「spiceの活用方法」セミナー資料(28jan2011) pdf

70
Copyright (C) Bee Technologies Inc. 2011 1 SPICEの活用方法 株式会社ビー・テクノロジー http://www.bee-tech.com/ [email protected] 2011128(金曜日) 1.PWM Buck Converter Average Model[DEMO] フィードバック制御におけるアベレージモデルを活用した 位相余裕度のシミュレーションの活用方法を解説していきます。 2.ステッピングモータのコンセプトキット [事例紹介] 2.1 ユニポーラ・ステッピングモーター制御回路 2.2 バイポーラ・ステッピングモーター制御回路 「コンセプトキット」でパラメータベース・シミュレーション

Upload: tsuyoshi-horigome

Post on 04-Jul-2015

973 views

Category:

Technology


5 download

DESCRIPTION

2011年1月28日に発表しました「SPICEの活用方法」の資料です。このデータは、PDF版になります。お問い合わせは、ビー・テクノロジーまで。[email protected]

TRANSCRIPT

Page 1: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 1

SPICEの活用方法

株式会社ビー・テクノロジーhttp://www.bee-tech.com/[email protected]

2011年1月28日(金曜日)

1.PWM Buck Converter Average Model←[DEMO]

フィードバック制御におけるアベレージモデルを活用した位相余裕度のシミュレーションの活用方法を解説していきます。

2.ステッピングモータのコンセプトキット[事例紹介]

2.1 ユニポーラ・ステッピングモーター制御回路2.2 バイポーラ・ステッピングモーター制御回路

「コンセプトキット」でパラメータベース・シミュレーション

Page 2: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

コンセプトキットの位置付け

Copyright (C) Bee Technologies Inc. 2011 2

Page 3: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

コンセプトキットとは

Copyright (C) Bee Technologies Inc. 2011 3

製品 価格(円) PSpice版 LTspice版

ユニポーラステッピングモータ制御回路 42,000 2011年2月初旬 2011年2月中旬

バイポーラステッピングモータ制御回路 42,000 2011年2月初旬 2011年2月中旬

アベレージモデルの降圧コンバータ 84,000 2011年2月中旬 2011年2月下旬

過渡解析モデルの降圧コンバータ 未定 2011年2月中旬 2011年2月下旬

Page 4: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

デザインキット

Copyright (C) Bee Technologies Inc. 2011 4

要望が多いインバータ回路方式を中心に20種類の新製品を開発中。

製品 分野

FCC回路 電源回路

RCC回路 電源回路

低損失リニアレギュレータ 電源回路

高精度リニアレギュレータ 電源回路

D級アンプ アンプ回路

擬似共振電源回路 電源回路

マイクロコントローラ 電源回路

ステッピングモータドライブ回路 モーター制御回路

PWM ICによる電源回路 電源回路

バッテリー回路(リチウムイオン電池) バッテリーアプリケーション回路

バッテリー回路(ニッケル水素電池) バッテリーアプリケーション回路

バッテリー回路(鉛蓄電池) バッテリーアプリケーション回路

DCDCコンバータ 電源回路

DCモータ制御回路 モーター制御回路

Page 5: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Concept Kit:PWM Buck Converter

Average Model

Copyright (C) Bee Technologies Inc. 2011 5

Power Switches Filter & LoadPWM Controller (Voltage Mode Control)

VREF

+-

VOUT

REF

PWM

1/Vp

-

+

U?PWM_CTRL

VP = 2.5VREF = 1.23

D

U?BUCK_SW

L1 2

C

Rload

Vo

ESR

Page 6: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Contents

• Concept of Simulation

• Buck Converter Circuit

• Averaged Buck Switch Model

• Buck Regulator Design Workflow

1. Setting PWM Controller’s Parameters.

2. Programming Output Voltage: Rupper, Rlower

3. Inductor Selection: L

4. Capacitor Selection: C, ESR

5. Stabilizing the Converter (Example)

• Load Transient Response Simulation (Example)

Appendix

A. Type 2 Compensation Calculation using Excel

B. Feedback Loop Compensators

C. Simulation Index

Copyright (C) Bee Technologies Inc. 2011 6

Page 7: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 7

Power Switches

Averaged Buck

Switch Model

Filter & Load

Parameter:

• L

• C

• ESR

• Rload

PWM Controller (Voltage Mode

Control)

Parameter:

• VP

• VREF

Models:

Block Diagram:

Concept of Simulation

VREF

+-

VOUT

D

U?BUCK_SW

REF

PWM

1/Vp

-

+

U?PWM_CTRL

VP = 2.5VREF = 1.23

L1 2

C

Rload

Vo

ESR

Page 8: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

L1 2

C

Rload

0

Comp

C2

R2 C1

FB

Type 2 Compensator

Rupper

Rlower

0

d

Vin

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Vo

ESR

Buck Converter Circuit

Copyright (C) Bee Technologies Inc. 2011 8

Filter & Load

PWM Controller

Power Switches

Page 9: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Averaged Buck Switch Model

• The Averaged Buck Switch Model represents relation between input and output

of the switch that is controlled by duty cycle – d (value between 0 and 1).

• Transfer function of the model is

vout = d vin

• The current flow into the switch is

iin = d iout

Copyright (C) Bee Technologies Inc. 2011 9

D

U2BUCK_SW

vin

+

-

vout

+

-

D

iin iout

Page 10: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Buck Regulator Design Workflow

Copyright (C) Bee Technologies Inc. 2011 10

Setting PWM Controller’s Parameters: VREF, VP1

Setting Output Voltage: Rupper, Rlower2

Inductor Selection: L3

Capacitor Selection: C, ESR4

Stabilizing the Converter: R2, C1, C2

• Step1: Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot. (always default)

• Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.

• Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.

• Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table

• Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.

• Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.

