented such thatan X-ray beam is diffracted with highintensity occur at diffraction angle, θ.

If the crystal is rotated around an axis sameas the incident beam, diffracted rays form acone with its peak on the crystal and its coneangle is twice the diffraction angle

(a)

(b)

phtographic

Film stripPowder sample in a tube

Incident -

X-ray

emerging-

X-ray

2 = 180θo

2 = 0θo

2 θ

Cone of back

Diffracted

rays

Forward diffracted

rays

Page 118: Sem4 solid state 1 23a- 22takde

4/12/2014

8

Sampel hablur dalam bentuk serbuk tidakdiputarkan untuk menghasilkan corak belauan

kesannya adalah sama disebabkan dalam bentukserbuk terdapat banyak hablur yang kecil

alur terserak oleh berbagai-bagai orientasi satahdihasilkan serentak

setiap satu membentuk kon bagi sudut serakanyang mungkin.

Strip filem dibentuk berupa silinder dan diletakkanmengelilingi sampel.

Corak belauan yang dihasilkan adalah satu siricincin sepusat setiap satu untuk satu sudut serakanyang mungkin.

Susunan ini menghasilkan dua set cincin satu dibentuk oleh sinar yang terpantul balik satu lagi dibentuk oleh sinar yang dibelaukan ke

hadapan. Dua bulatan kecil di pusat cincin adalah lubang alur

masuk dan keluar Semua alur yang ditunjukkan membentuk sudut

serakan yang sama. Alur-alur ini dihasilkan oleh kumpulan hablur yang

berbeza, berkait antara satu sama lain oleh putaranpada arah alur tuju.

Page 119: Sem4 solid state 1 23a- 22takde

4/12/2014

9

Difractometer

Recording of X-rays intensity as a function of anglebetween incident and diffracted ray.

Used by Bragg to obtain diffraction from single crystal

Now is used to measure diffractions from powdersamples or in X-ray florescence spectroscopy.

Main components are protractor, slits, samples and adetector (Geiger-Muller counter, proportional counter orscintillation counter).

Arrangement of a diffractometer

Can observe periodic structure in a crystal

Source divergingslit

Specimen

monochromatorcrystal

acceptorslit

detector

2 θ

Page 120: Sem4 solid state 1 23a- 22takde

4/12/2014

10

Typical diffraction pattern

(a)

(b)

(a) Solid crystals

(b) Liquid or amorphous solids

Maximum peaks occur at twice Bragg’s angle (2θ)

No periodical peaks –peak shows Tendency ofatoms to group together

Page 121: Sem4 solid state 1 23a- 22takde

4/20/2015

1

REAL DIFFRACTION

Diffraction in true situation

In a real situation: Crystals are not perfect Incident rays are

not perfectly parallel and non-monochromatic

These give some effects to the characterization: Effect of powder size

Effect of grain size in the diffraction pattern

Non-monochromatic beam effect Non-perfect crystal effect

Page 122: Sem4 solid state 1 23a- 22takde

4/20/2015

2

Effect of powder size

Constructive interference occurs when path difference for the diffracted beams are multiple integral of the wavelength.

If the path difference between two rays diffracted by adjacent planes is λ/4

non-constructive interference.

θθθθ1

θθθθB

d

m=0

m=1

m=2

m=3

m=m

t=md

θθθθ2

θθθθB

A

B

C

DD'

B'

A'

C'

M

N

L

M'

N'

L'

Similarly for the rays diffracted from the second and third planes, the third and the fourth, and so on

However, the rays diffracted from the first and third planes has path difference = λ/2, destructive interference.

Similarly for the rays diffracted from the second and fourth planes, the third and the fifth, and so on.

All together these form a destructive interference the diffracted rays have minimum intensity.

Page 123: Sem4 solid state 1 23a- 22takde

4/20/2015

3

What will happen if the path difference between the rays diffracted from the first two planes is slightly difference?

the plane that diffract the ray out off phase with ray from the first plane located far below in the crystal.

If the crystal is very small such as the size of powder particle i.e. < 1 mm, this plane probably does not exist .

full destructive interference does not occur. This leads to broadening of diffracted rays with non

zero intensity.

θθθθ1

θθθθB

d

m=0

m=1

m=2

m=3

m=m

t=md

θθθθ2

θθθθB

A

B

C

D

D'

B'

A'

C'

M

N

L

M'

N'

L'

Page 124: Sem4 solid state 1 23a- 22takde

4/20/2015

4

If t = thickness of the crystal. The number of planes = (m+1). If θB = Bragg’s angle for the λ and d. rays A, D, ..., M really making an angle θB

with the reflection plane. Ray D' has path difference = λ with ray A'

and ray M' (diffracted by the mth plane has mλ path difference with A' .

Therefore, diffraction angle of 2θB produces inphase radiations and interfere to producemaximum.

Ray B making an angle of θ1 which is slightlygreater than θB such that ray L' which is diffractedby mth plane slightly out of phase with ray B' by(m+1)λ.

This means that there are planes in the middle ofcrystal that diffracts a ray with phase difference of(integer +½ )λ with B’

These rays interfere destructively with each other.

Similarly for rays above and below.

Page 125: Sem4 solid state 1 23a- 22takde

4/20/2015

5

Keamatan sinar yang dibelaukanpada sudut 2θ1 adalah sifar.

Keamatan juga adalah sifaruntuk sudut 2θ2.

Jadi, terdapat dua sudut

penghad iaitu 2θ1 dan 2θ2 yangmenghasilkan keamatan sifar

dan di antara sudut penghad inikeamatan adalah tidak sifarseperti yang ditunjukkan dalamRajah.

IIIm

B

Im_1

2

2θ2 2θB 2θ1

2θ2θB

(a) (b)

Didapati lebar sudut penghad, iaitu 2θ1 - 2θ2 lebihbesar jika ketebalan hablur menjadi lebih kecilkerana sudut (2θ1 - 2θ2) bertambah apabila mberkurang.

Lebar B diukur dalam radian dan pada keamatansama dengan separuh daripada keamatanmaksimum.

Dengan membuat anggapan bentuk puncakbelauan sebagai segi tiga dua sama, maka

-B = (2θ1 - 2θ2)/2 = θ1 - θ2 . Ketebalan t yang dikenali juga sebagai min dimensi

butiran, dan kelebaran sudut B boleh dikaitkanseperti berikut:

( ) (a) 1sin21

λθ += mt

( ) (b) 1sin22

λθ −= mt

Page 126: Sem4 solid state 1 23a- 22takde

4/20/2015

6

tetapi θ1 ≅θ2≅θB sehingga θ1 + θ2 ≅ 2θB dan sin[(θ1 - θ2)/2] ≅ (θ1 - θ2)/2. Oleh itu,

Lebih tepat diperolehi secara eksperimenFormula Scherrer

BBkost

θ

λ=

( ) λθθ =− 21 sinsint

( )[ ] ( )[ ]2 1

2 1 21

2 1 2t kos θ θ θ θ λ+ − =sin

Bkos

kt

θβ

λ=

(b) – (a)

β = (B - b) pelebaran garisb = pelebaran oleh instrumen.k = faktor bentuk (biasanya ~ 0.9).

Formula ini digunakan untuk menganggarkan saiz butiranbagi serbuk hablur yang digunakan sebagai spesimendengan melihat kelebaran puncak belauan yang diperoleh.

Kesan saiz butiran dalam corak belauan:

Contoh: Katakan λ = 1.51 Å, d = 1.20 Å dan θB

= 40.0°. Jika t = 1.2 mm dan digantikan nilai-nilai tersebut dalam formula Scherrer

Kelebaran ini terlalu kecil untuk dikesan. Bilangan satah yang menghasilkan pemisahan

ini adalah 1.2 mm/1.2 Å iaitu 107 satah yang selari.

( )( )( )

darjah

rad

5

7

o3

10

10

.10 48.1=

0.40 kos10 2.1

10 51.19.0=

x

xx

βBkos

kt

θβ

λ=

Page 127: Sem4 solid state 1 23a- 22takde

4/20/2015

7

Jika dalam contoh di atas digantikan t = 240 Å, ini setara dengan bilangan satah yang selari sebanyak 200 sahaja.

Dengan itu, lengkuk puncak belauan menjadi lebih lebar iaitu

Kesan kelebaran oleh saiz butiran mudah dilihat dalam spektrum belauan.

( )( )( )

°≅

42.0

.10 39.7=

0.40 kos10 240

10 51.19.0=

3

o10

10

radx

xx

β

Kesan Alur Yang Tak Monokromatik

Keadaan sebenar: sinar yang digunakan tidak pernah monokromatik sepenuhnya

ia mengandungi komponen Kα yang bertindihan dengan spektrum selanjar.

Komponen Kα mempunyai kelebaran julat panjang gelombang lebih kurang sebesar 0.001 Å.

Kesannya kepada kelebaran puncak belauan adalah seperti berikut.

Page 128: Sem4 solid state 1 23a- 22takde

4/20/2015

8

Untuk λ = 1.5 Å, θB = 40.0° dan ∆λ= 0.001 Å dapatdianggarkan kelebaran puncak belauan adalahsebesar 0.08° terhadap kelebaran yang sedia ada

iaitu apabila alur yang digunakan adalahmonokromatik

Kelebaran disebabkan oleh spektrum semula jadiini adalah berkadar dengan tan θB, kesannya akan kelihatan bertambah jelas jika θmenghampiri 90°

Kesan Ketaksempurnaan Hablur

Hablur yang sebenar mempunyai sejenis ketaksempurnaan yang dikenali sebagai struktur mosek.

Struktur mosek adalah sejenis substruktur yang menunjukkan perpecahan hablur tunggal seperti yang ditunjukkan dalam rajah.

Butiran atau

substruktur

Page 129: Sem4 solid state 1 23a- 22takde

4/20/2015

9

Hablur yang mempunyai struktur mosek ini tidakmempunyai susunan kekisi yang seragam dengansempurna dari satu sisi ke sisi yang lain, iaitukekisinya terpecah kepada beberapa blok kecil danorientasinya sedikit berbeza antara satu denganlain.

Magnitud saiz blok ini dalam peringkat beberaparibu Angstrom dan sudut maksimum bagi orientasiantara blok boleh mencapai 1° bergantung padahablur.

Jika sudut ini adalah β maka belauan tidak hanyaberlaku pada sudut θ tetapi pada julat sudut antaraβ B dan θB + β.

Didapati hablur sebenar, sama ada hablur tunggalatau butiran tertentu dalam agregat polihabluran,mempunyai substruktur yang dibentuk olehkehelan.

Kehelan adalah satu daripada bentuk kecacatandalam hablur.

Ketumpatan kehelan ini tidak seragam dancenderung untuk berkumpul menjadi dinding yangmengelilingi bahagian yang mempunyai isi padukehelan yang rendah.

Blok-blok kecil dalam Rajah adalah seiras dengansubbutiran dan bahagian antara blok adalahmerupakan dinding kehelan.

Page 130: Sem4 solid state 1 23a- 22takde

4/12/2014

1

GETARAN KEKISI(Lattice Vibration)

suatu penghampiran

atom adalah terlalu berat dan

daya antara atom terlalu besar

menyebabkan atom tidak boleh bergerak.

Jadi atom adalah

tetap,

tegar dan

tidak bergerak

titik kekisi dalam hablur tidak berubahkedudukannya (statik).

Model kekisi statik

Page 131: Sem4 solid state 1 23a- 22takde

4/12/2014

2

Keadaan sebenar

atom tidaklah terlalu berat dan

daya yang bertindak di antara atom-atom bukanlahsuatu daya yang kekuatannya tidak terhingga.

atom dalam hablur bergetar dengan kuat terhadapkedudukan keseimbangannya

Dalam teori klasik, model kekisi statik hanya sah padasuhu sifar

Apa terjadi jika suhu bukan sifar?

setiap atom mempunyai tenaga terma

berlaku pergerakan (getaran) di sekitar kedudukankeseimbangannya.

Bagaimanakah persamaan gerakan atom tersebut?

Tiap atom punya daya pulih/ daya balik asal

F berkadar dengan sesaran:

F = - α(u – uo) Hukum Hooke.

Getaran dihasilkan bersifat harmonik ringkas:

u = uo + Asin ωt

Daya bersih antara ion Na+ dan ion Cl−

dalam pasangan Na+Cl−.

Berdekatan u = uo , hubungan daya ini

dengan u seakan berbentuk garis lurus

(mematuhi hk Hooke).

(nN) F

10

0

20

-10

-20 1 4 3 2

(a)

(A) u

u = u 0

u 0

U

(b) u

Page 132: Sem4 solid state 1 23a- 22takde

4/12/2014

3

Tiga model getaran kekisi:

Model Einstein (1907):

Semua atom dalam bahan bergetar secara bebas antara satu sama lain pada frekuensi yang sama, ωE.

Model Debye (1912):

Pepejal sebagai medium homogen atau kontinum.

Model ini sesuai untuk pepejal pada suhu rendah sahaja.

Pada suhu rendah dan pada bahagian vektor gelombang

yang kecil atau pada panjang gelombang yang besar,

tidak perlu diketahui daya antara atom tetapi mencukupi

dengan mengetahui daya purata yang bertindak.

Maklumat mengenai struktur terperinci bagi bahan

tidak diperlukan atau boleh diabaikan.

Frekuensi getaran maksimum ditentukan oleh frekuensi

Debye, ωD.

Page 133: Sem4 solid state 1 23a- 22takde

4/12/2014

4

Model Born von Karman (1912):

Anggapan asas yang dibuat adalah:

Setiap atom terletak pada kedudukan

keseimbangan dalam struktur hablur.

Atom boleh bergetar dengan amplitud yang

kecil berbanding dengan jarak pemisahan

antara atom.

Getaran atom sebenar adalah rumit - 3D

Menurut model Born-von Karman:

Keupayaan sistem bersandar kepada kuasa dua

sesaran daripada kedudukan keseimbangan.

(U ~ (x – xo)2)

daya antara atom bersandar linear dengan

sesaran. F ~ x – xo

Gunakan pendekatan mudah: Model Spring dan

Sfera penghampiran harmonik

Untuk getaran yang kecil boleh dijelaskan dalam

bentuk mod normal.

Page 134: Sem4 solid state 1 23a- 22takde

4/12/2014

5

Mod normal ialah gerakan berkorelasi bagi atom yang mempunyai vektor gelombang q dan

frekuensi ω cirian.

Jika getaran dimulakan, ia akan berterusan selama-

lamanya selagi tiada geseran.

Geseran adalah merupakan faktor yang

menyumbang kepada sebutan tak harmonik.

