system integration of renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf ·...

37
System Integration of Renewables Simon Müller, Head of Unit – System Integration of Renewables Unit IEEJ i T k 7 A t 2017 IEEJ seminar, Tokyo, 7 August 2017 IEEJ:August 2017 © IEEJ2017

Upload: hoangthuy

Post on 29-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

System Integration of Renewables

Simon Müller, Head of Unit – System Integration of Renewables UnitIEEJ i T k 7 A t 2017IEEJ seminar, Tokyo, 7 August 2017

IEEJ:August 2017 © IEEJ2017

Page 2: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 3: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

IEA System Integration of Renewables analysis at a glance

• Over 10 years of grid integration work at the IEA- Grid Integration of Variable Renewables (GIVAR) Programme

- Use of proprietary and external modelling tools for techno-economic grid integration assessment- Global expert network via IEA Technology Collaboration Programmes and GIVAR Advisory Group

- Dedicated Unit on System Integration since June 2016 - Part of delivering the IEA modernisation strategyg gy

2011 20172014 2016 2017

© IEA 2017

Technical Progress & Tracking

Framework, Technology, Economics

Policy Implementation

IEEJ:August 2017 © IEEJ2017

Page 4: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Variable Renewable Energy (VRE) on the riseVRE share in annual electricity generation, 2015-21y g ,

ITALYEUUK

GERMANY

PV share2015

USAFRANCETURKEYMEXICO

AUSTRALIA

Wind share2015

CANADAINDIA

JAPANBRAZILCHINA

USA

AdditionalPV share

INDONESIAARGENTINA

KOREASOUTH AFRICA

CANADA PV share2021

Additionali d h

© IEA 2017Source: Medium Term Renewable Energy Market Report, 2016

0% 5% 10% 15% 20% 25% 30%

RUSSIASAUDI ARABIA wind share

2021

IEEJ:August 2017 © IEEJ2017

Page 5: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

… leading to new challenges for energy securityNew operational requirements

3 000

3 500

Limited contribution to peak demand

New operational requirements

1 500

2 000

2 500

Powe

r (MW

)

p

Largerramps

Net load = power demand

500

1 000

1 500

Forecasterrors

pminus 

wind and solar output

000:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

Demand Net load

Potentialover‐

generation

errors

© IEA 2017

Higher shares of variable renewables pose new challenges for power systems

IEEJ:August 2017 © IEEJ2017

Page 6: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Variability – a familiar challengeExceptionally high variability in Brazil, 28 June 2010p y g y ,

© IEA 2017

Power systems already deal with demand variability; they have flexibility available from the start.

Source: ONS, Brazil

IEEJ:August 2017 © IEEJ2017

Page 7: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Three main messages on system integration

1. Very high shares of variable renewables are technically possible

2. No problems at low shares, if basic rules are followed

3. Reaching high shares cost-effectively calls for a system-wide transformation

R i i

FLEXIBLEPower system

• GenerationRemaining system VRE

• Generation• Grids • Storage • Demand Side Integration

© IEA 2017

• Demand Side Integration

IEEJ:August 2017 © IEEJ2017

Page 8: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

System integration strategies key to use wind and solar effectivelyWind penetration and curtailment in selected countries, 2012-2015p

Wind penetrationlevel in the energymix (left axis)

Wind penetration level in the

( )

Curtailment rate(right axis)

energy mix(left axis)

Curtailment rate(right

i )axis)

Grids + + + o + o o o o o o

Generation + + + + + o o + o + -

Operation + + + + + + + + + + -

© IEA 2017

Curtailment levels are a good indicator for successful VRE integration – growing curtailment signals shortfalls in power system flexibility

Operation

IEEJ:August 2017 © IEEJ2017

Page 9: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 10: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Properties of wind and solar and their impacts

Low short run cost

Non synchronous Uncertainty Variability Location

constrained Modularity

Stability Reserves Short term changes

Asset utilisation

Transmissiongrid

Distributiongrid

Seconds Years >100km <<1kmAbundance Scarcity

Balancing Profile / utilisation LocationStability Modularity

© IEA 2017

The different properties of variable renewable energy lead to different impacts on the power system.