Load Transient Response Simulation

5

6

Page 11: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Buck Regulator Design Workflow

Copyright (C) Bee Technologies Inc. 2011 11

1

2

3

4

5

L1 2

C

Rload

0

Comp

C2

R2 C1

FB

Type 2 Compensator

Rupper

Rlower

0

d

Vin

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Vo

ESR

Page 12: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

• VREF, feedback reference voltage, value

is given by the datasheet

• VP = (Error Amp. Gain vFB ) / d

• vFB = vFBH – vFBL

• d = dMAX – dMIN

• Error Amp. Gain is 100 (approximated)

where

VP is the sawtooth peak voltage.

vFBH is maximum FB voltage where d = 0

vFBL is minimum FB voltage where d =1(100%)

dMAX is maximum duty cycle, e.g. d = 0(0%)

dMIN is minimum duty cycle, e.g. d =1(100%)

Setting PWM Controller’s Parameters

Copyright (C) Bee Technologies Inc. 2011 12

REF

PWM

1/Vp

-

+

U?PWM_CTRL

VP = 2.5VREF = 1.23

vcomp

d

Error Amp.

FB

The PWM block is used to transfer the error voltage

(between FB and REF) to be the duty cycle.

If vFBH and vFBL are not provided, the default value, VP=2.5 could be used.

1

Time

V(PWM)

V(osc) V(comp)

0V

2.0V

3.0V

SEL>> VP

Duty cycle (d) is a value from 0 to 1

Page 13: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

from

VP = (Error Amp. Gain vFB )/d

•Error Amp. Gain = 100 (approximated)

• from the graph on the left, vFB = 25mV

(15m - (-10m))

•d = 1 – 0 = 1

VP ≈ ( 100 25mV )/1

≈ 2.5V

Copyright (C) Bee Technologies Inc. 2011 13

If the VP ( sawtooth signal amplitude ) does not informed by the datasheet,

It can be approximated from the characteristics below.

LM2575: Feedback Voltage vs. Duty Cycle

Setting PWM Controller’s Parameters (Example)

vFB =

25mV

d = 1 (100%)

dMIN dMAX

vFBH

vFBL

1

If vFBH and vFBL are not provided, the default value, VP=2.5 could be used.

Page 14: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

• Use the following formula to select the resistor values.

• Rlower can be between 1k and 5k.

Example

Given: VOUT = 5V

VREF = 1.23

Rlower = 1k

then: Rupper = 3.065k

Comp

C2

R2 C1

Type 2 Compensator

FB

Rupper

Rlower

0

d

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Error Amp.

Vo

Setting Output Voltage: Rupper, Rlower

Copyright (C) Bee Technologies Inc. 2011 14

lower

upperREFOUT

R

RVV 1

2

Page 15: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Inductor Selection: L

Copyright (C) Bee Technologies Inc. 2011 15

Inductor Value

• The output inductor value is selected to set the

converter to work in CCM (Continuous Current

Mode) or DCM (Discontinuous Current Mode).

• Calculated by

Where

• LCCM is the inductor that make the converter to work in CCM.

• VI,max is input maximum voltage

• RL,min is load resistance at the minimum output current ( IOUT,min )

• fosc is switching frequency

L1 2

C

Rload

Vo

ESR

max,

min,max,

2 Iosc

LOUTICCM

Vf

RVVL

3

Page 16: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Inductor Selection: L (Example)

Copyright (C) Bee Technologies Inc. 2011 16

Inductor Value

from

Given:

• VI,max = 40V, VOUT = 5V

• IOUT,min = 0.2A

• RL,min = (VOUT / IOUT,min ) = 25

• fosc = 52kHz

Then:

• LCCM 210(uH),

• L = 330(uH) is selected

L1 2

C

Rload

Vo

ESR

max,

min,max,

2 Iosc

LOUTICCM

Vf

RVVL

3

Page 17: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Capacitor Selection: C, ESR

Copyright (C) Bee Technologies Inc. 2011 17

Capacitor Value

• The minimum allowable output capacitor value should

be determined by

Where

• VI, max is the maximum input voltage.

• L (H) is the inductance calculated from previous step ( ).

• In addition, the output ripple voltage due to the capacitor ESR must be considered as

the following equation.

L1 2

C

Rload

Vo

ESR

F)H(

785,7max,

LV

VC

OUT

I

RIPPLEL

RIPPLEO

I

VESR

,

,

4

3

Page 18: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Capacitor Selection: C, ESR (Example)

Copyright (C) Bee Technologies Inc. 2011 18

Capacitor Value

From

and

Given:

• VI, max = 40 V

• VOUT = 5 V

• L (H) = 330

Then:

• C 188 (F)

In addition:

• ESR 100m

L1 2

C

Rload

Vo

ESR

RIPPLEL

RIPPLEO

I

VESR

,

,

4

F)H(

785,7max,

LV

VC

OUT

I

Page 19: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

• Loop gain for this configuration is

L1 2

Rload

C

0

Comp

C2

R2 C1

Type 2 Compensator

FB

Rupper

3.066k

Rlower

1.0k

0

d

Vin

12Vdc

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Vo

ESR

• The purpose of the compensator G(s) is to tailor the converter loop gain

(frequency response) to make it stable when operated in closed-loop

conditions.

Copyright (C) Bee Technologies Inc. 2011 19

PWMGsGsHsT )()()(GPWM

G(s)

H(s)

Stabilizing the Converter5

Page 20: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Stabilizing the Converter (Example)

Copyright (C) Bee Technologies Inc. 2011 20

Specification:

VOUT = 5V

VIN = 7 ~ 40V

ILOAD = 0.2 ~ 1A

PWM Controller:

VREF = 1.23V

VP = 2.5V

fOSC = 52kHz

Rlower = 1k,

Rupper = 3.1k,

L = 330uH,

C = 330uF (ESR = 100m)

Task:

• to find out the element of the

Type 2 compensator ( R2, C1,

and C2 )

L330uH

1 2

C330uF

Rload5

0

0

COL1kF

LOL

1kH

C2

R2 C1

FB

Rupper

3.1k

Type 2 Compensator

Rlower

1.0k

0

d

V31Vac

0Vdc

Vin

12Vdc

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Vo

ESR100m

G(s)

e.g. Given values from National Semiconductor Corp. IC: LM2575

5

1

3

4

2

Page 21: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

L330uH

1 2

C330uF

Rload5

0

0

COL1kF

LOL

1kH

R20.756k

FB

Rupper

3.1k

Type 2 Compensator

Rlower

1k

0

d

V31Vac

0Vdc

Vin

12Vdc

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Vo

ESR100m

C21f

C11k

Copyright (C) Bee Technologies Inc. 2011 21

Step2 Set C1=1kF, C2=1fF, and R2=calculated value (Rupper//Rlower) as the initial values.