Dimudahkan dengan cara membincang rantaian

monoatom, kemudian dwiatom 1-D 3-D

keadaan pepejal sebenar

Getaran Kekisi Rantaian Monoatom dalam 1-D Rumit, permudahkan dengan pertimbangkan

anggapan berikut:

Setiap sel unit mengandungi hanya 1 atom.

Daya hanya bertindak antara jiran terdekat.

Gerakan atom adalah dalam arah rantaian

(seperti gelombang membujur).

α

(a )

(b)

u n -1 u n u n + 1 u n + 2

Kedudukan

Keseimbangan

Kedudukan

tersesar

n-1 n n+1 n+2

a

Page 135: Sem4 solid state 1 23a- 22takde

4/12/2014

6

Daya pulih yang bertindak ke atas atom bila

digerakkan dari kedudukan keseimbangan

adalah berkadar terus terhadap sesarannya dari

kedudukan keseimbangan

Daya = -α x (sesaran ≅un)

Koordinat atom

x = na

a = jarak keseimbangan antara atom

Sesaran, a dipendekkan sebanyak un tapi

dipanjangkan sebanyak un+1

Jumlah sesaran = (un+1 - un)

Dari Hk Newton, daya oleh atom n +1 dan atom

n - 1 terhadap atom n adalah

sesaran sesaran

antara n dan n+1 antara n dan n-1

d2un /dt2 ialah pecutan atom ke-n.

Penyelesaian adalah dalam bentuk mod normal

gelombang bergerak/menjalar

un ialah amplitud dan q vektor gelombang.

[ ] )1()()(2

2

11 ⋯⋯

dt

udmuuuuF n

nnnn =−−−−=−+

α

(2) = ) (⋯⋯

tiinqatnqai

n eeueuuωω −−

=

(3) = )1(() )1((

1 ⋯⋯

tiqanitqani

n eeueuuωω −+−+

+ =

Page 136: Sem4 solid state 1 23a- 22takde

4/12/2014

7

Pers (3)/pers (2)

Sama juga

Bezakan persamaan (2) terhadap masa t:

( )

)5(2

2

2

)(

⋯⋯nn

n

tnqain

udt

ud

uiueidt

du

ω

ωω ω

−=

−=−=−

)4(.

.

.

.

1

1

)1(

1

⋯⋯

iqa

nn

iqa

nn

iqa

tiinqa

tiqani

n

n

euu

euu

eee

ee

u

u

+

−+

+

=

=

==ω

ω

(2) = ) (⋯⋯

tiinqatnqai

n eeueuuωω −−

=

Gantikan dalam persamaan (1)

Gunakan

Diperolehi

iqaiqaeeqa

− + = kos 2

( ) ( )

]2 + [ =

- +-

-2

2

−−

=−−

iqaiqa

n

iqa

nn

iqa

nn

eem

ueuueuum

αω

ααω

( ))(kos122 qam −= αω

uqam

u ) kos 1(2

= 2−

αω

[ ] )1()()(2

2

11 ⋯⋯

dt

udmuuuuF n

nnnn =−−−−=−+

α

Page 137: Sem4 solid state 1 23a- 22takde

4/12/2014

8

Untuk sebarang suhu, u ≠ 0

(kos 2θ = 1 – 2 sin2 θ)

hubungan sebaran

dikenali sebagai hubungan sebaran yang memberikan hubungan antara ω dan q

(3.5) )2

(sin 4

=

) kos 1( 2

=

2

2

qa

m

qam

α

αω −

2 sin 2 =

½qa

m

αω

uqam

u ) kos 1(2

= 2−

αω

ω

ω m

π /a π /a 2 π /a -2 π /a - 0 q

Zon Brillouin pertama

Plot ω melawan q untuk gelombang membujur bagi

rantaian linear monoatom.

2 sin 2 =

½qa

m

αω

ω= ωm bila q = ±π/a, ± 3π/a, ±5π/a ….

½

2 =

mm

αω

Page 138: Sem4 solid state 1 23a- 22takde

4/12/2014

9

17

Reciprocal Lattice in 1D

a

The 1st Brillouin zone: Weigner-Seitz primitive cell in the reciprocal lattice

Real lattice

Reciprocal lattice

x

k

0 2π/a 4π/a-2π/a-4π/a-6π/a

-π/a π/a

Daripada hubungan didapati:

1. Terdapat simetri antara q dan -q, iaitu

gelombang yang menjalar ke kanan dan ke kiri

adalah seiras; ω(q) = ω(- q).

2. Terdapat simetri translasi:

ω(q + Kn) = ω(q)

Kn = 2nπ/a. adalah magnitud vektor kekisi

salingan, dan n adalah integer.

3. Hubungan linear antara ω dan q tidak berlaku

tetapi untuk nilai qa yang kecil, maka

diperoleh

(3.7)

21

qam

αω

Page 139: Sem4 solid state 1 23a- 22takde

4/12/2014

10

Jadi, untuk q menghampiri sifar, hubungan ω dan

q adalah linear.

Rantaian boleh dianggap sebagai selanjar atau

kontinum.

4. Frekuensi maksimum atau frekuensi penggalan:

yang berlaku pada q = π/a + n(2π/a)

n adalah integer.

Jika ω > ωm, rantaian atom tidak dapat menerima

gelombang bergerak lagi.

2 2

1

=

mm

αω

Page 140: Sem4 solid state 1 23a- 22takde

4/23/2014

1

Halaju Fasa dan Halaju Kumpulan

(Phase velocity and Group Velocity)

Halaju Fasa (Phase velocity )

Kadar sesuatu fasa gelombang merambatiaitu kelajuan salah satu komponenfrekuensi gelombang merambat

Contohnya untuk fasa gelombang tertentu(bahagian puncak misalnya) bergerakdengan halaju fasa

qffv

ω

π

λπλ ===

22

Page 141: Sem4 solid state 1 23a- 22takde

4/23/2014

2

Dari persamaan sebaran:

Bila

Ini adalah halaju pada pusat zon (kawasan jarak gelombang panjang)

ω = 2αm( )

12

sinqa

2

1

2

2sin

0 →

→qa

qa

qa =

2

1

ma

mv ak

α

v = a αm( )

12

sinqa

2

qa2

ω

q=

2

q

αm( )

12

sinqa

2

Pada sempadan zon: q = π/a (λ = 2a)

( )( )

( )

2

2

2

2

21

21 sin

22

π

π

α

π

πα

π

maksz

m

sz

msz

vv

av

av

qa

=

=

=

=

k

0 2π/a 4π/a-2π/a-4π/a-6π/a

-π/a π/a

Reciprocal lattice

The 1st Brillouin zone: Weigner-Seitz primitive cell in the reciprocal lattice

v = a αm( )

12

sinqa

2

qa2

Page 142: Sem4 solid state 1 23a- 22takde

4/23/2014

3

Halaju Kumpulan (Group Velocity)

Halaju kumpulan vk ialah halaju berkas bagi gelombang

Untuk rantaian linear monoatom antara q=0 dan q = π/a

q∂

∂ω=kv

2

kos =

2 sin2

=

2

1

2

1

qaa

m

qa

mqvk

α

α

ω = 2αm( )

12

sinqa

2

Pada sempadan zon

q + π/a (i.e. λ 2a)

vk 0

Fasa getaran bagi atom yang berdekatan berbeza

sebesar π

Oleh kerana gelombang tuju normal pada muka zon

Brillouin akan dipantulkan Gelombang kekisi

menjadi gelombang pegun

/aπ /a

π /a2

π3

1

-1

q

vk ( /m)α

-1/2 -1a

2

kos =

2 sin2

=

2

1

2

1

qaa

m

qa

mqvk

α

α

Page 143: Sem4 solid state 1 23a- 22takde

4/23/2014

4

Untuk q yang kecil atau qa<< 1 (dalam had gelombang panjang)

vk maksimum

= halaju fasa

Halaju fasa,

vk =α

m

1

2

a

2

1

qam

=

αω ==

2

1

amq

v f

αω

Rantaian kelihatan seperti selanjar

Gelombang kekisi gelombang bunyi (gelombang

akustik)

Mod getaran dikenali sebagai mod akustik

Lengkuk ω melawan q cabang akustik (CA)

Page 144: Sem4 solid state 1 23a- 22takde

1

1

Getaran kekisi rantaian dwiatom dalam 1-D(Lattice vibration for diatomic

chain in 1-D)

2

Getaran kekisi rantaian dwiatom

dalam 1-D

Jika dipertimbangkan daya antara jiran terdekat

sahaja, maka tenaga keupayaan sistem

…(3.15)

) ( 2

+) ( 2

= 2

1

2∑

−− −

n

nnnn vuuvUαα

(b)

(a)αmM a= 2d d

vn-2 un-1 vn-1 un vn un+1 vn+1

Rantaian 2N atom dengan N sel unit seiras dan tiap satu mempunyai

2 atom ; m < M

Page 145: Sem4 solid state 1 23a- 22takde

2

3

Persamaan gerakan untuk setiap jenis atom

penyelesaiannya dalam bentuk persamaan

gelombang merambat

u dan v adalah amplitud sesaran atom m dan M

( )

[ ]b) (3.17 =

a) (3.17 =

- )12(

- 2

tqani

n

tnqai

n

evv

euu

ω

ω

+

(3.16b) )2 + ()-( ) - ( =

(3.16a) )2 + ()-( ) - ( =

1+1 2

2

11 2

2

nnnnnnnn

nnnnnnnn

vuuuvvudt

vdM

uvvvuuvdt

udm

−=−

−=−

+

−−

ααα

ααα

4

Gantikan un dan vn dalam persamaan gerakan

(3.16a) dan (3.16b), didapati

Persamaan (3.18a) dan (3.18b) boleh dituliskan

dalam bentuk

dengan B1 = u dan B2 = v.

( )( ) (3.18b) ]v2 e+ eu[ = vM

(3.18a) ]u2 e+ ev[ = u m

iqaiqa

2

iqaiqa2

−αω−

−αω−

2 ,1=i ,BD=B2

1=jiiji

2∑ω

Page 146: Sem4 solid state 1 23a- 22takde

3

5

D ialah matriks dinamik (2 x 2) yang diberikan oleh

…….(3.20)

Penyelesaian Persamaan (3.20) diberikan dengan menyelesaikan persamaan sekular berikut:

……(3.21)

δij = delta Kronecker. Penyelesaiannya ialah

…(3.22)

0D ij2

ij =δω−

mM

qasin4

mM

Mm

mM

Mm 21

222

+α±

+α=ω

M2qa kos

M2

qa kosm

2m

2D

αα−

α−

α

=

Hubungan sebaran bagi getaran kekisi rantaian linear dwiatom; M > m

ω

0qa

Zon Brillouin pertama

CA

CO

(2 / )α1/2

π/- 2 π/2

(2 / )α 1/2m

M

2

1

112

+

Mmα

Jalur terlarang

Makin kecil jika

m/M 1

Tiada jurang

Jika m=M

mM

qasin4

mM

Mm

mM

Mm 2

122

2

+α±

+α=ω

Page 147: Sem4 solid state 1 23a- 22takde

4

As there are two values of ω for each value of k, the

dispersion relation is said to have two branches;

Upper branch is due to the+ve sign of the root.

Lower branch is due to the-ve sign of the root.

Optical Branch

Acoustical Branch

• The dispersion relation is periodic in k with a period

2 π /a = 2 π /(unit cell length).

• This result remains valid for a chain of containing anarbitrary number of atoms per unit cell.

0 л/a 2л/a–л/a k

ωA

B

C

2

max

2ac

K

Mω = OR

2

min

2op

K

mω =(C) (B)

• At max.acoustical point C, M oscillates and m is at rest.

• At min.optical point B, m oscillates and M is at rest.

0 л/a 2л/a–л/a k

ω

A

B

C

Page 148: Sem4 solid state 1 23a- 22takde

5

Cabang atas didapati apabila diambil tanda positif

dalam Persamaan (3.22).

Oleh kerana cabang atas ini mempunyai frekuensi

dalam atau mendekati kawasan optik dalam

spektrum elektromagnet, maka cabang ini dikenali

sebagai cabang optik, CO.

Cabang bawah adalah untuk tanda negatif dalam

Persamaan (3.22).

Cabang bawah dikenali sebagai cabang akustik

CA.

10

ω

0qa

Zon Brillouin pertama

CA

CO

(2 / )α1/2

π/- 2 π/2

(2 / )α 1/2m

M

2

1

112

+

Mmα

Jalur terlarang

Makin kecil jika

m/M 1

Tiada jurang

Jika m=M

Page 149: Sem4 solid state 1 23a- 22takde

6

11

Pada CO:

q = 0, frekuensi sudut maksimum ωop,mak adalah

q = π/2a, frekuensi minimum ωop,min adalah

Cabang menjadi sempit untuk m/M yang kecil manakala melebar untuk m/M → 1.

21

21

22,

=

+=

µ

ααω

Mm

mMmakop

21

2min,

=

mop

αω

2

1

minop,

makop, + 1=

M

m

ω

ω

12

Pada CA:

q = π/2a, frekuensi sudut maksimum ωak,mak

adalah

Perbezaan ωop,min - ωak,mak memberikan nilailebar jurang frekuensi antara kedua-duacabang di q = π/2a.

Jurang ini menjadi lebih sempit apabila kedua-dua atom hampir serupa dan tiada lagi juranguntuk m = M.

21

2,

=

Mmakak

αω

Page 150: Sem4 solid state 1 23a- 22takde

7

13

Apabila M = m, CO adalah perpanjangan daripada

CA.

Bahagian PQ ditranslasikan melalui vektor kekisi

salingan ke bahagian P′Q′ dan bahagian RQ

ditranslasikan melalui vektor kekisi salingan ke

bahagian R′Q′′.

ω

Q

PRP' R'

Q' Q''

π- 0qa

ππ/- 2 π/2

14

Nisbah amplitud sesaran:

….(3.25)

+ : untuk CO, − : untuk CA.

( )

)(kos2

sin412

1

2

2

qa

qam

M

m

mM

m

M

v

u

+±−

=

Page 151: Sem4 solid state 1 23a- 22takde

8

15

Pada CA:

q→ 0 maka qa juga kecil sehingga boleh

dianggapkan sin qa ≈ qa,

maka u/v ≈ 1 yang bermakna atom berat dan

atom ringan bergerak sefasa dengan amplitud

yang sama.

Di pinggir zon iaitu q = π/2a, dengan

menggunakan hukum L’Hopital didapati had u/v =

0.

Jadi, u = 0 dan v ≠ 0 yang bermakna hanya atom

berat sahaja yang bergetar.