IEEJ:August 2017 © IEEJ2017

Page 11: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Different Phases of VRE Integration

Ph D i tiPhase Description

1 VRE capacity is not relevant at the all-system level

2 VRE capacity becomes noticeable to the system operator

3 Flexibility becomes relevant with greater swings in the supply/demand balance

4 Stability becomes relevant. VRE capacity covers nearly 100% of demand at certain timescertain times

5 Structural surpluses emerge; electrification of other sectors becomes relevant

© IEA 2017

6 Bridging seasonal deficit periods and supplying non-electricity applications; seasonal storage and synthetic fuels

IEEJ:August 2017 © IEEJ2017

Page 12: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 13: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Phases 1 & 2: Getting Wind and Solar Onto the Grid

1. Weather driven variability is unmanageable

New Publication released March 2017

Myths related to wind and solar integration

2. VRE deployment imposes a high cost on conventional plants

3 VRE capacity requires 1:1 “backup”3. VRE capacity requires 1:1 backup

4. The associated grid cost is too high

5. Storage is a must-have

6. VRE capacity destabilizes the power system

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 14: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Focus on Phase 2 of VRE integration

i i i f i h• First instances of grid congestion Is grid connection 

code appropriate? Is VRE reflected in system operation?

Is the grid still sufficient for continuing VRE 

deployment?

Is VRE deployed in a system‐friendly way?

Priorities for VRE Integration – Phase 2

• Incorporate VRE forecast in scheduling & dispatch of other

t

Develop or upgrade grid code 

Ensure visibility and controllability of power plants; Implement VRE 

forecast system

Improve operations;  Consider grid expansion

Manage VRE deployment location and technology mix

generators

• Focus also on system-friendly VRE

Successful integration of increasing shares of wind and solar PV plants

Issue Action Outcomefriendly VRE deployment

Source: IEA 2017, Getting wind and sun onto the grid

Yes No Action taken

© IEA 2017

Updated system operations, sufficient visibility & control of VRE output becomes critical in Phase II

IEEJ:August 2017 © IEEJ2017

Page 15: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 16: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Phases 3 & 4: System transformation

Policy and market frameworkPolicy and market frameworkPolicy and market frameworkPolicy and market framework

Flexible resourcesplanning & investments

Flexible resourcesplanning & investments

System‐friendly VRE deployment

System‐friendly VRE deployment

etratio

n

planning & investmentsplanning & investments

System services

Distributed resources integration

f VRE

 pen

Grids GenerationDemand shapingStorage

Location

Technology mix

Generation time profile 

System and market operationSystem and market operation

Actions targeting o erall s stemActions targeting VRE

Level of Location

Integrated planning

© IEA 2017

Integrating large shares of VRE requires system transformation

Actions targeting overall systemActions targeting VRE

IEEJ:August 2017 © IEEJ2017

Page 17: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

System transformation requires holistic approach

• Institutional – defining roles and responsibilities

Institutional

Information & coordinationPolicy, market and regulatory 

• Economic –market design, regulation, planning frameworks

Institutional

Economic

Capital

frameworks

Technical

Electricity

• Technical – operation of power system, safeguarding

Economic

y g greliability

© IEA 2017

Policies, markets and regulatory frameworks link technical, economic and institutional aspects

IEEJ:August 2017 © IEEJ2017

Page 18: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Recent publication: Status of Power System Transformation 2017

• Overview of trends and developments in the power sector

- System Integration of RenewablesSystem Integration of Renewables - Future of local grids

• Provides over two dozens of best practice pexamples for integrating wind and solar power

• Introduces a framework for assessing power system transformation, applied to case studies

- Indonesia, South Africa, Mexico, Australia

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 19: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 20: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