Step1 Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot.

The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can

be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop

simulation with the Average Switch Models (ac models).

Stabilizing the Converter (Example)5

C1=1kF is AC shorted, and C2 1fF is AC opened (or

Error-Amp without compensator).

Page 22: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Stabilizing the Converter (Example)

Type 2 Compensator Calculator

Switching frequency, fosc : 52.00 kHzCross-over frequency, fc(<fosc/4) : 10.00 kHzRupper : 3.1 kOhmRlower : 1 kOhmR2 (Rupper//Rlower) : 0.756 kOhm (automatically calculated)

PWMVref : 1.230 VVp (Approximate) : 2.5 V

Copyright (C) Bee Technologies Inc. 2011 22

Step3 Select a crossover frequency (about 10kHz or fc < fosc/4 ), for this example, 10kHz is selected. Then complete the table.

Calculated value of the Rupper//Rlower

values from 2

values from 1

5

Page 23: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Parameter extracted from simulationSet: R2=R1, C1=1k, C2=1fGain (PWM) at foc ( - or + ) : -44.211Phase (PWM) at foc : 65.068

Copyright (C) Bee Technologies Inc. 2011 23

Frequency

100Hz 1.0KHz 10KHz 100KHz

P(v(d))

0d

90d

180d

SEL>>

(10.000K,65.068)

DB(v(d))

-80

-40

0

40

80

(10.000K,-44.211)

Step4 Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table.

Stabilizing the Converter (Example)

Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command.

Cursor Search

Gain: T(s) = H(s)GPWM

Phase at fc

5

Page 24: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

K-factor (Choose K and from the table)K 6 -199 (automatically calculated)

Phase margin : 46 (automatically calculated)

R2 : 122.780 kOhm (automatically calculated)C1 : 0.778 nF (automatically calculated)C2 : 21.600 pF (automatically calculated)

Stabilizing the Converter (Example)

Copyright (C) Bee Technologies Inc. 2011 24

Step5 Select the phase margin at fc(> 45 ). Then change the K value (start from K=2) until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.

As the result; R2, C1, and C2 are calculated.

K Factor enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results. A very big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).

5

Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.

Page 25: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

R2122.780k

Type 2 Compensator

C221.6p

C10.778n

L330uH

1 2

C330uF

Rload5

0

0

COL1kF

LOL

1kH

FB

Rupper

3.1k

Rlower

1k

0

d

V31Vac

0Vdc

Vin

12Vdc

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

Vo

ESR100m

Stabilizing the Converter (Example)

Copyright (C) Bee Technologies Inc. 2011 25

The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2

Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop

simulation.

The calculated values of the type 2 elements are, R2=122.780k, C1=0.778nF, and C2=21.6pF.

*Analysis directives:

.AC DEC 100 0.1 10MEG

5

Page 26: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Frequency

100Hz 1.0KHz 10KHz 100KHz

P(v(d))

0d

90d

180d

(9.778K,45.930)

DB(v(d))

-40

0

40

80

-100

SEL>>

(9.778K,0.000)

• Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz.

Copyright (C) Bee Technologies Inc. 2011 26

Stabilizing the Converter (Example)

Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command.

Cursor Search

Gain: T(s) = H(s) G(s)GPWM

Phase at fc

5

Gain and Phase responses after stabilizing

Page 27: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Load Transient Response Simulation (Example)

Copyright (C) Bee Technologies Inc. 2011 27

R2122.780k

C221.6p

Type 2 Compensator

C10.778n

Load

Vo

I1

TD = 10mTF = 25u

PW = 0.43mPER = 1

I1 = 0I2 = 0.8

TR = 20u

Rload25

0

FB

Rupper

3.1k

Rlower

1k

0

d

Vin

20Vdc

D

U2BUCK_SW

REF

PWM

1/Vp

-

+

U3PWM_CTRL

VP = 2.5VREF = 1.23

L330uH

1 2

C330uF

ESR100m

The converter, that have been stabilized, are connected with step-load to perform load transient

response simulation.

5V/2.5 = 0.2A step to 0.2+0.8=1.0A load

*Analysis directives:

.TRAN 0 20ms 0 1u

Page 28: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Simulation Measurement

Copyright (C) Bee Technologies Inc. 2011 28

Output Voltage Change

Load Current

• The simulation results are compared with the measurement data (National

Semiconductor Corp. IC LM2575 datasheet).

Time

9.9ms 10.1ms 10.3ms 10.5ms 10.7ms 10.9ms

1 V(vo) 2 I(load)

4.4V

4.5V

4.6V

4.7V

4.8V

4.9V

5.0V

5.1V

5.2V1

0A

0.5A

1.0A

1.5A

2.0A

2.5A

3.0A

3.5A

4.0A2

>>

Load Transient Response Simulation (Example)

Page 29: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

A. Type 2 Compensation Calculation using Excel

Switching frequency, fosc : 52.00 kHz Given spec, datasheetCross-over frequency, fc (<fosc/4) : 10.00 kHz Input the chosen value ( about 10kHz or < fosc/4 )Rupper : 3.1 kOhm Given spec, datasheet, or calculated Rlower : 1 kOhm Given spec, datasheet, or value: 1k-10k OhmR2 (Rupper//Rlower) : 0.756 kOhm (automatically calculated)

PWMVref : 1.230 V Given spec, datasheetVp (Approximate) : 2.5 V Given spec, or calculated, (or leave default 2.5V)

Parameter extracted from simulationSet: R2=R2, C1=1k, C2=1fGain (PWM) at foc ( - or + ): -44.211 dB Read from simulation resultPhase (PWM) at foc : 65.068 Read from simulation result