16

Pada CO:

q→ 0, maka u/v = - M/m

yang memberi makna atom berat dan atom ringan

dalam sel unit bergerak dalam arah yang

berlawanan iaitu sama ada atom berayun menuju

ke arah satu sama lain atau menjauhi antara satu

sama lain.

q = π/2a, maka u/v → ∞ iaitu v = 0 dan u ≠ 0 yang

bermakna hanya atom ringan sahaja yang

bergetar.

Page 152: Sem4 solid state 1 23a- 22takde

9

17

Keadaan gerakan dan frekuensi sudutnya pada lengkuk sebaran bagi rantaian linear dwiatom

Hanya atom ringanbergetar

Hanya atom beratbergetar

Atom bergetar dalamarah yang berlawanan

Atom bergetar dalamarah yang sama dan amplitud yang hampirsama

ω

0 qaπ/2

18

Page 153: Sem4 solid state 1 23a- 22takde

10

Transverse optical mode for diatomic chain

Transverse acoustical mode for

diatomic chain

Page 154: Sem4 solid state 1 23a- 22takde

4/23/2014

1

1

PHONON

What is phonon?

Consider the regular lattice of atoms in a uniform solid material.

There should be energy associated with the vibrations of these atoms.

But they are tied together with bonds, so they can't vibrate independently.

The vibrations take the form of collective modes which propagate through the material.

Such propagating lattice vibrations can be considered to be sound waves.

And their propagation speed is the speed of sound in the material.

Page 155: Sem4 solid state 1 23a- 22takde

4/23/2014

2

The vibrational energies of molecules are quantized and treated as quantum harmonic oscillators.

Quantum harmonic oscillators have equally spaced energy levels with separation ∆E = hν.

So the oscillators can accept or lose energy only in discrete units of energy hν.

The evidence on the behaviour of vibrational energy in periodic solids is that the collective vibrational modes can accept energy only in discrete amounts, and these quanta of energy have been labelled "phonons".

Like the photons of electromagnetic energy, they obey Bose-Einstein statistics.

sphonon

hE

ν

λ=

PHONONS

• Quanta of lattice vibrations

• Energies of phonons are quantized

~a0=10-10m

phonon

hp

λ=

PHOTONS

• Quanta of electromagneticradiation

• Energies of photons arequantized as well

photon

hcE

λ=

~10-6m

photon

hp

λ=

Page 156: Sem4 solid state 1 23a- 22takde

4/23/2014

3

Energy of harmonic oscillator

Obtained by in a classical way of considering the normal modesthat we have found are independent and harmonic.

ωε ℏ

+=

2

1nn

• Make a transition to Q.M.

• Represents equally spaced

energy levels

ωℏ

ωℏ

ωℏ

ωℏ

Energy, E

Energy levels of atoms

vibrating at a single

frequency ω

It is possible to consider as constructed by adding nexcitation quanta each of energy to the groundstate.

ωℏ

ωε ℏ2

10 =

A transition from a lower energy level to a higher energy level.

ωωε ℏℏ

+−

+=∆

2

1

2

112 nn

( )2 1

unity

n nε ω ε ω∆ = − ⇒ ∆ =ℏ ℏ

absorption of phonon

Page 157: Sem4 solid state 1 23a- 22takde

4/23/2014

4

The converse transition results an emission of

phonon with an energy .

Phonons are quanta of lattice vibrations with an

angular frequency of .

Phonons are not localized particles.

Its momentum is exact, but position can not be

determined because of the uncertainity principle.

ωℏ

ω

1D crystals

ω

k Multiply by ℏ

ωℏ

kℏ

Energy of

phonons

Crystal momentum

•Phonons are not conserved

•They can be created and destroyed during collisions .

Page 158: Sem4 solid state 1 23a- 22takde

4/23/2014

5

9

Bila atom bergetar terhasil gelombang merambat

dengan vektor gelombang q

Tiap atom mempunyai 3zN mod getaran

(z = bil atom/unit sel; N = bil unit sel)

FONON

10

Longitudinal Waves

Transverse Waves

Page 159: Sem4 solid state 1 23a- 22takde

4/23/2014

6

11

Dari teori kuantum atom-atom yang bergetar ini

disebut sebagai pengayun harmonik dengan

persamaan eigennya

Hψ = E ψ

H = Hamiltonian harmonik,

ψ adalah fungsi gelombang

E = nilai eigen

12

Dari sini diperolehi nilai tenaga untuk satu mod

kenyal dengan frekuensi sudut ω

nk = 0, 1, 2, ...

tenaga bagi getaran kekisi dikatakan terkuanta

Pengkuantuman tenaga ini disebut sebagai fonon(bandingkan dengan photon yang merupakanpengkuantuman gelombang elektromagnet)

Gelombang-gelombang kenyal dalam habluradalah terdiri dari fonon-fonon

Nilai ialah tenaga takat sifar bagi mod

tersebut

kkk nE ωℏ

+=

2

1

kωℏ21

Page 160: Sem4 solid state 1 23a- 22takde

4/23/2014

7

13

Mod dengan ω menghampiri sifar disebut

sebagai mod lembut (soft mode)

Setiap fonon dengan frekuensi ω mempunyai

tenaga

Fonon mempunyai spin sifar

mematuhi Statistik Bose-Einstein

(tiada had bilangan fonon pada peringkat tenaga

tertentu)

tidak mematuhi prinsip pengecualian Pauli.

Bilangan purata fonon dalam sesuatu mod

pada suhu T:

1

1

−=><

−kTe

nωℏ

kωℏ

14

Momentum Fonon

Fonon dengan vektor gelombang K bersifat

seolah-oleh mempunyai momentum

(momentum hablur)

Fonon tidak mempunyai momentum getaran

sebenar (momentum getaran kekisi adalah

sifar)

Peralihan dari suatu keadaan kuantum ke

keadaaan kuantum lain mematuhi aturan

pilihan.

Kℏ

Page 161: Sem4 solid state 1 23a- 22takde

4/23/2014

8

15

Serakan kenyal sinar-X (foton) oleh hablurmematuhi aturan pilihan : q’ = q + Ks

q’ = vektor gelombang foton terserak

q = vektor gelombang foton tuju

Ks = vektor gelombang dalam kekisi salingan

atau dari hukum keabadian momentum jika fotondengan momentum diserap:

foton fonon foton

Untuk serakan tak kenyal, dengan penciptaan satufonon dengan vektor gelombang K,

q’ + K = q + Ks

Jika fonon K diserap dalam proses:

q’ = q + K + Ks

'qKq ℏℏℏ →+

qℏ

16

Penjanaan Fonon

•Secara pizoelektrik

•Pengujaan terma

•Penerowongan elektron

Page 162: Sem4 solid state 1 23a- 22takde

4/23/2014

9

17

Kaedah Pizoelektrik

Apabila medan E melalui bahan pizoelektrik(kuarza, kadmium sulfid) –ia alami terikan

Gelombang e.m. (10 GHz) menghasilkan medanelektrik yang berayun

Medan mengayunkan transduser pizoelektrikdengan frekuensi sama

Transduser memancarkan fonon ke dalam mediumspesimen

Pertukaran dari foton kepada fonon ini tidak cekap(kebarangkalian ~ 10-7)

Tidak sesuai digunakan untuk frekeunsi > 10GHz

18

Pengujaan Terma

Arus dilalukan melalui dawai logam menyebabkan

kenaikan suhu elektron.

Elektron yang panas melepaskan tenaganya

dengan memancarkan fonon dan foton ke dalam

logam dan persekitaran.

Kebarangkalian pemancaran fonon > foton

Pada frekuensi > frekuensi penggalan hanya foton

dikeluarkan

Page 163: Sem4 solid state 1 23a- 22takde

4/23/2014

10

19

Penerowongan elektron

Lapisan tipis penebat yang diletakkan di antara dua

filem tipis logam menghasilkan keadaan sawar

untuk elektron.

Pada tenaga tertentu elektron boleh menerowong

melalui lapisan sawar

Elektron dipercepatkan dengan tenaga kinetik

tambahan eV

Tenaga tambahan ini dilepaskan semula dalam

bentuk pancaran fonon.

Fonon dipancarkan oleh elektron panas yang

kehilangan tenaga bila kembali kepada keadaan

keseimbangan.

20

A B

C

D

eV

E

D(E)

2 ∆

FONON SANTAIAN

FONON PENGGABUNGAN SEMULA

Page 164: Sem4 solid state 1 23a- 22takde

4/23/2014

1

1

Sifat Terma Pepejal

Kesan getaran atom kepada sifat terma pepejal

seperti muatan haba tentu (specific heat capacity)

dan kekonduksian terma berdasarkan model-model

tertentu

2

Muatan haba tentu (specific heat

capacity)

Menurut hukum pertama termodinamik:

Sistem tertutup: dQ = dU + dW

dQ = jumlah tenaga yang diserap oleh sistem

dU = pertambahan tenaga dalam

dW = jumlah kerja yang dilakukan oleh sistem.

U ditentukan oleh suhu (T) dan isipadu (V) iaitu

U = U(T,V)

dVV

UdT

T

UdU

TV

∂+

∂=

Page 165: Sem4 solid state 1 23a- 22takde

4/23/2014

2

3

dVpV

UdT

T

UdQ

TV

+

∂+

∂=

Muatan haba tentu (C) suatu pepejal ditakrifkansebagai jumlah haba yang diserap (∆Q) olehpepejal per unit perubahan kecil suhu (∆T) iaitu

Untuk proses infinitisimal yang berbalik pada isipadu malar (dV = 0), maka

4.3

Pada tekanan malar pula

4.4

T

QC

∆=

VV

VT

U

T

QC

∂=

∂=

PPP

PT

Vp

T

U

T

QC

∂+

∂=

∂=

= dW

dQ = dU + dW

4

Dengan menggunakan hukum termodinamik

kedua dan juga dengan sedikit manipulasi

persamaan termodinamik yang biasa, maka

4.5

Persamaan (4.5) boleh juga dituliskan dengan

sebutan kuantiti yang boleh diukur, sebagai

berikut:

4.6

TP

VPV

P

T

VTCC

−=−

2

TV

CC VPκ

α 2

=−

Page 166: Sem4 solid state 1 23a- 22takde

4/23/2014

3

5

Dengan pekali pengembangan (coefficient of

expansion) isoterma isipadu,

pekali pemampatan isipadu (compression coefficient),

Lazimnya CP diukur kerana nilai ini sangat sukaruntuk ditentukan secara teori,

CV dihitung dengan menggunakan Persamaan(4.6) kerana ia sangat sukar untuk menetapkanisipadu sampel ketika suhu berubah-ubah.

T

P

P

V

V

T

V

V

∂−=

∂=

1

1

κ

α

6

Untuk kebanyakan pepejal pada umumnya CP ≥ CV

tetapi semasa T 0, CP CV

i.e. pada suhu rendah CP ≅ CV

Page 167: Sem4 solid state 1 23a- 22takde

4/23/2014

4

7

Muatan haba pada isi padu malar CV sebagai fungsi

suhu bagi pepejal..

Cv

T

Pada suhu rendah CV ∼∼∼∼ T3

pada suhu tinggi CV tidak

bersandar pada suhu

Hasil eksperimen

8

Page 168: Sem4 solid state 1 23a- 22takde

4/23/2014

5

9

Bagi semua pepejal

Pada T tinggi: Cv tidak bersandar pada suhu

Dikenali sebagai hukum Dulong dan Petit

Penebat:

Pada T rendah - Cv berkurang dengan cepat dan berkadar dengan T3

Sumbangan utama Cv pada suhu rendah adalah dari getaran kekisi

Untuk Logam:

pada suhu sangat rendah Cv ~ T

Sumbangan utama daripada elektron

10

Model gas unggul

Zarah gas unggul hanya mempunyai tenaga kinetik

translasi:

(4.7)

Jumlah tenaga untuk N molekul,

dengan = Tenaga purata setiap molekul.

( )222

2

2

1

2

1

zyx vvvm

mvE

++=

=

∑ == ENUTK

E

Untuk menerangkan hasil ujikaji di atas, beberapa

model akan ditinjau

Page 169: Sem4 solid state 1 23a- 22takde

4/23/2014

6

11

Menurut taburan Boltzmann:

Gantikan

Nilai Cv ini hanya sesuai untuk monoatom (tidak

poliatom)

( ) TkE BeEN−∝

∫∫∫

∫∫∫

=∴

zyxTk

mv

zyxTk

mv

dvdvdve

dvdvdvemvE

B

B

2

22

2

1

2

2

2222zyx vvvv ++=

TkE B2

3=

BB NkR ; RTTNkU ===∴2

3

2

3

molcalmolJRT

UC

V

v /36.122

3 1 ≈≈=

= −

∑ == ENUTK

12

Page 170: Sem4 solid state 1 23a- 22takde

4/23/2014

7

13

Model Pengayun Harmonik

Atom dalam pepejal boleh dianggap sebagaipengayun harmonik ringkas bebas dalam tigadimensi : model sfera - spring.

Tenaga bagi satu pengayun harmonik ringkas

E = ½ mv2 + ½ mw2u2

(4.13)

dengan = pemalar spring,

u = sesaran

p = mv = momentum.

22

2

1

2u

m

pE α+=

2ωα m=

14

Tenaga terma purata adalah

(4.14)

∫∫∫

∫∫∫

+

+

+

=

zyxzyxTk

m

p

zyxzyxTk

um

p

u

dudududpdpdpe

dudududpdpdpem

p

E

B

u

B

2

22

2

2

12

2

2

2

2

2

2

α

α

α

Page 171: Sem4 solid state 1 23a- 22takde

4/23/2014

8

15

Jika digantikan

dengan y2, kedua-dua sebutan dalam Persamaan

(4.14) mempunyai bentuk dan penyelesaian yang

berikut:

(4.15)2

2

2

1

2

1

2

22

TkTk

dye

dyeyTkE B

By

y

B ===

π

π

22

2

1

2u

m

pE α+=

16

masing-masing sebutan pertama dan kedua dalam

Persamaan (4.14) menghasilkan kBT/2 yang

merupakan sumbangan kepada tenaga terma

daripada setiap darjah kebebasan bagi momentum

dan kedudukan.

Untuk pengayun harmonik berjumlah N dalam tiga

dimensi atau bagi tiga darjah kebebasan,

maka tenaga terma purata adalah 3NkBT = 3RT.

Dengan demikian, CV = dU/dT = 3NkB = 3R

malar & tidak bergantung pada T & sesuai untuk

suhu tinggi.

Page 172: Sem4 solid state 1 23a- 22takde

4/23/2014

9

17

Hasil ini bersetuju dengan hukum Dulong-Petit

pada suhu tinggi.

Tapi gagal sepenuhnya untuk menerangkan sifat

CV pepejal pada suhu rendah.