System friendly VRE deployment

• New phase of wind and solar deployment:- Low-cost- Technologically matureg y

• Requires new policies to achieve integration:- Focus on generation cost no longer enough

li i d id id i- Policies need to consider system-wide impact

• Case studies with specific recommendations:- Brazil, China, Indonesia, Mexico, South AfricaBrazil, China, Indonesia, Mexico, South Africa

• Strong focus on country implementation

© IEA 2017

Next generation wind and solar PV need ‘next generation policies’ focusing on system value and not just costs

IEEJ:August 2017 © IEEJ2017

Page 21: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Factoring in value

Less useful: More useful:Less useful:Lower value

More useful:Higher value

The value of electricity for the power system depends on where, when and

how it is generated.

Low value electricity High value electricityLow value electricity High value electricity

When When electricity is abundant When electricity is most needed

Where Far away from demand Close to demand

© IEA 2017

y

How No additional system services Provides additional services for system

IEEJ:August 2017 © IEEJ2017

Page 22: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Going beyond generation costs – system value

LCOE• Installation costs• Operation and maintenance

(f l i i )

SV• Reduced fuel and emission costs• Reduced costs/ need for other generation

i

+

costs (fuel, emissions)• Financing cost• …

capacity• Possibly reduced grid costs and losses• Increased operational costs for other power

plants• Additional grid infrastructure costs- Additional grid infrastructure costs• Curtailment

© IEA 2017

LCOE and System Value (SV) are complementary: LCOE focuses on the level of the individual power plant, while SV captures system-level effects

IEEJ:August 2017 © IEEJ2017

Page 23: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Implications for deployment priorities

Traditional approach Next generation approach

O i i d b i f i d d lWhen is electricity produced? Not considered

Optimised: best mix of wind and solar; advanced power plant design; strategic

choice of location

Where is electricity produced?

Best resources, no matterwhere

Optimised: trade-off between cost of grid expansion and use of best resources

i i d b k l d d dHow is electricity produced?

Do not provide system services

Optimised: better market rules and advanced technology allow wind and solar power to

contribute to system services

© IEA 2017

Next-generation wind and solar power require next generation polices.

IEEJ:August 2017 © IEEJ2017

Page 24: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Example of next generation policy priorities

Action area Policy example

Integrated planning: wind and solar embedded in energy strategy

Denmark: integrated energy strategy

Action area Policy example

Location: siting VRE closer to existing network capacity and/or load centers

Location: new auction design for wind and PV

T h l i b l d i f VRE T h l i I t t dTechnology mix: balanced mix of VRE resources can foster lasting synergies

Technology mix: Integrated Resource Plan

Optimising generation time profile:  California: incentive to 

System services: wind and sun contribute to balance system

24/7

System services: wind activeon balancing market

design of wind and solar PV plants produce at peak times

© IEA 2017

Local integration with other resources such as demand‐side response, storage

Australia: policies for self‐consumption

IEEJ:August 2017 © IEEJ2017

Page 25: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 26: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

System operation and market design

• Ensuring least-cost dispatch• Trading close to real time• Market integrations over large regional areas

Efficient operation of the power system g g g

• Upgrade planning and system service markets• Generation, grid, demand-side integration and storage

Unlocking flexibility from all resources

• Improve pricing during scarcity/capacity shortage• Possibly capacity mechanisms mechanism as safety-netSecurity of electricity supply

• Sufficient investment certainty• Competitive procurement (with long-term contracts)

Sufficient investment in clean generation capacity

© IEA 2017

• Reflecting the full cost (i.e. environmental impacts)Pricing of externalities

IEEJ:August 2017 © IEEJ2017

Page 27: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Example: shorter dispatch intervals in Texas

R l ti i t i ERCOT b f d ft d i di t h i t lRegulating reserve requirement in ERCOT before and after reducing dispatch intervals

• Shorter dispatch intervals can lead to more efficient and cost-effective operation

© IEA 2017

• In ERCOT, dispatch intervals were reduced from 15 to 5 minutes in 2010- Less regulating reserve requirements were needed

IEEJ:August 2017 © IEEJ2017

Page 28: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Example: power plant flexibility

G ti tt f l l t i G M 2016Generation pattern of coal plants in Germany, May 2016

14 000

16 000MW

8 000

10 000

12 000

2 000

4 000

6 000

001 May 02 May 03 May 04 May 05 May 06 May 07 May

© IEA 2017

Power plants are an important source of flexibility,evident in countries such as Germany, Denmark, Spain, the United States

IEEJ:August 2017 © IEEJ2017

Page 29: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Why focus on power plant flexibility?