K-factor (Choos K and from the table)K 6 Input the chosen value (start from k=2)

-199 (automatically calculated)

Phase margin : 46 (automatically calculated) Target value > 45

R2 : 122.780 kOhm (automatically calculated)C1 : 0.778 nF (automatically calculated)C2 : 21.60 pF (automatically calculated)

Copyright (C) Bee Technologies Inc. 2011 29

Page 30: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 30

B. Feedback Loop Compensators

Type 1 Compensator

C1

VOUT

FB

Rupper

Rlower

0

d

REF

PWM

1/Vp

-

+

PWM_CTRL

Type1 Compensator Type2 Compensator Type2a Compensator

Type2b Compensator Type3 Compensator

Type2b Compensator

C1

VOUT

FB

Rupper

Rlower

0

d

REF

PWM

1/Vp

-

+

PWM_CTRL

R2

Type2a Compensator

C1

VOUT

FB

Rupper

Rlower

0

d

REF

PWM

1/Vp

-

+

PWM_CTRL

R2

Type3 Compensator

C1

FB

Rupper

Rlower

0

d

REF

PWM

1/Vp

-

+

PWM_CTRL

C2

R2

C3

R3

VOUT

Type2 Compensator

C1

FB

Rupper

Rlower

0

d

REF

PWM

1/Vp

-

+

PWM_CTRL

C2

R2

VOUT

Page 31: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 31

Simulations Folder name

1. Stabilizing the Converter....................................................

2. Load Transient Response..................................................

ac

stepload

Libraries :

1. ..¥bucksw.lib

2. ..¥pwm_ctr.lib

Tool :

• Type 2 Compensator Calculator (Excel sheet)

C. Simulation Index

Page 32: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Unipolar Stepping Motor Drive Circuit

Contents

1. Concept of Simulation

2. Unipolar Stepping Motor Drive Circuit

3. Unipolar Stepping Motor

4. Switches

5. Signal Generator

6. Hysteresis-Based Current Controller

7. Unipolar Stepping Motor Drive Circuit (Example)

7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

8. Drive Circuit Efficiency

Copyright (C) Bee Technologies Inc. 2011 32

Page 33: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 33

Unipolar Stepping Motor

Drive Circuit

B

Bcom

A

/B

Acom

/A

U?UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

Page 34: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 34

Driver Unit:(e.g. Hysteresis-

Based Controller)

Parameter:

• I_SET

• HYS

Switches(e.g. FET,

Diode)

Parameter:

• Ron

Stepping

Motor

Parameter:

• L

• R

Control Unit (e.g. Microcontroller)

Sequence:

• One-Phase

• Two-Phase

• Half-Step

U?1-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?2-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?HALF-STEPPPS = 100

CLK

FA

/FA

FB

/FB

B

Bcom

A

/B

Acom

/A

U?UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

Models:

Block Diagram:

DIODED1

0

+

-

+

-

S1

SRON = 10m

VCC

Ctrl_A A

1.Concept of Simulation

U2

AND

+

-

REF

-+

FB.

U1

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

Ctrl_AFA

Page 35: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

2.Unipolar Stepping Motor Drive Circuit

Copyright (C) Bee Technologies Inc. 2011 35

Signal generator Hysteresis Based Current

Controller

Switches Unipolar Stepping Motor Supply Voltage

B

Bcom

A

/B

Acom

/A

U1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

U8

AND

U9

AND

R1

1k

0

FB

DIODED1

DIODED2

DIODED3

DIODED4

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

B

0

PARAMETERS:

RON = 10m

0

U101-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

0

0

U6

AND

FA

+

-

REF

-+

FB.

U2

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FA

/FB

VCC

+

-

REF

-+

FB.

U3

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

REF

-+

FB.

U4

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/B

/A

+

-

+

-

S4

SRON = {RON}

A

+

-

REF

-+

FB.

U5

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

CLK

+

-

+

-

S1

SRON = {RON}

+

-

+

-

S2

SRON = {RON}

+

-

+

-

S3

SRON = {RON}

VCC

VCC VCC

0

VCC

Vcc

12

VCC

VCC

U7

AND

Page 36: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

3.Unipolar Stepping Motor

Copyright (C) Bee Technologies Inc. 2011 36

• The electrical equivalent circuit of each phase consists

of an inductance of the phase winding series with

resistance.

• The inductance is ideal (without saturation

characteristics and the mutual inductance between

phases)

• The motor back EMF is set as zero to simplified the

model parameters extraction.

B

Bcom

A

/B

Acom

/A

U1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.

Page 37: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

4.Switches

Copyright (C) Bee Technologies Inc. 2011 37

• A near-ideal DIODE can be modeled by using spice

primitive model (D), which parameter: N=0.01

RS=0.

• A near-ideal MOSFET can be modeled by using

PSpice VSWITCH that is voltage controlled switch.

DIODED1

0

+

-

+

-

S1

SRON = 10m

VCC

Ctrl_A A

The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.

Page 38: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

5.Signal Generator

The signal generators are used as a microcontroller capable of generating step pulses

and direction signals for the driver.

There are 3 useful stepping sequences to control unipolar stepping motor

Copyright (C) Bee Technologies Inc. 2011 38

One-Phase (Wave Drive)

• Consumes the least power.

• Assures the accuracy regardless of the winding imbalance.

Two-Phase (Hi-Torque)

• Energizes 2 phases at the same time.

• Offers an improved torque-speed result and greater holding torque.U?1-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?2-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?HALF-STEPPPS = 100

CLK

FA

/FA

FB

/FB

Half-Step

• Doubles the stepping resolution of the motor.

• Reduces motor resonance which could cause a motor to stall at a resonant frequency.

• Please note that this sequence is 8 steps.

Input PPS (Pulse Per Second) as a clock pulse speed(frequency).