Cv

T

Pada suhu rendah CV ∼∼∼∼ T3

pada suhu tinggi CV tidak

bersandar pada suhu

Dulong & Petit

Page 173: Sem4 solid state 1 23a- 22takde

4/28/2014

1

Teori Kuantum

Dalam teori kuantum,

Tenaga terma hablur = jumlah tenaga bagi fonon yang

berada dalam keadaan keseimbangan terma antara

satu dengan lain.

Dengan menggunakan mekanik statistik, tenaga purata

bagi fonon yang mempunyai frekuensi ωq dan dalam

mod q adalah

(4.16)

dengan < nq> adalah taburan Bose-Einstein.

2 model – Model Einstein & Model Debye

qqnE ωℏ=

MODEL EINSTEIN

Einstein menganggap tenaga getaran kekisi adalah

terkuantum (bersifat diskrit)

Kuantum tenaga memenuhi persamaan

(4.15)

dan

(4.16)

Menurut model Einstein:

semua atom bergetar bebas antara satu sama lain

frekuensi yang sama iaitu, ωE.

integer nombor n nE == ,ωℏ

22

222 qm

m

pE

ω+=

Page 174: Sem4 solid state 1 23a- 22takde

4/28/2014

2

Dengan menggunakan anggapan ini, setiap fonon

mempunyai tenaga purata

4.17

Pada suhu T tertentu, ωE adalah pemalar.

Jika diandaikan ,

Persamaan (4.17) boleh ditulis sebagai

0

0

= ∞

=

=

n

T k n

n

T k n

E

B

B

E

E

e

e n

E

E

ω

ω ω

ℏ ℏ

1

...1

...3232

32

dx

dy

y

eee

eeeE

E

xxx

xxx

E E

ω

ω

=

++++

+++=

Tkx BEωℏ−=

...eee1y x3x2x ++++=Dengan

Dengan

Oleh kerana

...eee1y x3x2x ++++=

ylogdx

d

dx

dy

y

1=

( )

e1

1

dx

d=

...ee+1logdx

d

ylogdx

dE

xE

x2xE

EE

−ω

++ω=

ω=

Page 175: Sem4 solid state 1 23a- 22takde

4/28/2014

3

tenaga terma hablur menjadi

(4.18)

Faktor 3 menunjukkan darjah kebebasan ataupunmod pengutuban.

N adalah bilangan pengayun per mol.

1e

1e

e1

e

Tk

E

x

E

x

x

E

BE −

ω=

ω=

−ω=

ω

1e

N3EN3U

Tk

EEE

BE −

ω==

ωℏ

Pada suhu tinggi, didapati

Dengan mengabaikan sebutan dan

sebutan dengan peringkat yang lebih tinggi, maka

Persamaan (4.18)

menjadi

4.20

R adalah pemalar gas semesta =8.3144621 Jmol-1K-1.

...1

32

+

+

++≈

TkTkTke

BBB

TkBωωωω ℏℏℏℏ

EB Tk ω⟩⟩ ℏ

2

TkB

ωℏ

TNkU BE 3=

R

Nk

dT

dUC

B

EV

3

3

=

=

=

Tke

B

TkBωω ℏℏ +≈1

1e

N3EN3U

Tk

EEE

BE −

ω==

ωℏ

Page 176: Sem4 solid state 1 23a- 22takde

4/28/2014

4

Persamaan (4.20) bersetuju dengan hukum

Dulong-Petit yang menyatakan bahawa CV adalah

pemalar dan bersamaan dengan 3R. Dengan itu,

model ini benar untuk suhu tinggi.

Pada suhu rendah, ,

didapati

Persamaan (4.18)

menjadi

EBTk ωℏ⟨⟨

1⟩⟩

Tkeksp

B

Eωℏ

Tk

EE

BEe

NU

ω

ωℏ

ℏ3=

Tk

EBEeN

ωω ℏℏ

−= 3

1e

N3EN3U

Tk

EEE

BE −

ω==

ωℏ

4.21

Cv → 0 bila T → 0, sesuai dengan hasil dari ujikaji.

Frekuensi Einstein, ωE boleh dikaitkan dengan suhu

Einstein, θE melalui persamaan berikut:

dT

dUC E

V =

Tk

B

EE

BEeTk

Nωω

ω ℏℏℏ

=

23

Tk

B

EB

BEeTk

Nkωω ℏℏ −

=

2

3

EBE k θω =ℏ

Page 177: Sem4 solid state 1 23a- 22takde

4/28/2014

5

Jika Persamaan (4.21) ditulis dalam sebutan θE,

maka diperoleh

Parameter z adalah bilangan atom yang terdapat

dalam satu formula unit.

Sebagai contoh, BaTiO3 mempunyai z = 5.

CV → 0 apabila T → 0 adalah benar,

Pada suhu rendah rumus Einstein terlalu cepat

menuju kepada sifar iaitu secara ekponens

(menyimpang dari hasil eksperimen: CV ~ T3)

TEV

EeT

zRCθθ −

=2

3

TBeT −−∝ 2

MODEL DEBYE

Atom-atom dianggap seperti pengayun harmonik

yang menghasilkan gelombang kenyal dengan

frekuensi berbeza-beza

Debye menggunakan penghampiran selanjar

isotrop bagi sebaran fonon.

Pepejal adalah bersifat homogen dan isotrop.

Sumbangan fonon daripada mod dengan frekuensi

tinggi (seperti dalam model Einstein) dan mod

dengan frekuensi rendah,

dan hubungan sebaran diabaikan iaitu kv0=ω

isotropic: Properties of a material are identical in all directions

anisotropic: Properties of a material depend on the direction; for example, wood.

Page 178: Sem4 solid state 1 23a- 22takde

4/28/2014

6

Tenaga purata fonon yang mempunyai frekuensi

ωn adalah

Frekuensi Debye diberikan oleh

manakala ketumpatan keadaan fonon

1−=

Tk

nn

BneE

ω

ωℏ

0

3

126

vV

ND

=

πω

3

2

22

3)(

v

VgD

ω

πω =

Penghampiran kontinum isotrop dalam model Debyeyang sesuai untuk fonon dalam cabang akustik danfrekuensi tunggal dalam model Einstein yang sesuaiuntuk fonon dalam cabang optik.

ω

ωE

q

Penghampiran Einstein

Penghampiran Debye

Cabang optik

Cabang akustik

Page 179: Sem4 solid state 1 23a- 22takde

4/28/2014

7

Menurut model ini, tenaga terma hablur menjadi

Gantikan gD(ω), iaitu

maka diperoleh

ωωω

ω

ω

ω

ω

dg e

=

e U

D

D

Tk

N

nTk

nD

B

Bn

)(1

1

0

3

0

∫−

∑−

==

( )( )

Tk

d

e

Tk Tk

v2

V3=U

BTkB

B2D

D

B

ωω

π

ω

ω

ℏℏ

ℏℏ

∫−0

34

30

31

3

2

22

3)(

v

VgD

ω

πω =

Pada suhu tinggi z << 1 dan

Tkz Bωℏ=

Tkddz Bωℏ=

TTTkz DBDD == ωℏ

∫−

Dz

zD

BDe

dzz

T

TTNk=U

0

33

19

zez +≈1

3

0

2

0

3

3

1

1

∫∫−

T

T=

dzz=e

dzz

D

zz

z

DD

( )( )

Tk

d

e

Tk Tk

v2

V3=U

BTkB

B2D

D

B

ωω

π

ω

ω

ℏℏ

ℏℏ

∫−0

34

30

31

Page 180: Sem4 solid state 1 23a- 22takde

4/28/2014

8

RT

TNk

T

T

T

TTNkU

B

D

D

BD

3

3=

3

19=

33

=

RT

UC

V

DV 3=

=∂

Maka pada suhu rendah:

z >> 1, maka zD → ∞ dan seterusnya

∫−

0

33

19

zD

BDe

dzz

T

TTNk=U

3

3

9

DB

4

DB

T

TTNk

5

3=

(4)T

TTNk=

π

ς

Tkz Bωℏ= TTTkz DBDD == ωℏ

Daripada

Page 181: Sem4 solid state 1 23a- 22takde

4/28/2014

9

ς(4) = π4/90 dengan ς adalah fungsi zeta Riemann

iaitu

( )

( ) ∑−=

∫−

=

=

∞ −

0

0

1

1!1

1

ns

z

s

n s

e

dzzsς

V

DV

T

U =C

3

DB

4

T

TNk=

π

5

12

3

DB

T

TNk=

234 4.31

Model Debye berjaya menerangkan kesandaran

suhu bagi muatan haba pepejal bukan sahaja

pada suhu tinggi malahan juga pada suhu rendah.

Persamaan (4.31) juga dikenali sebagai hukum T3

Debye bagi sumbangan fonon kepada muatan

haba pepejal pada suhu rendah.

Jika ditulis Persamaan (4.31) dalam mol, maka

(4.32)

dengan z adalah bilangan atom dalam satu

molekul atau unit formula dan R adalah pemalar

gas semesta. Bagi z = 1, CV = 1944 (T/TD)3 J K-1

mol-1.

3

DV

T

TzRC

= 234

Page 182: Sem4 solid state 1 23a- 22takde

KEKONDUKSIAN TERMA

1

Page 183: Sem4 solid state 1 23a- 22takde

Bagaimanakah tenaga terma/haba dipindahkandi dalam bahan – (kekonduksian terma)Bila wujudnya kecerunan suhu merentasipepejalTenaga haba dipindahkan dari bahagian lebihpanas ke bahagian lebih sejukApakah mekanisme haba dipindahkan?Bila panas, elektron, lohong dan fonon bolehmemperoleh tenaga lebih daripada tenagapurata masing-masing.Dalam logam elektron, lohong dan fonon bolehmemindah atau mengkonduksikan tenaga habadari bahagian yang lebih panas ke bahagianyang lebih sejuk.

2

Page 184: Sem4 solid state 1 23a- 22takde

Dalam penebat (bahan dielektrik): hanya fonon sahaja memainkan peranandalam penghantaran tenaga.

Menurut Debye:Jika getaran kekisi kekal dalam mod normal (dalam hablur harmonik sempurna)

taburan fonon kekal tidak berubah mengikut masaArus terma juga kekal tidak menyusut danpenghantaran haba dalam pepejal berlaku dengan lajubunyi

kekonduksian terma kekisi menjadi infinit

3

Page 185: Sem4 solid state 1 23a- 22takde

Dalam keadaan sebenar, terjadi:1. Serakan sempadan: Kerana saiz

spesimen.2. Serakan antara fonon dan kecacatan:

Kecacatan kekisi seperti kecacatan titik, ketakseragaman isotop dan bentuk-bentukkecacatan yang lain.

3. Serakan fonon-fonon: Hablur menjadi takharmonik pada suhu lebih besar daripadasifar mutlak.

Mekanisme-mekanisme serakan fonon inimenghasilkan rintangan terma yang menyebabkan kekonduksian terma menjadifinit

4

Page 186: Sem4 solid state 1 23a- 22takde

Persamaan PengangkutanFonon Boltzmann

5

Katakan nq(r,t) = fungsi taburan kepekatanfonon dengan mod vektor perambatan qberdekatan dengan kedudukan r pada masa t.Dengan wujudnya kecerunan suhu ∇Tmerentasi pepejal, terdapat 2 mekanisme yang bertanggung jawab kepada kadar perubahanfungsi taburan ini:

1. Mekanisme Resapan: nq(r,t) meresap iaitu berubah dari satu titik ke titikyang lain pada kadar

(5.1) nv. t

nq

res

q ∇−=∂∂

Page 187: Sem4 solid state 1 23a- 22takde

v = halaju fonon∇nq = kecerunan kepekatan fonon

2. Mekanisme Serakan:

Berbagai-bagai kejadian serakan menyumbangkepada kadar perubahan bagi fungsitaburan nq(r,t) dengan kadarnya

nqo = kepekatan fonon keseimbanganτ = masa santaian.

(5.2) τ

nn t

n oqq

ser

q −−=

∂∂

sertn ∂∂ q

6

Page 188: Sem4 solid state 1 23a- 22takde

Dengan itu, jumlah kadar perubahan fononnq(r,t) adalah

Persamaan pengangkutan Boltzmann bagi fononJika kecerunan suhu kecil, dan dalam keadaanaliran haba mantap, jumlah kadar perubahannq(r,t)

(5.3)

τnn

nv.

t n

t n

tn

oqq

q

ser

q

res

q

−−∇−=

+=∂∂

∂∂

∂∂ q

0=∂

tnq o

q nn q≈

7

Page 189: Sem4 solid state 1 23a- 22takde

Oleh kerana

(5.4)

Dalam keadaan mantap, n tidakbersandar kepada masa t

( ) ( ) .

TvTn

rnrno

oqq ∇−=

∂∂

τ q

( ) TTnnn oq

oqq ∇≈∇≈∇ ∂∂

8

Page 190: Sem4 solid state 1 23a- 22takde

Ungkapan Bagi KekonduksianTerma Fonon

Dalam keadaan mantap, kadar aliran tenaga per unit luas normal terhadap kecerunan suhudiberikan oleh ungkapan makroskopik

(5.5)dengan κ = kekonduksian terma.Fluks tenaga bagi sekumpulan zarah denganketumpatan n, setiap zarah membawa tenaga Edan bergerak dengan halaju v, diberikan oleh

Q = - Env (5.6)

T∇−= κQ

9

Page 191: Sem4 solid state 1 23a- 22takde

Dalam pepejal dielektrik (penebat), sumbanganutama adalah fonon, Ungkapan mikroskopik arus tenaga Q adalah

Setiap fonon membawa tenagaDalam keadaan mantap, nq daripada Persamaan(5.4) boleh digantikan ke dalam Persamaan (5.7). Oleh kerana sebutan yang mengandungi nq

o jikadijumlah untuk semua mod menjadi sifar, maka

( ) (5.7) mod∑= rnv qqωhQ

(5.8) .

mod

TvvTn

qq

oq ∇= ∑ τ

∂∂

ωhQ

ωh=E

10

Page 192: Sem4 solid state 1 23a- 22takde

seringkali juga dituliskan dalam bentuk:

dengan κij adalah elemen bagi tensor kekonduksian terma iaitu

Bagi hablur kubus dan bahan isotrop, contohnya bahan amorfus yang padakebiasaannya mempunyai sifat tidakbergantung kepada arah, v selari dengan ∇T.