• Flexible power plants currently major source of flexibility in all power systems

h l l f l d d d• Technical potential is often poorly understood and/or underestimated

Si ifi t b i hi dExample North-America

• Significant barriers hinder progress:- Technical solutions not always known- Market design favors running ‘flat-out’

From baseload operation to starting daily or twice a day (running from 5h00 to 10h00 and 16h00 to 20h00) Source: NREL

- Inflexible contracts with manufacturers

• IEA coordinating new imitative to promote enhanced

© IEA 2017

power plant flexibility

IEEJ:August 2017 © IEEJ2017

Page 30: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Examples of interventions to make coal plants more flexibleEnhanced output flexibility via multiple controls Better monitoring and control of combustionp y p g

© IEA 2017

Thermal power plants can be made more flexible via enhanced monitoring and control equipment.

Source: SIEMENS AG

IEEJ:August 2017 © IEEJ2017

Page 31: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Outline

• Overview of IEA work and introduction

• Properties of variable renewable energy (VRE) and impact; hsystem integration phases

• Handling challenges during initial phases

• Mastering higher shares – system transformation- System friendly deployment: system value and next generation RE policies- System and market operations / Additional system flexibility

• Distributed energy resources – the future of local grids

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 32: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

A paradigm shift - local grids in future energy systems

Past / present Generation Transmission Distribution CustomerEnergy flow

Future

Data flowDecentralisation

Digitalization

• High uptake of DERs are changing the way local grids are planned and operated

• Successful transition rests on changes in three dimensionsg

- Technical – more dynamic (bi-directional) energy flows require changes in system operations

- Economic – High uptake of DERs raise the need for retail tariff reform. Consideration of time and place can foster greater flexibility

© IEA 2017

and place can foster greater flexibility

- Institutional - roles and responsibilities are changing. Better co-ordination between local grid and transmission system operators is key

IEEJ:August 2017 © IEEJ2017

Page 33: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Value of solar PV approach

© IEA 2017

Accurately remunerating distributed generation requires a detailed understanding of its effects on the power system.

IEEJ:August 2017 © IEEJ2017

Page 34: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Reforming electricity tariff design

© IEA 2017

Rise of distributed resources rasises importance of retail tariff design, in particular grid charges

IEEJ:August 2017 © IEEJ2017

Page 35: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Putting together the pieces – towards a new paradigm?

© IEA 2017

Smart local grids, linking a diverse set of distributed resources across different sectors, may emerge as main pillar of future energy systems.

IEEJ:August 2017 © IEEJ2017

Page 36: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

Conclusion

• Power systems experiencing technological, institutional and economic innovations, combining to transform the sector.

k l d h l l b l• Market structures, regulations, system operation and technological capabilities have evolved to support power system transformation, including cost-effective wind and solar integration.

- Better understanding of system operation at high VRE shares- Converging set of priorities for electricity market design- Emerging frameworks for managing decentralization and digitalization

• Integration of distributed resources in smart local grids calls for tariff reform and changes in roles and responsibilities

© IEA 2017

IEEJ:August 2017 © IEEJ2017

Page 37: System Integration of Renewables - 一般財団法人 ...eneken.ieej.or.jp/data/7495.pdf · Variable Renewable Energy (VRE) on the rise VRE share in annual electricityyg , generation,

© IEA 2017

[email protected]

IEEJ:August 2017 © IEEJ2017

Contact :[email protected]