Page 39: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

5.1 One-Phase Sequence

Copyright (C) Bee Technologies Inc. 2011 39

Time

0s 40ms 80ms

V(/FB)

0V

5.0V

SEL>>

V(FB)

0V

2.5V

5.0V

V(/FA)

0V

2.5V

5.0V

V(FA)

0V

2.5V

5.0V

V(CLK)

0V

2.5V

5.0V

ON

ON

ON

ON

Clock

Phase A

Phase /A

Phase B

Phase /B

1 Sequence

Page 40: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 40ms 80ms

V(/FB)

0V

5.0V

SEL>>

V(FB)

0V

2.5V

5.0V

V(/FA)

0V

2.5V

5.0V

V(FA)

0V

2.5V

5.0V

V(CLK)

0V

2.5V

5.0V

5.2 Two-Phase Sequence

Copyright (C) Bee Technologies Inc. 2011 40

ON

ON

ON

ON

1 Sequence

Clock

Phase A

Phase /A

Phase B

Phase /BON

Page 41: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 80ms 160ms

V(/FB)

0V

5.0V

SEL>>

V(FB)

0V

2.5V

5.0V

V(/FA)

0V

2.5V

5.0V

V(FA)

0V

2.5V

5.0V

V(CLK)

0V

2.0V

4.0V

5.3 Half-Step Sequence

Copyright (C) Bee Technologies Inc. 2011 41

ON

ON

ON

1 Sequence

Clock

Phase A

Phase /A

Phase B

Phase /BON

Page 42: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

6.Hysteresis-Based Current Controller

Copyright (C) Bee Technologies Inc. 2011 42

• Controlled by the signal from the

microcontroller.

• Generate the switch (MOSFET) drive signal

by comparing the measured phase current

with their references.

Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).

U2

AND

+

-

REF

-+

FB.

U1

HYS_I-CTRL

I_SET = 0.5VHYS = 0.1

Ctrl_AFA

Page 43: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

B

Bcom

A

/B

Acom

/A

U1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

U8

AND

U9

AND

R1

1k

0

FB

DIODED1

DIODED2

DIODED3

DIODED4

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

B

0

PARAMETERS:

RON = 10m

0

U101-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

0

0

U6

AND

FA

+

-

REF

-+

FB.

U2

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FA

/FB

VCC

+

-

REF

-+

FB.

U3

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

REF

-+

FB.

U4

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/B

/A

+

-

+

-

S4

SRON = {RON}

A

+

-

REF

-+

FB.

U5

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

CLK

+

-

+

-

S1

SRON = {RON}

+

-

+

-

S2

SRON = {RON}

+

-

+

-

S3

SRON = {RON}

VCC

VCC VCC

0

VCC

Vcc

12

VCC

VCC

U7

AND

7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 43

*Analysis directives:

.TRAN 0 40ms 0 10u

One-Phase

Step Sequence

Generator (100

pps)

Page 44: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 10ms 20ms 30ms 40ms

1 V(/FB) 2 -I(U1:/B)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

SEL>>SEL>>

1 V(FB) 2 -I(U1:B)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

1 V(/FA) 2 -I(U1:/A)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

1 V(FA) 2 -I(U1:A)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

V(CLK)

0V

2.5V

5.0V

7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 44

Clock

Phase A Current

I_SET=0.5A

I_HYS=0.1A

Phase /A Current

Phase B Current

Phase /B Current

Page 45: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

B

Bcom

A

/B

Acom

/A

U1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

U8

AND

U9

AND

R1

1k

0

FB

DIODED1

DIODED2

DIODED3

DIODED4

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

B

0

PARAMETERS:

RON = 10m

0

0

0

U6

AND

FA

+

-

REF

-+

FB.

U2

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FA

/FB

VCC

+

-

REF

-+

FB.

U3

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

REF

-+

FB.

U4

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/B

/A

+

-

+

-

S4

SRON = {RON}

A

+

-

REF

-+

FB.

U5

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

CLK

+

-

+

-

S1

SRON = {RON}

+

-

+

-

S2

SRON = {RON}

+

-

+

-

S3

SRON = {RON}

VCC

VCC VCC

0

VCC

Vcc

12

VCC

VCC

U7

AND

U102-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 45

*Analysis directives:

.TRAN 0 40ms 0 10u SKIPBP

.OPTIONS ITL4= 40

Two-Phase

Step Sequence

Generator (100

pps)

Page 46: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 10ms 20ms 30ms 40ms

1 V(/FB) 2 -I(U1:/B)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

SEL>>SEL>>

1 V(FB) 2 -I(U1:B)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

1 V(/FA) 2 -I(U1:/A)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

1 V(FA) 2 -I(U1:A)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

V(CLK)

0V

2.5V

5.0V

7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 46

Clock

Phase A Current

I_SET=0.5A

I_HYS=0.1A

Phase /A Current

Phase B Current

Phase /B Current

Page 47: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

B

Bcom

A

/B

Acom

/A

U1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

U8

AND

U9

AND

R1

1k

0

FB

DIODED1

DIODED2

DIODED3

DIODED4

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

B

0

PARAMETERS:

RON = 10m

0

0

0

U6

AND

FA

+

-

REF

-+

FB.

U2

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FA

/FB

VCC

+

-

REF

-+

FB.

U3

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

REF

-+

FB.

U4

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/B

/A

+

-

+

-

S4

SRON = {RON}

A

+

-

REF

-+

FB.

U5

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

CLK

+

-

+

-

S1

SRON = {RON}

+

-

+

-

S2

SRON = {RON}

+

-

+

-

S3

SRON = {RON}

VCC

VCC VCC

0

VCC

Vcc

12

VCC

VCC

U7

AND

U10HALF-STEPPPS = 100

CLK

FA

/FA

FB

/FB

7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 47

*Analysis directives:

.TRAN 0 80ms 0 10u SKIPBP

.OPTIONS ITL4= 40

Half-Phase

Step Sequence

Generator (100

pps)

Page 48: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms

1 V(/FB) 2 -I(U1:/B)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

SEL>>SEL>>

1 V(FB) 2 -I(U1:B)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

1 V(/FA) 2 -I(U1:/A)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

1 V(FA) 2 -I(U1:A)

0V

2.5V

5.0V1

0A

0.5A

1.0A2

>>

V(CLK)

0V

2.5V

5.0V

7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 48

Clock

Phase A Current

I_SET=0.5A

I_HYS=0.1A

Phase /A Current

Phase B Current

Phase /B Current

Page 49: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

B

Bcom

A

/B

Acom

/A

U1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2

U8

AND

U9

AND

R1

1k

0

FB

DIODED1

DIODED2

DIODED3

DIODED4

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

B

0

PARAMETERS:

RON = 10m

0

U101-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

0

0

U6

AND

FA

+

-

REF

-+

FB.