(5.9) ∑−=

j jiji x

TQ∂∂κ

(5.10)

mod

ji

o

ij vvTn

∑= τ∂∂

ωκ qh

11

Page 193: Sem4 solid state 1 23a- 22takde

Persamaan (5.10) menjadi Persamaan (5.5) dengan κ adalah skalar kekonduksian termasebagai satu daripada elemen pepenjuru tensor Persamaan (5.10). Oleh sebab

maka Persamaan (5.10) menjadi

( )zzyyxx κκκκ ++=31

(5.11) 31 2

modv

Tno

q∑= τ∂∂

ωκ h

12

Page 194: Sem4 solid state 1 23a- 22takde

Persamaan (5.5) seringkali juga dituliskansebagai

(5.12)dengan R = 1/κ adalah rintangan terma bahan.Dengan menggunakan teori kinetik asas bagigas fonon dalam pepejal, maka kekonduksianterma κ boleh dituliskan mengikut pernyataanberikut:

RQ T −=∇

(5.13) 31 2

mod vτ Cκ V∑=

13

Page 195: Sem4 solid state 1 23a- 22takde

Dalam hal ini, penghantaran tenagaadalah proses rawak dalam keadaankeseimbangan setempatFonon semestinya

meresap melalui pepejal, seringkali mengalami perlanggaran, iaitutidak boleh merambat secara balistik darikawasan suhu yang lebih tinggi ke kawasansuhu yang lebih rendah danhanya bergantung kepada perbezaan suhu∇T

14

Page 196: Sem4 solid state 1 23a- 22takde

KEKONDUKSIAN TERMA

Serakan Sebagai Kesan Tak Harmonik

Page 197: Sem4 solid state 1 23a- 22takde

Serakan Sebagai Kesan Tak Harmonik   Dalam hablur yang sempurna, tidak terjadi

serakan fonon dan kekonduksian terma kekisi menjadi infinit.

  Walau bagaimanapun, sebutan kuadratik dalam

adalah sebutan pertama tak sifar dalam pengembangan Taylor bagi tenaga keupayaan terhadap kedudukan keseimbangan.

Page 198: Sem4 solid state 1 23a- 22takde

  Sebutan bagi sesaran relatif peringkat ketiga, keempat dan yang lebih tinggi, atau dipanggil sebagai sebutan tak harmonik, tidak boleh diketepikan.

  Sebutan sebutan tak harmonik ini mengganding kan fonon dengan fonon yang lain dan menghasilkan saling tindak fonon-fonon, dan juga proses-proses serakan yang lain untuk mencapai keseimbangan.

  penyisihan daripada kehabluran yang sempurna merubah taburan fonon, dan seterusnya menghasilkan sebutan serakan dalam persamaan pengangkutan Boltzmann.

Page 199: Sem4 solid state 1 23a- 22takde

Serakan Oleh Fonon

  Dalam peristiwa yang paling kerap berlaku, dua fonon dengan vektor gelombang q1 dan q2 berlanggar dan memusnah habiskan antara satu sama lain dan satu fonon dengan vektor gelombang q3 dicipta.

  Menurut hukum keabadian tenaga dan momentum, kita dapati (5.14)

  Dan (5.15)

Page 200: Sem4 solid state 1 23a- 22takde

  Subskrip 1 dan 2 menunjukkan fonon-fonon asal dan subskrip 3 bagi fonon yang dicipta.

  K adalah vektor kekisi salingan termasuk sifar.   Untuk peristiwa dengan K = 0 dan vektor-vektor

q1, q2 dan q3 adalah kecil berbanding dengan pinggir zon Brillouin, mengarah ke kanan dan terletak dalam zon Brillouin yang pertama, maka proses ini dipanggil proses Normal atau proses-N seperti yang ditunjukkan dalam Rajah 5.1a.

  Sebelum serakan, tenaga mengalir ke kanan dan selepas serakan, menghasilkan sejumlah tenaga yang sama, mengalir ke kanan.

Page 201: Sem4 solid state 1 23a- 22takde

  Saling tindak tiga fonon dalam peristiwa kelas 1. (a) Proses-N: q1 + q2 = q3 (b) Proses-U: q1 + q2 = q3 + K.

Page 202: Sem4 solid state 1 23a- 22takde

  Kita boleh simpulkan bahawa proses-N tidak mengubah arah aliran tenaga, maka proses ini tidak boleh menyumbang kepada rintangan terma dalam hablur.

  Dengan itu, jika hanya proses perlanggaran ini sahaja yang berlaku, maka tiada terdapat kesan saling tindak fonon-fonon kepada k.

Page 203: Sem4 solid state 1 23a- 22takde

  Peristiwa dengan K ≠ 0 dikenal sebagai proses Umklapp atau dikenal juga sebagai proses-U.

  Perkataan Umklapp adalah daripada perkataan German yang bermaksud terpusing balik.

  Proses inilah yang menghasilkan rintangan terma dan boleh dijelaskan seperti berikut.

  Jika q1 + q2 di luar dari zon Brillouin pertama, maka vektor ini boleh diputar kembali ke dalam zon Brillouin pertama dengan bantuan vektor kekisi salingan K yang sesuai.

Page 204: Sem4 solid state 1 23a- 22takde

  Vektor q3 adalah vektor gelombang fonon yang tercipta tetapi mengarah ke kiri dengan aliran tenaga juga mengarah ke kiri seperti yang ditunjukkan dalam Rajah 5.1b.

  Jadi, sementara aliran tenaga q1, dan q2 mengarah ke kanan, aliran tenaga q3 mengarah ke kiri.

  Dengan itu, aliran tenaga telah disongsangkan.

  Proses-U menghasilkan rintangan terma bagi aliran fonon iaitu menghasilkan kekonduksian terma yang finit.

Page 205: Sem4 solid state 1 23a- 22takde

Mekanisme Serakan Berganda   Biasanya terjadi lebih dari satu mekanisme

serakan yang menyumbang kepada kekonduksian terma.

  Dalam model yang paling mudah, boleh dibuat anggapan bahawa setiap mekanisme yang terjadi tidak dipengaruhi oleh satu sama lain.

  Sebagai contoh, serakan fonon boleh dianggap tidak berubah dengan adanya kecacatan titik.

  Jika τi adalah masa santaian yang berkaitan dengan mekanisme i, maka masa santaian disebabkan oleh serakan berganda τJ diberikan oleh (5.16)

Page 206: Sem4 solid state 1 23a- 22takde

  Jika masa santaian bagi satu mekanisme sangat pendek berbanding dengan mekanisme yang lain, serakan yang berlaku adalah didominan oleh mekanisme tersebut.

  Rintangan terma, R adalah berkadar dengan salingan bagi masa santaian. Dengan itu, jumlah rintangan terma boleh dituliskan sebagai jumlah sumbangan daripada berbagai-bagai mekanisme serakan.

  Sebagai contoh, sumbangan fonon kepada R bagi hablur kubus adalah (5.17)

Page 207: Sem4 solid state 1 23a- 22takde

  dengan masing-masing Rf, Rs, Rb, dan Rk adalah disebabkan oleh serakan fonon-fonon, serakan fonon-sempadan, serakan fonon-bendasing dan serakan fonon-kekosongan.

  Setelah semua sebutan ini dijumlahkan, sumbangan fonon kepada κ dihitung sebagai salingan kepada R.

Page 208: Sem4 solid state 1 23a- 22takde

Kekonduksian Terma Penebat dan Semikonduktor

  Kekonduksian terma κ tipikal bagi penebat dan semikonduktor ditunjukkan dalam Rajah 5.2.

  κ adalah berkadar dengan T3 pada suhu rendah manakala berkadar dengan T1 pada suhu tinggi.

  Pada suhu tinggi, punca utama santaian adalah serakan fonon-fonon.

  Pada suhu ini serakan fonon melalui proses Umklapp adalah lebih penting daripada proses normal.

  Dalam Rajah 5.2, NaF yang tulen menunjukkan serakan Umklapp pada suhu tinggi.

Page 209: Sem4 solid state 1 23a- 22takde

Rajah 5.2 Kekonduksian terma κ yang diukur bagi pepejal bukan logam; penebat dan semikonduktor. Masing-masing contoh penebat dan semikonduktor yang ditunjukkan adalah natrium florida (NaF) yang sangat tulen dan germanium, Ge.

Page 210: Sem4 solid state 1 23a- 22takde

  Bilangan kejadian serakan Umklapp per unit masa berkadaran dengan bilangan fonon berpanjang gelombang pendek.

bilangan fonon bagi setiap mod pada suhu tinggi berkadar dengan T,

masa santaian bagi serakan fonon-fonon pada suhu tinggi berkadar songsang dengan T.

rintangan terma pada suhu tinggi bagi penebat berkadaran dengan T.

Page 211: Sem4 solid state 1 23a- 22takde

  Apabila suhu diturunkan, bilangan serakan Umklapp berkurang secara dramatik dan masa santaian bagi serakan fonon-fonon bertambah secara dramatik juga.

  Akhirnya masa santaian bagi serakan fonon-fonon menjadi lebih besar daripada masa santaian bagi serakan oleh kecacatan atau sempadan.

mekanisme selain daripada serakan Umklapp adalah pendominan pada suhu rendah.

Page 212: Sem4 solid state 1 23a- 22takde

  Dengan menggunakan penghampiran Debye, R berkadar kepada Tn

3, maka R boleh dituliskan sebagai (5.18)

  a bersandar kepada dimensi sampel   b berkadar kepada bilangan kehelan   c berkadar terhadap bilangan kecacatan titik.

Serakan sempadan

Serakan kehelan

Serakan kecacatan titik

Page 213: Sem4 solid state 1 23a- 22takde

  Pada suhu rendah, kepekatan kekosongan dan interstis adalah kecil menyebabkan c bersandar sepenuhnya kepada kepekatan bendasing.

  Bagi sebarang hablur pada suhu yang sangat rendah, serakan sempadan adalah dominan

κ ∝ T 3

Page 214: Sem4 solid state 1 23a- 22takde

5/3/2014

1

1

ELEKTRON DALAM LOGAM

2

Di dalam logam & semikonduktor elektron yangterikat kuat kepada nukleus tidak boleh membawaarus

Sifat logam & semikonduktor ditentukan olehelektron konduksi.

Berbagai teori untuk menjelaskan sifat logamseperti kekonduksian elektrik σ, kekonduksianterma, muatan haba, kerentanan (susceptibility), χ

dan sebagainya.

Contoh: Teori elektron bebas, teori elektron hampirbebas, teori jalur dan sebagainya.

Page 215: Sem4 solid state 1 23a- 22takde

5/3/2014

2

3

Teori Elektron Bebas

Berasaskan kepada teori kinetik gas molekul sebagai sfera pejal yang seiras bergerak dalam garis lurus sebelum berlanggar masa yang diambil semasa perlanggaran sangat kecil tiada daya saling tindak antara molekul selain ketika

perlanggaran. Perbezaan antara gas elektron konduksi dengan

gas molekul dalam teori kinetik gas: Zarah gas konduksi iaitu elektron jauh lebih ringan

daripada molekul gas. Zarah gas elektron membawa cas. Zarah gas elektron melalui kekisi ion positif bukan dalam

ruang bebas.

4

Elektron boleh berlanggar dengan ion sesama sendiri

Perlanggaran elektron-elektron jarangberlaku berbanding perlanggaran elektron-ion.

Dua model Model Drude - pendekatan klasik (1900) Model Sommerfeld - pendekatan kuantum

mekanik (1928)

Page 216: Sem4 solid state 1 23a- 22takde

5/3/2014

3

5

Model Drude

Drude membina teori kekonduksian elektrik dankekonduksian terma bagi logam

menggunakan teori kinetik gas: anggap logamsebagai gas elektron bebas.

Apabila atom atom bagi satu unsur logamdidekatkan untuk membentuk pepejal logam,setiap atom dianggap menyumbang satu elektron(atau lebih bergantung kepada valensi logam)kepada gas elektron konduksi yang bebasbergerak.

6

-eZ

-e(Za–Z)

eZa

Nukleus

Elektron teras

Elektron valens

Nukleus

Elektron teras

Elektron konduksi

Ion

Elektron di dalam pepejal logam

Atom terasing

Terdapat ion positif membentuk kekisi hablur dimana elektron bebas melaluinya.

Page 217: Sem4 solid state 1 23a- 22takde

5/3/2014

4

7

Anggapan model Drude

Diabaikan saling tindak elektron-elektrondan elektron–ion. Jadi, tanpa E/M : Elektron bergerak lurus. dengan E/M : Elektron bergerak mengikut

ketentuan hukum gerakan Newton tetapidiabaikan medan antara e-e lain dan e-i.

Pengabaian saling tindak e-e dikenali sebagaipenghampiran elektron tak bersaling tindak.

Pengabaian saling tindak e-i dikenali sebagaipenghampiran elektron bebas.

8

Perlanggaran hanya mengubah arah tetapimagnitud halaju e tetap (ion jauh lebih beratdaripada elektron) - kenyal

Masa di antara perlanggaran dikenali sebagaimasa santaian, τ.

Jarak purata antara perlanggaran atau jejakbebas min adalah

l = τv. Kebarangkalian perlanggaran = 1/τ.

τ tak bersandar kepada kedudukan dan v. Keseimbangan terma e melalui perlanggaran

sahaja.

Page 218: Sem4 solid state 1 23a- 22takde

5/3/2014

5

9

Kejayaaan dan kegagalan model Drude: Hukum Ohm kaitan antara σ dan κ

σ, κ, muatan haba, C Kerentanan (susceptibility), χ

berjaya

gagal

10

Ketumpatan gas elektron

Pepejal logam mengandungi Nombor AvogadroNA = 6.022 x 1023 atom per mol

ketumpatan jisim ρm = A mol per cm3 denganA = jisim atom

Jika setiap atom menyumbangkan z elektron, makabilangan elektron per cm3 ialah

A

z mρAN

V

Nn ==

Page 219: Sem4 solid state 1 23a- 22takde

5/3/2014

6

11

Nilai ketumpatan elektron konduksi beberapa logam,ns dan radius elektron, rs .

rs ditakrifkan sebagai radius satu sfera yangmempunyai isipadu = isipadu satu elektron konduksiiaitu

Unsur Z nsx 1022 cm-3

rs (Å)

Cu 1 8.47 1.41

Au 1 5.90 1.59

Zn 2 13.2 1.22

Al 3 18.1 1.10

Sn 4 14.8 1.17

Sb 5 16.5 1.13

3

3

41sr

nN

v π==

31

4

3

=

nrs

π

12

Taburan halaju elektron Menurut model Drude, taburan halaju elektron

mengikut taburan Maxwell-Boltzmann.

vpmkd

Taburan halaju Maxwell-Boltzmann

Kebarangkalian halaju

v0

Bilangan elektron per unit isipadu yang mempunyai halaju dalam julat dv di sekitar v ialah f(v)dv dengan

=

Tk

mveksp

Tk

mnvf

BB 22)(

22

3

π

Page 220: Sem4 solid state 1 23a- 22takde

5/3/2014

7

13

Kebarangkalian bagi halaju dalam julat v dan v

+ dv ialah

........ (6.4)

tenaga kinetik purata bagi setiap elektron ialah

....... (6.6)

2

2

1

2

3pmkdB mvTk =

21

3

=

m

Tkv B

pmkd

dvTk

mveksp

Tk

mv

n

dn

BB

=

224

22

3

2

ππ

14

Kekonduksian elektrik, σ Menurut model Drude, dalam keseimbangan terma,

halaju hanyut elektron

(6.7)

vi = halaju elektron i. Persamaan gerakan bagi elektron

(6.8)

mvh/ד adalah daya geseran atau daya lembapan

∑=

=n

i

ih vn

V1

1

Fv

dt

vdm hh

=

====F

daya luar misalnya, medan elektrik E

Page 221: Sem4 solid state 1 23a- 22takde

5/3/2014

8

15

Jika ada , maka(6.9)

Halaju hanyut adalah malar

Jadi,

(6.10)

E

Eev

dt

vdm hh

−=

+

τ

0=dt

vd h

Em

evh

τ−=

16

Ketumpatan arus,

Tapi

(6.12)

kerana kebanyakan elektron mempunyai v tidak jauh berbeza dengan vpmkd.