U2

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FA

/FB

VCC

+

-

REF

-+

FB.

U3

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

REF

-+

FB.

U4

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/B

/A

+

-

+

-

S4

SRON = {RON}

A

+

-

REF

-+

FB.

U5

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

CLK

+

-

+

-

S1

SRON = {RON}

+

-

+

-

S2

SRON = {RON}

+

-

+

-

S3

SRON = {RON}

VCC

VCC VCC

0

VCC

Vcc

12

VCC

VCC

U7

AND

W

W

8.Drive Circuit Efficiency (%)

Copyright (C) Bee Technologies Inc. 2011 49

*Analysis directives:

.TRAN 0 40ms 0ms 10u SKIPBP

.STEP PARAM RON LIST 10m, 100m, 1

.OPTIONS ITL4= 40

Half-Phase

Step Sequence

Generator (100

pps)

Page 50: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

10ms 15ms 20ms 25ms 30ms 35ms 40ms

100* AVG(W(U1))/(-AVG(W(Vcc)))

94

96

98

100

8.Drive Circuit Efficiency (%)

Copyright (C) Bee Technologies Inc. 2011 50

at switches Ron = 10m, (99.6%)

at switches Ron = 100m, (99.3%)

at switches Ron = 1, (95.9%)

Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.

Page 51: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 51

Bipolar Stepping Motor

Drive Circuit

A

/A

B/B

U?BI-POLAR_STEP_MOTRL = 10mR = 8.4

Page 52: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Bipolar Stepping Motor Drive Circuit

Contents

1. Concept of Simulation

2. Unipolar Stepping Motor Drive Circuit

3. Unipolar Stepping Motor

4. Switches

5. Signal Generator

6. Hysteresis-Based Current Controller

7. Unipolar Stepping Motor Drive Circuit (Example)

7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

8. Drive Circuit Efficiency

Copyright (C) Bee Technologies Inc. 2011 52

Page 53: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Copyright (C) Bee Technologies Inc. 2011 53

Driver Unit:(e.g. Hysteresis-

Based Controller)

Parameter:

• I_SET

• HYS

Switches(e.g. FET,

Diode)

Parameter:

• Ron

Stepping

Motor

Parameter:

• L

• R

Control Unit (e.g. Microcontroller)

Sequence:

• One-Phase

• Two-Phase

• Half-Step

U?1-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?2-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?HALF-STEPPPS = 100

CLK

FA

/FA

FB

/FB

Models:

Block Diagram:

DIODED1

0

+

-

+

-

S1

SRON = 10m

VCC

Ctrl_A A

1.Concept of Simulation

U2

AND

+

-

REF

-+

FB.

U1

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

Ctrl_AFA

A

/A

B/B

U?BI-POLAR_STEP_MOTRL = 10mR = 8.4

Page 54: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Signal generator Hysteresis Based Current Controller VCC

0

Vcc

12

A

/A

B/B

U1BI-POLAR_STEP_MOTRL = 10mR = 8.4

OU

I

OL

U2

GDRV

+

-

+

-

S7S

VCC

0

DIODE

D7

/BU

+

-

+

-

S8

SDIODE

D8

/BL

0

OU

I

OL

U3

GDRV

OU

I

OL

U5

GDRV

B

+

-

REF

-+

FB.

U11

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FB

+

-

REF

-+

FB.

U7

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

FA

+

-

+

-

S5

S

VCC

0

DIODE

D5

BU

+

-

+

-

S6

SDIODE

D6

BL

0

PARAMETERS:

RON = 10m

+

-

+

-

S1

S

VCC

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

0

+

-

REF

-+

FB.

U13

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

DIODE

D1

AU

+

-

+

-

S2

SDIODE

D2

AL

A

0

+

-

REF

-+

FB.

U9

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

+

-

S3S

VCC

0

DIODE

D3

/AU

+

-

+

-

S4

SDIODE

D4

/AL

0

U8

AND

U10

AND

U12

AND

U14

AND

/FA

R1

1k

FB

CLK

0

OU

I

OL

U4

GDRV

/A

/B

U151-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

2.Unipolar Stepping Motor Drive Circuit

Copyright (C) Bee Technologies Inc. 2011 54

Bipolar Stepping Motor Supply VoltageH-Bridge Switches (Driver)

Page 55: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

3.Bipolar Stepping Motor

Copyright (C) Bee Technologies Inc. 2011 55

• The electrical equivalent circuit of each phase consists

of an inductance of the phase winding series with

resistance.

• The inductance is ideal (without saturation

characteristics and the mutual inductance between

phases)

• The motor back EMF is set as zero to simplified the

model parameters extraction.

Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.

A

/A

B/B

U?BI-POLAR_STEP_MOTRL = 10mR = 8.4

Page 56: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

4.Switches

Copyright (C) Bee Technologies Inc. 2011 56

• A near-ideal DIODE can be modeled by using

spice primitive model (D), which parameter:

N=0.01 RS=0.

• A near-ideal MOSFET can be modeled by using

PSpice VSWITCH that is voltage controlled

switch.

• MOSFETs are used as a H-Bridge.

The parameter RON represents Rds(on)characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.

OU

I

OL

U2

GDRV

OU

I

OL

U3

GDRV

+

-

+

-

S1

S0

VCC

DIODE

D1

AU

+

-

+

-

S2

S

RON = 10m

DIODE

D2

AL

0

+

-

+

-

S3S

VCC

0

DIODE

D3

/AU

+

-

+

-

S4

SDIODE

D4

/AL

0

Ctrl_A

Ctrl_/A

A

/A

Page 57: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

5.Signal Generator

The signal generators are used as a microcontroller capable of generating step pulses

and direction signals for the driver.

There are 3 useful stepping sequences to control unipolar stepping motor

Copyright (C) Bee Technologies Inc. 2011 57

One-Phase (Wave Drive)

• Consumes the least power.

• Assures the accuracy regardless of the winding imbalance.

Two-Phase (Hi-Torque)

• Energizes 2 phases at the same time.

• Offers an improved torque-speed result and greater holding torque.U?1-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?2-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

U?HALF-STEPPPS = 100

CLK

FA

/FA

FB

/FB

Half-Step

• Doubles the stepping resolution of the motor.

• Reduces motor resonance which could cause a motor to stall at a resonant frequency.

• Please note that this sequence is 8 steps.

Input PPS (Pulse Per Second) as a clock pulse speed(frequency).

Page 58: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

5.1 One-Phase Sequence

Copyright (C) Bee Technologies Inc. 2011 58

Time

0s 40ms 80ms

V(/FB)

0V

5.0V

SEL>>

V(FB)

0V

2.5V

5.0V

V(/FA)

0V

2.5V

5.0V

V(FA)

0V

2.5V

5.0V

V(CLK)

0V

2.5V

5.0V

ON

ON

ON

ON

Clock

Phase A

Phase /A

Phase B

Phase /B

1 Sequence

Page 59: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 40ms 80ms

V(/FB)

0V

5.0V

SEL>>

V(FB)

0V

2.5V

5.0V

V(/FA)

0V

2.5V

5.0V

V(FA)

0V

2.5V

5.0V

V(CLK)

0V

2.5V

5.0V

5.2 Two-Phase Sequence

Copyright (C) Bee Technologies Inc. 2011 59

ON

ON

ON

ON

1 Sequence

Clock

Phase A

Phase /A

Phase B

Phase /BON

Page 60: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 80ms 160ms

V(/FB)

0V

5.0V

SEL>>

V(FB)

0V

2.5V

5.0V

V(/FA)

0V

2.5V

5.0V

V(FA)

0V

2.5V

5.0V

V(CLK)

0V

2.0V

4.0V

5.3 Half-Step Sequence

Copyright (C) Bee Technologies Inc. 2011 60

ON

ON

ON

1 Sequence

Clock

Phase A

Phase /A

Phase B

Phase /BON

Page 61: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

6.Hysteresis-Based Current Controller

Copyright (C) Bee Technologies Inc. 2011 61

• Controlled by the signal from the

microcontroller.

• Generate the switch (MOSFET) drive signal

by comparing the measured phase current

with their references.

Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).

U2

AND

+

-

REF

-+

FB.

U1

HYS_I-CTRL

I_SET = 0.5VHYS = 0.1

Ctrl_AFA

Page 62: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

VCC

0

Vcc

12

A

/A

B/B

U1BI-POLAR_STEP_MOTRL = 10mR = 8.4

OU

I

OL

U2

GDRV

+

-

+

-

S7S

VCC

0

DIODE

D7

/BU

+

-

+

-

S8

SDIODE

D8

/BL

0

OU

I

OL

U3

GDRV

OU

I

OL

U5

GDRV

B

+

-

REF

-+

FB.

U11

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FB

+

-

REF

-+

FB.

U7

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

FA

+

-

+

-

S5

S

VCC

0

DIODE

D5

BU

+

-

+

-

S6

SDIODE

D6

0

BL

PARAMETERS:

RON = 10m

+

-

+

-

S1

S0

VCC

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

+

-

REF

-+

FB.

U13

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

DIODE

D1

AU

+

-

+

-

S2

SDIODE

D2

AL

0

A

+

-

REF

-+

FB.

U9

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

+

-

S3S

VCC

0

DIODE

D3

/AU

+

-

+

-

S4

SDIODE

D4

/AL

0

U8

AND

U10

AND

U12

AND

U14

AND

/FA

R1

1k

CLK

0

FB

OU

I

OL

U4

GDRV

/A

/B

U151-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 62

*Analysis directives:

.TRAN 0 80ms 0 10u SKIPBP

.OPTIONS ITL4= 40

One-Phase Step

Sequence Generator

(100 pps)

Page 63: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 20ms 40ms 60ms 80ms

1 V(/FB) 2 I(U1:/B)

0V

2.5V

5.0V1

0A

500mA2

SEL>>SEL>>

1 V(FB) 2 I(U1:B)

0V

2.5V

5.0V1

0A

500mA2

>>

1 V(/FA) 2 I(U1:/A)

0V

2.5V

5.0V1

0A

500mA2

>>

1 V(FA) 2 I(U1:A)

0V

2.5V

5.0V1

0A

500mA2

>>

V(CLK)

0V

2.5V

5.0V

7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 63

Clock

Phase A Current

I_SET=0.5A

I_HYS=0.1A

Phase /A Current

Phase B Current

Phase /B Current

Page 64: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 64

*Analysis directives:

.TRAN 0 80ms 0 10u SKIPBP

.OPTIONS ITL4= 40

VCC

0

Vcc

12

A

/A

B/B

U1BI-POLAR_STEP_MOTRL = 10mR = 8.4

OU

I

OL

U2

GDRV

+

-

+

-

S7S

VCC

0

DIODE

D7

/BU

+

-

+

-

S8

SDIODE

D8

/BL

0

OU

I

OL

U3

GDRV

OU

I

OL

U5

GDRV

B

+

-

REF

-+

FB.

U11

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FB

+

-

REF

-+

FB.

U7

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

FA

+

-

+

-

S5

S

VCC

0

DIODE

D5

BU

+

-

+

-

S6

SDIODE

D6

0

BL

PARAMETERS:

RON = 10m

+

-

+

-

S1

S0

VCC

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

+

-

REF

-+

FB.

U13

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

DIODE

D1

AU

+

-

+

-

S2

SDIODE

D2

AL

0

A

+

-

REF

-+

FB.