Em

nevneJ n

τ2 =−=

EJ

σ −=

2

m

ne τ=σ

pmkdv

ℓ=τ

Page 222: Sem4 solid state 1 23a- 22takde

5/3/2014

9

17

Jadi

l boleh dihitung daripada Per. (6.13). Bagi Cu pada suhu bilik l ~ 3 nm = 30 Å. Daripada Per. (6.6) dan Per. (6.13), maka

atau Tetapi

Bukan merupakan kaitan seperti yang ditunjukkan dalam ujikaji.

tetapi bagi kebanyakan logam seperti yang ditunjukkan dalam Rajah 6.3.

(6.13) 2

pmkdmv

ne ℓ=σ

3

2

Tmk

ne

B

ℓ=σ

21−

∝ Tσ

1

ρσ = 2

1

T∝ρ

18

100 200

T(K)

ρρρρ (nΩΩΩΩm)

300

10

20

00

(a)

(b)

Page 223: Sem4 solid state 1 23a- 22takde

5/3/2014

10

19

Kekonduksian terma

Takrif κ (6.15)

Q = fluks tenaga terma/luas/masa,

Dengan teori klasik: Fluks e dari hujung bersuhu T + ∆T ke hujung bersuhu T ialah

Dalam keseimbangan terma:

dx

dTQ κ=

suhu kecerunan =dx

dT

xvn2

1

−=

+ ifarah x

elektron Fluks

ifarah x

elektron Fluks

20

Tenaga dihantar oleh satu elektron dari hujungbersuhu T + ∆T ke hujung bersuhu T adalah samadengan c∆T

c = muatan haba tentu satu elektron. ∆T boleh ditulis sebagai

(6.16)

∴ Jumlah fluks tenaga,

τxvdx

dT

dx

dTT ==∆ ℓ

c 3

2

c 2

)2

12(

dx

dTvnQ

dx

dTxvnTcxvnQ

τ

τ

=

=∆=

Page 224: Sem4 solid state 1 23a- 22takde

5/3/2014

11

21

v malar, l = vτ, C = nc, C adalah jumlah muatan haba

Daripada Per. (6.15) dan (6.17), diperoleh

(6.18)

atau

(6.19)

Dengan menggunakan Per. (6.18) diperoleh l

daripada nilai κ yang diukur. Untuk Cu pada suhu bilik l ≈ 6 nm iaitu 2 x nilai

diperoleh daripada σ.

(6.17) 3

1

dx

dTCvQ ℓ=

ℓCv3

1 =κ

τκ 2

3

1 Cv=

22

Dari Pers. (6.18) dan

Maka didapati κ ∝ T ½ manakala secaraeksperimen κ berkelakuan lebih kompleks lagiseperti ditunjukkan dalam rajah di bawah.

100 200

T(K)

κκκκ (WK-1cm-1)

300

10

20

00

Kekonduksian terma κ(T) bagi sample Cu

ℓCv3

1 =κ

2

2

3

2

1Tkmv

B=

Page 225: Sem4 solid state 1 23a- 22takde

5/3/2014

12

23

Muatan haba tentu

Menurut model Drude: tenaga kinetik purata setiap elektron = ³/2 kBT

haba tentu elektron

Jika logam mempunyai ketumpatan elektron n haba tentu logam

(6.20)

BBkTkc

2

3

2

3

T =∂

∂=

BnkncC2

3 ==

24

C yang disumbangkan oleh elektron jauh lebih kecil daripada hasil yang diberikan oleh Persamaan (6.20).

model Drude gagal meramalkan nilai C bagi logam.

Page 226: Sem4 solid state 1 23a- 22takde

5/3/2014

13

25

Hukum Wiedemann-Franz

Teori elektron bebas Drude berjaya dalammeramalkan nisbah κ/σ atau κ/σT.

Daripada Per. (6.19) dan Per. (6.12) diperoleh

2

2

/

3

1

mne

Cv

τ

τ

σ

κ=

2

2

3

2

1Tkmv

B= B

nkC2

3 =

23

32

3

3

1

Te

k

ne

Tknk

2

B

BB

=

=2σ

κ

….(6.21)

26

Persamaan 6.22 menunjukkan nisbah κ/σT adalahpemalar sama bagi semua logam.

Keputusan ini diperoleh secara eksperimen olehWiedemann dan Franz dan oleh Lorenz.

Persamaan 6.21 dikenali sebagai hukumWiedemann-Franz dan

nisbah κ/σT dikenali sebagai nombor Lorenz, L.

2

=e

Bk

T 2

3

σ

κ….(6.22)

Page 227: Sem4 solid state 1 23a- 22takde

5/3/2014

14

27

L bagi beberapa logam

Unsur κWcm-1K-1

κ/σT (T = 273K)X 10-8 W.Ω.K-2

Li 0.71 2.22

Cu 3.85 2.20

Ag 4.18 2.31

Au 3.10 2.32

Fe 0.80 2.61

Al 2.38 2.14

Pb 0.38 2.64

Page 228: Sem4 solid state 1 23a- 22takde

5/21/2014

1

Elektron Dalam Logam II

Taburan Fermi-Dirac

Fermi & Dirac mendapati gas elektron tidakmengikut gas elektron klasik.

Elektron ialah zarah berspin ½ yang mengikuthukum mekanik kuantum.

Menurut prinsip pengecualian Pauli:

tidak lebih daripada satu elektron boleh mengisisebarang keadaan kuantum, dengan mengambilkeadaan spin ke atas dan spin ke bawah sebagaiberlainan,

Page 229: Sem4 solid state 1 23a- 22takde

5/21/2014

2

Pengisian bermula dari keadaan terendah sekali

sehingga semua keadaan tenaga terendah yang lain

dipenuhi manakala keadaan tenaga yang lebih tinggi

dibiarkan kosong.

Menurut mekanik kuantum, keadaan dasar gas

elektron ialah keadaan pada suhu mutlak (T = 0 K).

Pada keadaan dasar, elektron diisi secara

berpasangan (dengan spin berlawanan) bermula dari

paras tenaga terendah iaitu E = 0 sehingga ke paras

tenaga Fermi, EF.

Apakah yang terjadi pada elektron bila suhu dinaikkan

iaitu T > 0 K?

Penyelesaian diberikan oleh fungsi taburan Fermi-

Dirac iaitu

(6.22)

dengan µ = keupayaan kimia

µ = EF ; T = 0 K,

µ → EF ; T ≠ 0 K.

T > 0 K, tenaga kinetik elektron bertambah

paras tenaga yang pada mulanya kosong akan

terisi oleh elektron

sebahagian paras tenaga yang sebelumnya terisi

dengan elektron menjadi kosong.

1

1

T

e

f(E)B

µ)/k-(E+

=

Page 230: Sem4 solid state 1 23a- 22takde

5/21/2014

3

Penerbitan Persamaan Fermi-Dirac (6.22)

Kebarangkalian P(N,E) bagi satu sistem yangmempunyai N zarah dan berada dalam keadaanbertenaga E

Untuk suatu aras tenaga E = 0 jika aras kosong(tiada elektron), maka

P (0,0) ∝ e0 = 1

Untuk 1 aras tenaga E terisi 1 elektron, maka

P(1,E) ∝ exp (µ-E)/kBT

TB

/kEµNeENP

∝),(

Jadi

Fungsi taburan FD:

Kebarangkalian suatu paras tenaga E terisi dengan

elektron dalam sistem gas elektron yang berada

dalam keadaan keseimbangan terma.

( )( )

1 T

e

1

Te1

Te

E1,P )0,0(P

E1,P f(E)

Bµ)/k-(E

BE)/k-(µ

BE)/k-(µ

+

=

+

=

+=

Page 231: Sem4 solid state 1 23a- 22takde

5/21/2014

4

Jika ditulis dalam bentuk

(6.23)

maka f(E)g(E) ialah bilangan e- yang mempunyai

tenaga dalam julat E dan E + dE, dengan

(6.24)

Atau

ialah ketumpatan keadaan elektron.

( ) g(E)

T

e

Ef(E) gB

)/kF

(E-E1

1

+

=

( ) 21

2

3

22

2

2

1 E

mEg

=

ℏπ

2

1

3

2

3

28)( E

h

mEg

π=

Note:

The “density of states” g(E) provides a statistical means of dealing with the

large number of states which are available.

g(E) represents the number of states per unit volume per unit energy

interval.

Taburan FD pada had T → 0 K:

=

>

<

=

+=→

F EE

F EE

F EE

T e

T

B)/k

F(E-E

; 21

; 0

; 1

1 0

Had

1-

( ) 21

2

3

22

2

2

1 E

mEg

=

ℏπ

T

e

f(E) B

)/kF

(E-E1

1

+

=

Page 232: Sem4 solid state 1 23a- 22takde

5/21/2014

5

T = 0 K, taburan tidak selanjar seperti dalam Rajah

E

f(E)

Fungsi taburan FD pada T = 0 K.

EF

1

00

f(E) = 0 ; E > EF bermakna tiada elektron

dibenarkan mempunyai tenaga > EF pada T = 0 K

seperti dalam Rajah (a).

Pada sebarang T, f(E) = ½ pada E = EF.

Takrif lain bagi paras Fermi ialah paras tenaga

apabila kebarangkalian penghunian elektron pada

satu paras tenaga adalah ½.

EF0

(a) Lautan Fermi pada

T = 0 K.(b) Lautan Fermi pada T > 0 K.

EFT < EF0.

EF0

EFT

Page 233: Sem4 solid state 1 23a- 22takde

5/21/2014

6

Taburan FD pada suhu bilik bagi

logam sodium. T= 300 K.

T = 0 K

f(E)

3.10

1

0

.05 3.20.10 E (eV)

T = 300 K

Ketumpatan keadaan elektron sebagai fungsi

tenaga dan ketumpatan keadaan yg terisi

ditentukan oleh taburan FD.

Pada T > 0 K, EFT < EF0.

f(E),

f(E)g(E)

EEFTEF0

g(E)

f(E)g(E); T = 0 K

f(E)g(E); T > 0 K

Page 234: Sem4 solid state 1 23a- 22takde

5/21/2014

7

Fungsi taburan FD untuk EF = 2.5 eV dan

pada suhu 0 K, 600 K dan 6000 K.

1.0

0

EF = 2.5 (eV) E

T = 0 K

T = 6000 K

T = 600 K

0.5

Fungsi taburan klasik MB bagi tenaga

untuk suhu 0 K, 600 K dan 6000 K.

T = 0 K

Eksp (- E/kT)

1.0

0

2.5 (eV)

T = 6000 K

E

T = 600 K0.5

Page 235: Sem4 solid state 1 23a- 22takde

5/8/2014

1

Metalic Solids

• The bulk of the elements are metallic in nature.

• In general metallic elements form crystalline structureswhich are relatively close-packed such as hexagonal closepacking, body centred cubic, or face centred cubic

• The outermost electrons of metallic atoms are weaklybound. When these atoms come together to form crystallinestructures, the loosely bound electrons are relatively free tomove among the atoms as an electron ‘gas’.

• Since the atoms ‘lose’ their outermost electrons, they areessentially positive ions.

• According to current metallic bond theory the metalic

structure is held together by the electrostatic attraction

between the positive ions and the negatively charged

electron ‘gas’.

• The electron ‘gas’ is also thought to be responsible for the

high electrical and thermal conductivities, surface cluster

and other metallic properties.

• Since the outermost electrons are free to move among the

ions, they do not belong to any single atomic bond. It is

therefore possible to alloy different metals provided their

atoms are similar in size.

Page 236: Sem4 solid state 1 23a- 22takde

5/8/2014

2

Free electron theory of metals

Electrons that are free to move in a piece of metal may have an

extremely large number of energy states available to them.

The “density of states” g(E) provides a statistical means of

dealing with the large number of states which are available.

g(E) represents the number of states per unit volume per unit

energy interval.

• g(E)dE represents the number of statesper unit volume that have energybetween E and E + dE

• The density of states g(E) is given by

For a 1cm cube of Copper, the number of states in the range

5.0-5.5eV is:

21

3

23

28)( E

h

mEg

π=

2119

2

1

1936

334

2

3

31

108106150

106125510110636

101928∆

−−

−−

−π

=

x~)Jx.x.(x

)Jx.x.)(mx()s.Jx.(

)kgx.(~N Eg(E)V

Page 237: Sem4 solid state 1 23a- 22takde

5/8/2014

3

Occupancy of States - Fermi-Dirac statistics In keeping with the exclusion principle, two electrons cannot be

in the same state if they have the same set of quantum

numbers.

A given state can therefore accommode only two electrons, one

with spin +1/2 and the other with spin -1/2.

A consequence is that, at zero

Kelvin, the energy states are filled

from the zero energy level, with

two electrons per state, until all

electrons are accounted for. The

last occupied state is called the

Fermi level and the corresponding

energy is called the fermi energy

EF.

• EF is determined by integrating the density of state

expression for energy over the interval from E =0 up to E=

EF.

• N/V is the number of conduction electrons per unit volume

in the metal

• Copper has EF = 7.0eV and Eaverage = 4.2eV. Energy from

thermal motion is 3/2kT=0.04 eV.