U9

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

+

-

S3S

VCC

0

DIODE

D3

/AU

+

-

+

-

S4

SDIODE

D4

/AL

0

U8

AND

U10

AND

U12

AND

U14

AND

/FA

R1

1k

CLK

0

FB

OU

I

OL

U4

GDRV

/A

/B

U152-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

One-Phase Step

Sequence Generator

(100 pps)

Page 65: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 20ms 40ms 60ms 80ms

1 V(/FB) 2 I(U1:/B)

0V

2.5V

5.0V1

0A

500mA2

SEL>>SEL>>

1 V(FB) 2 I(U1:B)

0V

2.5V

5.0V1

0A

500mA2

>>

1 V(/FA) 2 I(U1:/A)

0V

2.5V

5.0V1

0A

500mA2

>>

1 V(FA) 2 I(U1:A)

0V

2.5V

5.0V1

0A

500mA2

>>

V(CLK)

0V

2.5V

5.0V

7.2 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 65

Clock

Phase A Current

I_SET=0.5A

I_HYS=0.1A

Phase /A Current

Phase B Current

Phase /B Current

Page 66: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

VCC

0

Vcc

12

A

/A

B/B

U1BI-POLAR_STEP_MOTRL = 10mR = 8.4

OU

I

OL

U2

GDRV

+

-

+

-

S7S

VCC

0

DIODE

D7

U15HALF-STEPPPS = 100

CLK

FA

/FA

FB

/FB

/BU

+

-

+

-

S8

SDIODE

D8

/BL

0

OU

I

OL

U3

GDRV

OU

I

OL

U5

GDRV

B

+

-

REF

-+

FB.

U11

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FB

+

-

REF

-+

FB.

U7

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

FA

+

-

+

-

S5

S

VCC

0

DIODE

D5

BU

+

-

+

-

S6

SDIODE

D6

0

BL

PARAMETERS:

RON = 10m

+

-

+

-

S1

S0

VCC

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

+

-

REF

-+

FB.

U13

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

DIODE

D1

AU

+

-

+

-

S2

SDIODE

D2

AL

0

A

+

-

REF

-+

FB.

U9

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

+

-

S3S

VCC

0

DIODE

D3

/AU

+

-

+

-

S4

SDIODE

D4

/AL

0

U8

AND

U10

AND

U12

AND

U14

AND

/FA

R1

1k

CLK

0

FB

OU

I

OL

U4

GDRV

/A

/B

7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 66

*Analysis directives:

.TRAN 0 160ms 0 10u SKIPBP

.OPTIONS ITL4= 40

One-Phase Step

Sequence Generator

(100 pps)

Page 67: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

0s 40ms 80ms 120ms 160ms

1 V(/FB) 2 I(U1:/B)

0V

2.5V

5.0V1

0A

500mA2

SEL>>SEL>>

1 V(FB) 2 I(U1:B)

0V

2.5V

5.0V1

0A

500mA2

>>

1 V(/FA) 2 I(U1:/A)

0V

2.5V

5.0V1

0A

500mA2

>>

1 V(FA) 2 I(U1:A)

0V

2.5V

5.0V1

0A

500mA2

>>

V(CLK)

0V

2.5V

5.0V

7.3 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A

Copyright (C) Bee Technologies Inc. 2011 67

Clock

Phase A Current

I_SET=0.5A

I_HYS=0.1A

Phase /A Current

Phase B Current

Phase /B Current

Page 68: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

VCC

0

Vcc

12

A

/A

B/B

U1BI-POLAR_STEP_MOTRL = 10mR = 8.4

OU

I

OL

U2

GDRV

+

-

+

-

S7S

VCC

0

DIODE

D7

/BU

+

-

+

-

S8

SDIODE

D8

/BL

0

OU

I

OL

U3

GDRV

OU

I

OL

U5

GDRV

B

+

-

REF

-+

FB.

U11

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

/FB

+

-

REF

-+

FB.

U7

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

FA

+

-

+

-

S5

S

VCC

0

DIODE

D5

BU

+

-

+

-

S6

SDIODE

D6

0

BL

PARAMETERS:

RON = 10m

+

-

+

-

S1

S0

VCC

PARAMETERS:

I_SET = 0.5

VHYS = 0.1

+

-

REF

-+

FB.

U13

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

DIODE

D1

AU

+

-

+

-

S2

SDIODE

D2

AL

0

A

+

-

REF

-+

FB.

U9

HYS_I-CTRL

I_SET = {I_SET}VHYS = {VHYS}

+

-

+

-

S3S

VCC

0

DIODE

D3

/AU

+

-

+

-

S4

SDIODE

D4

/AL

0

U8

AND

U10

AND

U12

AND

U14

AND

/FA

R1

1k

CLK

0

FB

OU

I

OL

U4

GDRV

/A

/B

U152-PHASEPPS = 100

CLK

FA

/FA

FB

/FB

8.Drive Circuit Efficiency (%)

Copyright (C) Bee Technologies Inc. 2011 68

*Analysis directives:

.TRAN 0 80ms 0 10u SKIPBP

.STEP PARAM RON LIST 10m, 100m, 1

.OPTIONS ITL4= 40

One-Phase Step

Sequence Generator

(100 pps)

Page 69: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Time

10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms

100*AVG(W(U1))/(-AVG(W(Vcc)))

85

90

95

100

8.Drive Circuit Efficiency (%)

Copyright (C) Bee Technologies Inc. 2011 69

at switches Ron = 10m, (99.7%)

at switches Ron = 100m, (99.8%)

at switches Ron = 1, (86%)

Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.

Page 70: 「SPICEの活用方法」セミナー資料(28JAN2011) PDF

Bee Technologies Group

お問合わせ先)[email protected]

【本社】株式会社ビー・テクノロジー〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階代表電話: 03-5401-3851設立日:2002年9月10日資本金:8,830万円【子会社】Bee Technologies Corporation (アメリカ)Siam Bee Technologies Co.,Ltd. (タイランド)

本ドキュメントは予告なき変更をする場合がございます。ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。

70Copyright (C) Bee Technologies Inc. 2011