• As the temperature increases, it is expected that the

electrons will gain thermal energy and occupy energy states

above the Fermi level. The probability of an energy state E

being occupied is given by the Fermi factor f(E)

32

23

8

π=

V

N

m

hEF

( )1

1)(

+=

− kTEE FeEf

Page 238: Sem4 solid state 1 23a- 22takde

5/8/2014

4

Fermi-Dirac Probability Function

At T = 0 K, f(E) = 1 E < Ef

0 E > Ef

i.e. all states are occupied up to the

Fermi level (probability f(E) =1)

Note that at higher temperatures (e.g. T = 1200K in the

figure) the change in the Fermi factor is not very large.

The equation for f(E) shows that for any temperature T, f(E) =

0.5 when E = Ef.

A state of energy E = Ef has therefore a 50% chance of being

occupied.

( )1

1)(

+=

− kTEE FeEf

• Taburan FD pada had T → 0 K:

=

>

<

=

+=→

F EE

F EE

F EE

T e

T

B)/k

F(E-E

; 21

; 0

; 1

1 0

Had

1-

T

e

f(E) B

)/kF

(E-E1

1

+

=

E

f(E)

Fungsi taburan FD pada T = 0 K.

EF

1

00

Page 239: Sem4 solid state 1 23a- 22takde

5/8/2014

5

• f(E) = 0 ; E > EF bermakna tiada elektron dibenarkan

mempunyai tenaga > EF pada T = 0 K seperti dalam Rajah

(a).

• Pada sebarang T, f(E) = ½ pada E = EF.

• Takrif lain bagi paras Fermi ialah paras tenaga apabila

kebarangkalian penghunian elektron pada satu paras

tenaga adalah ½.

EF0

(a) Lautan Fermi pada

T = 0 K.(b) Lautan Fermi pada T > 0 K.

EFT < EF0.

EF0

EFT

Taburan FD pada suhu bilik bagi logam

sodium. T= 300 K.

T = 0 K

f(E)

3.10

1

0

.05 3.20.10 E (eV)

T = 300 K

Page 240: Sem4 solid state 1 23a- 22takde

5/8/2014

6

Ketumpatan keadaan elektron sebagai fungsi

tenaga dan ketumpatan keadaan yg terisi

ditentukan oleh taburan FD.

Pada T > 0 K, EFT < EF0.

f(E),

f(E)g(E)

EEFTEF0

g(E)

f(E)g(E); T = 0 K

f(E)g(E); T > 0 K

Fungsi taburan Fermi-Dirac untuk EF = 2.5 eV

dan pada suhu 0 K, 600 K dan 6000 K.

1.0

0

EF = 2.5 (eV) E

T = 0 K

T = 6000 K

T = 600 K

0.5

Page 241: Sem4 solid state 1 23a- 22takde

5/8/2014

7

Density of Occupied States

( )1

28)()()(

21

3

23

+

π==

− kTEEoFe

E

h

mEfEgEn

• The distribution of electrons in

the allowed states is obtained by

multiplying the availability of

states g(E) by the probability of

occupancy f(E).

• The product g(E)f(E) is the density

of occupied states.

no(E)dE is the number of electrons per unit volume with

energy between E and E+dE in equilibrium at temperature T.

Note that the number of electrons promoted

to higher energy states is relatively small and

these are the ones closest to the Fermi level.

Electrons in lower energy states are not

promoted thermally.

Compare with x-ray production where the

lower energy electrons are ejected and a

high energy electron relaxes, by emitting an

x-ray, to fill the vacancy.

The energy at the Fermi level corresponds to very high electron

speeds. E.g. for Copper:

smv

mvKEeV

mV

N

V

N

m

hE

F

F

Copper

F

/106.1

210.7

104.83

8

6

2

3283

22

×=

===

×=

π=

−where

Page 242: Sem4 solid state 1 23a- 22takde

5/21/2014

1

Model Sommerfeld

Teori elektron bebas dalam logam

– Pendekatan teori kuantum

Model ini menggunakan pendekatan mekanik

kuantum.

Cas positif (dari nukleus) bertaburan dalam kotak.

Gas elektron bebas (bercas –ve) di anggap tak

bersaling tindak dalam kotak bagi meneutralkan

sistem.

Setiap elektron bergerak dalam kotak kosong

kerana dianggap elektron yang lain bertaburan

secara seragam untuk meneutralkan cas positif.

Bermula dengan keadaan dasar 1 e- boleh

ditentukan keadaan dasar bagi sejumlah N e-.

Page 243: Sem4 solid state 1 23a- 22takde

5/21/2014

2

Katakan kotak ialah kubus dengan sisi L

elektron terkandung dalam sawar keupayaan V =

∞ pada setiap sisi.

Jika V = 0 dalam kotak, maka persamaan

Schrödinger menjadi

(6.25)

ψ(ȓ) = fungsi gelombang elektron,

E = paras tenaga elektron/fungsi eigen

( ) ( )

( )r

r 2

r 2

22

2

2

2

2

2

22

ℏℏ

ψ

ψψ

E

mzyxm

=

∇−=

∂+

∂+

∂−

V=∞

V=0

L

Syarat sempadan perlu dipilih.

Jika = 0 di sempadan (di sisi kubus), maka

penyelesaiannya

(6.26)

C = pemalar normalisasi

n1, n2, n3 = integer (+)

Masukkan Per. (6.26) ke dalam Per. (6.25)

diperoleh

(6.27)

(((( ))))r

ψψψψ

=

L

zn

L

yn

L

xnC 321 sinsin sin

πππψ

2

2

3

2

2

2

1

22

2

) (

mL

nnnE

++=

ℏπ

Page 244: Sem4 solid state 1 23a- 22takde

5/21/2014

3

Penyelesaian gelombang pegun tidak sesuai untuk

membincangkan arus elektrik dan arus haba

(kerana gelombang pegun tidak boleh membawa

arus)

Perlu gelombang merambat.

Jika Lx >> Ly, Lz : misalnya dawai panjang dalam

arah x, dibengkokkan dan disambungkan

membentuk cincin.

Jadi, dalam arah x,

Penyelesaian (6.25) menjadi

(6.28)

untuk keadaan elektron bergerak dalam arah x

sahaja.

=

L

zn

L

yn

L

xnC 321 sinsin

2 i eksp

πππψ

0) ( )( === xLx ψψ

Untuk keadaan elektron bergerak dalam semua

arah, penyelesaian yang sesuai ialah

(6.29)

fungsi gelombang bagi elektron yang merambat

dalam arah vektor gelombang dengan momentum

dan halaju .

Dengan menggunakan syarat sempadan

(6.30)

k

ℏ /mkv

=

z) , ,( ) z , ,( yxLyx ψψ =+

z) , ,( ) z , ,( yxLyx ψψ =+

z) , ,( ) z , , ( yxyLx ψψ =+

r.kiC e =ψ

Page 245: Sem4 solid state 1 23a- 22takde

5/21/2014

4

maka

(6.31)

Jadi,

(6.32)

Bolehlah dianggap elektron sebagai paketgelombang setempat yang merambat dalampengkonduksi/logam dan merangsangkepada medan elektrik dan sebagainya.

L

nk

L

nk

L

nk zyx

3z1 2 ,

2 ,

2

πππ===

) (2

eksp 321

++=

L

znynxniC

πψ

Bagi elektron bebas,

kaitan tenaga dengan

(6.33)

Syarat sempadan (6.31) menentukan bilangan

elektron yang boleh ditampong oleh isipadu logam

dalam julat tenaga tertentu.

Drp. Persamaan (6.31), bilangan nilai kx yang

dibenarkan dalam julat δkx ialah

(((( ))))kE

k

m

kE

2

22ℏ

=

xkL

n δπ

δ2

1 =

Page 246: Sem4 solid state 1 23a- 22takde

5/21/2014

5

Untuk ky: Bilangan nilai ky yang dibenarkan

Untuk kz: Bilangan nilai kz yang dibenarkan

Bilangan dalam elemen isipadu δ3k = δkxδkyδkz

ialah bilangan set nombor kuantum n1, n2, n3, iaitu

ykL

n δπ

δ2

2 =

zkL

n δπ

δ2

3 =

k

kL

kkkL

nnn zyx

3

3

3

321

2

2

δπ

δδδπ

δδδ

=

=

Tapi setiap set nombor kuantum mempunyai 2 e- (1

spin ke atas (+½) dan 1 spin ke bawah (-½))

dalam elemen isipadu δ 3k, bilangan keadaan

ialah

(6.34)

dengan V = L3 = isipadu kubus.

Oleh kerana ketumpatan elektron adalah besar ~

1029 m−3

k yang dibenarkan terkandung dalam sfera k

dengan radius

(6.35)

n = bil elektron dalam isipadu V

kV

nnnns

3

33214

2 δπ

δδδδ ==

31

23

=

V

nk

π

Page 247: Sem4 solid state 1 23a- 22takde

5/21/2014

6

Keadaan dengan tenaga antara E dan E + δE

terdapat dalam kawasan sfera berjejari k dan

k + δk, iaitu dengan

(6.36)

Ketumpatan keadaan elektron adalah bilangan

keadaan perunit julat tenaga E dan E+dE

( )21

21

2

2

E

EmE

dE

dkk

δδδ =

=

32

22

32

=

V

n

mE π

Bil elektron n terkandung dalam sfera dengan

tenaga E:

Jadi, bilangan keadaan per unit isipadu antara

tenaga E dan E + δE pada tenaga tertentu E

(6.37)

Jadi, ketumpatan keadaan g(E) ∝ E½.

EEmV

EEg

EmV

dE

dnEg

δπ

δ

π

21

23

22

212

3

22

2

2)(

2

2)(

=

==

n =V

3π 2

2mE

ℏ2

32

Page 248: Sem4 solid state 1 23a- 22takde

5/21/2014

1

Teori Jalur

Model elektron bebas gagal meramalkan sifat-sifat

semikonduktor dan penebat.

Kegagalan model ini dalam beberapa segi adalah

disebabkan pengabaian keupayaan yang diwujudkan

oleh teras ion positif.

Elektron bergerak bukan dalam keupayaan sifar / malar

tetapi dalam keupayaan yang bersifat berkala hasil

susunan atom yang berkala dalam kekisi.

Dengan menggunakan konsep jalur tenaga, sifat-sifat

pepejal dapat diterangkan dengan lebih memuaskan.

Terdapat beberapa model:

Model Kronig-Penney*

Model Ziemann

Model Feynmann

Page 249: Sem4 solid state 1 23a- 22takde

5/21/2014

2

Menggunakan penyelesaian persamaan Schrödinger dengan mengambilkira perubahan keupayaan disebabkan oleh kekisi ion

Untuk memudahkan penyelesaian, pertimbangkan:

Kes 1-D.

Tenaga keupayaan elektron digantikan dengan tenaga keupayaan yang lebih mudah

V

xa

V

x

a

w

Model Kronig-Penney

Perubahan tenaga

keupayaan elektron dalam

hablur 1-D.

Penghampiran tenaga keupayaan

Sifat fungsi masih kekal:

Mempunyai perkalaan yang sama (a + w)

Keupayaan lebih rendah berdekatan ion dan

lebih tinggi di antara ion.

Diselesaikan persamaan Schrödinger

Padankan penyelesaian di sempadan.

Pastikan penyelesaian adalah berkala.

( ) 02

2

22

=Ψ−+Ψ

xVdx

d

Page 250: Sem4 solid state 1 23a- 22takde

5/21/2014

3

V

x

a

w

Penghampiran tenaga keupayaan

V=0 dalam kawasan 0 < x < a

Pers gelombang merambat ke kanan dan kiri

dengan tenaga

Dalam kawasan sawar a < x < a+w

Pemalar A, B, C dan D dipilih supaya ψ & dψ/dx

adalah selanjar di x = 0 dan x = a (syarat

sempadan)

xixiBeAex

ααψ −+=)(1

xixiDeCex

ααψ −+=)(2

m2

22αε

ℏ=

V

x

a

w

Page 251: Sem4 solid state 1 23a- 22takde

5/21/2014

4

Penyelesaian wujud jika hubungan k dan ε adalah

dengan

Merupakan kuantiti yang berkadaran dengan luasVow ,

Peningkatan P bermakna elektron semakin kuat terikat

kepada perigi keupayaan.

dan

aaa

pka αα

α kos sin kos +=

p =ma

ℏ2

V0w

εα m21

ℏ=

ψ1(0) = ψ

2(0)

dψ1(0)

dx=

dψ2(0)

dx

ψ 1 (a ) = ψ 2 (a)

dψ1(a )

dx=

dψ2( a)

dx

Dalam teori elektron bebas, hubungan ε-k

adalah

tetapi hubungan ε-k untuk model ini adalah

berlainan

menunjukkan elektron tidak lagi bebas.

Untuk mendapatkan hubungan ε-k, diplotkan

bahagian kanan persamaan terhadap αa.

m

k

2

22ℏ

aaa

pka αα

α kos sin kos +=

Page 252: Sem4 solid state 1 23a- 22takde

5/21/2014

5

Plot dengan p = 3ππππ/2 sebagai fungsi ααααa.

Dari maka α 2 berkadaran dengan tenaga ,

maka paksi mengufuk sebagai pengukuran tenaga.

ααααa

a

akosaa

pαα

α sin +

-3π -2π -π 0 π 2π 3π

+1

-1

akosaa

pαα

α sin +

Jalur-jalur dibenarkanJalur-jalur terlarang

εα m21

ℏ=

Elektron boleh mempunyai tenaga dalam jalur

tertentu

Elektron tidak boleh mempunyai tenaga di luar jalur

tersebut

ada jalur dibenarkan dan jalur terlarang.

Jika Vow besar, iaitu P besar, fungsi sebelah kanan

persamaan memotong kawasan + 1 dan − 1 pada

sudut yang lebih curam

Page 253: Sem4 solid state 1 23a- 22takde

5/21/2014

6

plot dengan p = 6π sebagai

fungsi αa.

αa

+1

-1

0

π 2 π 3 π

akosaa

pαα

α sin +

aaa

pαα

α kos sin +

Jalur dibenarkan semakin sempit

Jalur terlarang melebar

Had P → ∞ jalur dibenarkan menjadi satu parastenaga iaitu seperti kes spektrum tenaga diskritbagi atom terasing

P → ∞ sin αa = 0 ; kos αa = kos ka

nilai tenaga dibenarkan adalah

seperti untuk elektron bebas.

paras tenaga bagi perigi keupayaan lebar a

Semua elektron bebas antara satu sama lain dansetiap satu terkandung untuk satu atom oleh sawarkeupayaan infinit

2

2

22

2n

man

ℏπε =

m

k

2

22ℏ

Page 254: Sem4 solid state 1 23a- 22takde

5/21/2014

7

Jadi, dengan mengubah P dari sifar ke infiniti,

dapat dicakup semua julat daripada elektron

bebas sepenuhnya sehingga kepada elektron

terikat sepenuhnya.

Di sempadan jalur yang dibenarkan

kos ka = ±1, iaitu

n = 1, 2, 3 …

Ketakselanjaran berlaku pada nilai k yang

diberikan

,a

nk

π=

εεεε

k2ππππ/aππππ/a 3ππππ/a

Plot εεεε vs k.

Ketakselanjaran berlaku pada k = nππππ/a; n= 1, 2, 3…

Jalur terlarang

Page 255: Sem4 solid state 1 23a- 22takde

5/21/2014

8

Jisim berkesan elektron dalam bahan

semikonduktor

Apakah yang berlaku apabila elektronyang dipecutkan berada dalam hablur?

Penyelesaian menggunakan pendekatansemiklasik (separuh klasik separuhkuantum): Menurut mekanik kuantum, halaju kumpulan

elektron dalam kekisi 1-D, bersandar kepadalengkuk ε-k yang sebenar.

-k 0 +k

ε

v?

Apabila dikenakan medan elektrik E, elektron

akan memecut

Daya dikenakan

dk

dv

vm

p

m

k

dk

d

kpm

kk

g

g

ε

ε

ε

ℏℏℏ

ℏℏ

1

2)(

2

22

=

===

==

eEdt

dvmF

g −== *

dE/dk = 1/m

Page 256: Sem4 solid state 1 23a- 22takde

5/21/2014

9

Kerja dε yang dilakukan oleh zarah klasik yang

merambat sejauh vgdt disebabkan daya eE,

adalah

Pecutan

Bandingkan dengan zarah klasik bebas

dtdk

deEdteEvd g

εε

1=−=

eEdk

d

dt

dv

dt

dk

dk

d

dk

d

dt

d

dt

dv

g

g

2

2

2

2

2

1

11

ε

εε

ℏℏ

−=

==

eEdt

dvm

g −=

ℏℏ

eE

dt

dk

dt

dk

dt

kdeE

dt

dp

dt

dvmF

−=

==−

==

)(

maka boleh ditakrifkan

jisim berkesan bagi elektron.

Jadi, elektron dalam kekisi hablur dipecutkan dalam

medan elektrik dan jisimnya diberikan oleh pers. di

atas

Semakan untuk lengkuk e-k bagi elektron bebas:

jika dibandingkan dalam persamaan di atas

memberikanm* = m

1

2

22

k*m

−−−−

∂∂∂∂

εεεε∂∂∂∂==== ℏ

m2

k22

ℏ====εεεε

m2k

2

2

2ℏ

====∂∂∂∂

εεεε∂∂∂∂

Page 257: Sem4 solid state 1 23a- 22takde

5/21/2014

10

-π/a 0 k π/a

m*

ε

vgεεεε, vg dan m*

Sebagai fungsi k

Bagi elektron dalam kekisi 1-dimensi, kita boleh

gunakan e dalam bentuk

Jadi,

ka kos A21 −−−−εεεε====εεεε

ka sekAa2

*m2

2ℏ

====

Page 258: Sem4 solid state 1 23a- 22takde

5/21/2014

11

Lohong dalam bahan semikonduktor

Lohong adalah hasil daripada pergerakan elektrondalam keupayaan yang berkala.

Bila elektron bergerak ia akan meninggalkan orbitkosong (kehilangan elektron) sebelum diganti olehelektron lain

Kekosongan elektron ini boleh dilihat juga sebagaisatu lohong yang bercas +e

Justifikasi kewujudan lohong adalah seperti berikut:

Pecutan untuk satu elektron adalah

eEk

1

dt

dv

2

2

2

g

∂∂∂∂

εεεε∂∂∂∂====

Jika didarabkan dengan cas elektron dan

dijumlahkan untuk semua elektron, maka kadar

perubahan arus apabila dikenakan medan elektrik E

adalah

Gantikan m*

penjumlahan adalah untuk semua keadaan yang

terisi.

(((( ))))∑∑∑∑==== gevdt

d

dt

Id

∑∑∑∑∂∂∂∂

εεεε∂∂∂∂====

2k

2Ee

1 2

2ℏ

∑∑∑∑====

i

*i

2

m

1Ee

dt

dI

Page 259: Sem4 solid state 1 23a- 22takde

5/21/2014

12

Jika hanya ada satu elektron dalam jalur, maka

Jika jalur penuh, maka bilangan elektron yang

berkesan adalah sifar iaitu

Anggap satu elektron yang ditandakan sebagai j

hilang dekat bahagian atas jalur.

*

2e

m

Ee

dt

dI====

∑ ==ij ijm

Eedt

dI0

1*

2

Jadi keadaan j mestilah dikeluarkan daripada penjumlahan, maka

Dalam bahagian atas jalur jisim berkesan adalah negatif maka

∑∑∑∑≠≠≠≠

====

jii

*i

2l

m

1Ee

dt

dI

0m

1

m

1Ee

jii

*i

*j

2 ====

++++∑∑∑∑≠≠≠≠

*j

2l

m

1Ee

dt

dI−−−−====

*j

2l

m

Ee

dt

dI====

Page 260: Sem4 solid state 1 23a- 22takde

5/21/2014

13

Fenomena ini dirujuk sebagai arus yang

disebabkan oleh kehilangan elektron yang

mempunyai jisim negatif

Lebih ringkas dan selesa untuk menyatakan

bahawa arus disebabkan zarah positif yang di kenal

sebagai lohong.

Apabila ada medan elektrik, lohong bergerak dalam

arah berlawanan dan membawa cas yang

berlawanan,

sumbangannya kepada arus elektrik adalah sama

dengan elektron.

Suhu finit

Apa terjadi pada suhu finit, misalnya suhu bilik di

mana kebanyakan peranti elektronik beroperasi?

Pada suhu finit garis pemisahan antara kawasan

terisi penuh dengan tidak terisi sudah tidak jelas

lagi.

Logam: Jalur tenaga tertinggi adalah separuh

penuh pada suhu sifar mutlak;

Page 261: Sem4 solid state 1 23a- 22takde

5/21/2014

14

pada suhu yang lebih tinggi sebahagian elektron

akan mendapat tenaga yang lebih tinggi dalam jalur

tersebut tetapi bilangan elektron berkesan hanya

berubah sedikit sekali.

logam tetap kekal sebagai logam pada suhu yang

lebih tinggi.

Penebat: Tumpukan kepada dua jalur tertinggi iaitu

jalur valens dan jalur konduksi. Anggap tenaga sifar

pada bahagian atas jalur valens.

Boleh disimpulkan: Pada suhu finit penebat bukan

lagi penebat. Terdapat konduksi oleh elektron

dalam jalur konduksi dan konduksi oleh lohong

dalam jalur valens.

Jumlah sebenar konduksi bergantung kepada

jurang tenaga.

Intan (Eg=5.4 eV) adalah penebat manakala silikon

(Eg= 1.1 eV) dan germanium (Eg= 0.65 eV)

menunjukkan kekonduksian pada suhu bilik

semikonduktor

Page 262: Sem4 solid state 1 23a- 22takde

5/21/2014

15

E T = 0 K

EF EF

f(E)

Jalur konduksi

Jurang tenaga

Jalur valens

Jalur konduksi

Jurang tenaga

Jalur valensf(E)

E T >> 0 K

Page 263: Sem4 solid state 1 23a- 22takde

5/8/2014

1

Band Theory of Solids

The electrical and thermal properties of metals can be

explained relatively well in terms of the free electron model.

However the model does not explain why some solids are

metals and others insulators or semiconductors.

It also does not explain differences in the conductivities of

these materials.

In the free electron model, the electrons are assumed to

move in a well of uniform potential (i.e. a field-free region).

No account is taken of the influence of periodic arrangement

of ions in the crystal.

A travelling ‘electron wave’ in the crystal is subjected to a

periodic potential. It is the interaction of the ‘electron wave’

with the periodic potential that results in differences in the

properties of solid materials.

• In order to explain theproperties of metals, insulatorsand semiconductors, theperiodic potential experiencedby electrons must be accountedfor.

• The figure shows the periodicpotential U that arises frominteraction of electrons with theperiodic array of ions in acrystal.

For a free electron, U =0. Negative potentials imply bound

electrons.

Solution of the Schrodinger equation for a periodic potential results

in energy bands and bandgaps, as shown in the figure.

Only electrons that are in the highest energy band close to the

Fermi level can move freely in the solid.

Page 264: Sem4 solid state 1 23a- 22takde

5/8/2014

2

When two atoms approach

approach each other, the

wavefunctions of the

outermost electrons overlap.

Taking hydrogen as an

example the two 1s states,

which have the same energy

when the atoms are far apart, split into two states of different energy

in keeping with the Pauli exclusion principle. The same happens to the

2s state as shown in figure (a).

If six atoms are brought together, each state splits into six

states of different energy as shown in figure (b).

• If N atoms are brought together, each state splits into N states

of different energy (i.e. the number of states equals the

number of atoms) because of the overlapping wavefunctions.

Since a sample of solid material

contains a large number of atoms (e.g.

in 1cm3 of Cu, there are ~ 1023 atoms),

each state splits into energy levels so

close together that energy bands are

formed. Each band consists of

essentially a continuous range of

allowed energies. The energy bands are

separated by energy gaps known as

bandgaps. The width of a band depends

on the lattice spacing.

The properties of a solid are determined by the energy bands, the

extent to which they are occupied by electrons and the size of the

band gap.

Page 265: Sem4 solid state 1 23a- 22takde

5/8/2014

3

Conductors, Insulators and Semiconductors

• We are now in a position to address the question of why some solids are conductors, while others are insulators or semiconductors.

Partially filled band

Conductor For solids that are good conductors, the highest

energy band occupied by electrons is only partially

filled as illustrated in the figure.

Taking sodium as an example, the 1s, 2s and 2p bands

are full. For a sample of N sodium atoms, the 3s band

has 2N available states but there are only N electrons

(one 3s electron/atom) to fill the 3s band.

Consequently, the 3s band is only half-filled.

If a potential difference is applied across the sample,

the electrons in the partly filled band can accelerate

and gain energy because there are unoccupied states

of higher energy available.

It is therefore easy for a current to flow, making

sodium a good conductor. Sodium energy bands

Partially filled

band

• In the case of insulators the highest band

occupied by electrons, called the valence

band, is completely filled.

• The next higher band, called the

conduction band, is completely empty

and there is a bandgap of typically 5 to

10eV between the valence and

conduction bands.

Insulator

At room temperature (~300K), electrons have an average

kinetic energy of ~ 0.04eV and can therefore not overcome

the bandgap.

Also, if a potential difference is applied across the sample,

the electrons in the valence band cannot accelerate and

increase their energy since there are no empty states

readily available.

Such materials are therefore insulators.

Page 266: Sem4 solid state 1 23a- 22takde

5/8/2014

4

• The band structure of pure (intrinsic) semiconductors is similar to

that of an insulator except that the valence and conduction bands

are separated by a smaller bandgap Eg of typically 1eV (e.g. Eg for Si is

1.11eV at 300K).

• At room temperature a few electrons have sufficient energy to

overcome the bandgap. At higher temperatures, more electrons are

able to do so resulting in lower resistivity. The resistivity of

semiconductors generally decrease with increasing temperature

(resistivity of Si is -.07/oC and that of Ge is -0.05/oC) in contrast with

that of metals which generally increases.

Conductor Insulator Semiconductor

• When an electron in the valence band

of a semiconductor makes a transition

to the conduction band, it leaves

behind a vacant state known as a

‘hole’.

• When a potential difference is applied

across the semiconductor sample, the

electrons in the conduction band

result in a current flow.

Valence band

Conduction band

Hole

However the electrons in the valence band also contribute to

the current by filling the empty states (or holes) left behind by

electrons that have made transitions to the conduction band.

Both electrons and holes contribute to conduction, and the

resistivity decreases.

Page 267: Sem4 solid state 1 23a- 22takde

5/8/2014

5

• At T = 0K, the Fermi energy of

insulators and semiconductors

are mid-way between the top of

the valence band and the

bottom of the conduction band.

• The situation does not change

significantly at 300K

For a solid sample of 1021 atoms, the number of electrons

promoted across the band gap at 300K is:

Semiconductor: Total ≈ 1012 across 1.1eV band gap.

Insulator: Total ≈ none across 5 eV band gap.

For a conductor all 1021 electrons are available for

conduction.

Doped Semiconductors: n-type doping

• The band structure and

resistivity of intrinsic

semiconductors can be

modified by the controlled

addition of ‘impurity’ atoms

(typically 1 part in 106 or

107). This process is known

as doping. n-type doping

Silicon is an important semiconductor material with 4 valence

electrons.

When silicon is doped with arsenic (or some other element which also

has 5 valence electrons) the arsenic atoms occupy silicon sites in the

lattice.

Of the five valence electrons from each arsenic atom, four form

covalent bonds with adjacent silicon atoms but the fifth electron can

move relatively freely as in a conductor. This increases the conductivity

of the doped silicon sample.

Page 268: Sem4 solid state 1 23a- 22takde

5/8/2014

6

• Silicon that has been doped with a pentavalent atom such as

arsenic is known as an n-type semiconductor because

conduction is due to negative charges (electrons).

• Since each pentavalent atom essentially ‘donates’ an electron to

the lattice, it is called a donor atom.

Doped Semiconductors: p-type doping

• If silicon is doped with a

trivalent element such as

gallium, the three valence

electrons form covalent

bonds with adjacent silicon

atoms, but a vacency (hole)

exists at the gallium site. p-type doping An electron from a silicon atom can move into the hole at the gallium site

leaving a hole at the silicon site. This hole can then be filled by an

electron from another silicon atom , etc. The hole is equivalent to a

positive charge. This increases the conductivity of the doped silicon

sample.

Silicon samples doped with trivalent atoms such as gallium are known as

p-type semiconductors because conduction is due to positive holes.

Note that both n-type and p-type semiconductors are electrically

neutral.

Page 269: Sem4 solid state 1 23a- 22takde

5/8/2014

7

Semiconductor Doping - Energy Band Picture

In n-type semiconductors the ‘impurity’ energy level lies very close (~

0.05eV for silicon compared to thermal energy of 0.04eV at 300K) to the

conduction band. Electrons are readily promoted to the conduction band

from the ‘impurity‘ level which is, therefore, known as the donor level.

In p-type semiconductors the ‘impurity’ level lies just above the valence

band. Electrons are readily accepted from the valence band leaving holes

behind. The ‘impurity’ levels are therefore known as acceptor levels.

In doped semiconductors, ‘impurity’ states are formed between the

valence and conduction bands.

E T = 0 K

EF EF

f(E)

Jalur konduksi

Jurang tenaga

Jalur valens

Jalur konduksi

Jurang tenaga

Jalur valensf(E)

E T >> 0 K